
Constructing GPSJ View Graphs

Michael O. Akinde
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7 E-1

DK–9220 Aalborg Øst, Denmark
strategy@cs.auc.dk

Michael H. Böhlen
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7 E-1

DK–9220 Aalborg Øst, Denmark
boehlen@cs.auc.dk

Abstract

A data warehouse collects and maintains in-
tegrated information from heterogeneous data
sources for OLAP and decision support. An im-
portant task in data warehouse design is the selec-
tion of views to materialize, in order to minimize
the response time and maintenance cost of gener-
alized project-select-join (GPSJ) queries.

We discuss how toconstructGPSJ view graphs.
GPSJ view graphs are directed acyclic graphs,
used to compactly encode and represent differ-
ent possible ways of evaluating a set of GPSJ
queries. Our view graph construction algorithm,
GPSJVIEWGRAPHBUILDER, incrementally con-
structs GPSJ view graphs based on a set of merge
rules. We provide a set of merging rules to con-
struct GPSJ view graphs in the presence of du-
plicate sensitive and insensitive aggregates. The
merging algorithm used in GPSJVIEWGRAPH-
BUILDER ensures that each node is correctly
added to the view graph, and employs the merge
rules to ensure that relationships between nodes
from different queries are incorporated into the
view graph.

The copyright of this paper belongs to the paper’s authors. Permission to
copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW’99)
Heidelberg, Germany, 14. - 15.6. 1999

(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

1 Introduction

A data warehouse is a repository of integrated informa-
tion from multiple, independent data sources available for
querying and analysis. As data warehouses contain inte-
grated information, often spanning long periods of time,
they tend to be orders of magnitude larger than conven-
tional operational databases; ranging from hundreds of gi-
gabytes to terabytes in size. The workload is typically
query-intensive, with many complex queries that may ac-
cess millions of records and perform many joins and ag-
gregates.

Three costs must be balanced during physical database
design for warehouses: (1) the cost of answering queries,
(2) the cost of maintaining the warehouse, and (3) the cost
of secondary storage. The cost of (1) can be reduced by ma-
terializing (precomputing) frequently asked queries as ma-
terialized views in the data warehouse, but this increases
the maintenance costs of the warehouse. The problem of
selecting an appropriate set of views and indexes to ma-
terialize in a data warehouse is referred to as theview-
selection[Gup97] ordata warehouse configurationprob-
lem [TS97].

For the purpose of our discussion, we use the fol-
lowing terminology (precise definitions follow later). A
GPSJ queryis a generalized project-select-join query,
i.e., a project-select-join query extended with aggregation,
grouping, and group selection. This class of queries is
the single most important one used in data warehousing
[Kim96]. A GPSJ query graphis a directed acyclic graph.
It represents a specific strategy to evaluate a GPSJ query.
A GPSJ expression DAGcompactly encodes different pos-
sibilities to evaluate a GPSJ query. It combines multiple
GPSJ query graphs into a single graph. Finally, aGPSJ
view graphencodes multiple evaluation strategies for dif-
ferent queries. Put differently, a GPSJ view graph inte-
grates several GPSJ expression DAGs.

In this paper, we concentrate on theconstructionof
GPSJ view graphs. Theintegrator takes the set of GPSJ

M.O. Akinde, M.H. B̈ohlen 8-1

expression DAGs as input, and merges them into a GPSJ
view graph according to a set of merging rules. The inte-
grator and its embedding into the data warehouse configu-
ration tool are illustrated in Figure 1. Given a set of queries
for the data warehouse and metadata (such as query fre-
quencies, schema information, etc.), the tool returns a data
warehouse configuration.

Expression DAG
Generator

Integrator

View Selection
Algorithm

Metadata

GPSJ View Graph

G(V)

Configuration
Data Warehouse

Expression DAGs
G(Q), G(Q), . . . , G(Q)1 2

1 2Q , Q ,, . . . , Qn

n

GPSJ Queries

Figure 1: Data Warehouse Configuration Tool

Example 1.1 Consider the table:

accounts(a personid, a name, a balance,
a type, a date)

and the SQL queries:

A1 SELECT a_name,max(a_balance)
FROM accounts
GROUP BY a_name

A2 SELECT a_personid,a_name,
sum(a_balance)

FROM accounts
GROUP BY a_name

Figure 2 gives two simple expression DAGs,G(A1) and
G(A2), for these two queries. Equivalence nodes, repre-
senting views which can be materialized in the data ware-
house, are denoted in the figures using ovals and a label.
Operation nodes are denoted using rectangles. The inte-
grator takes these expression DAGs as input, and merges
them to derive the GPSJ view graphG(X) displayed on the
left. Note that during the merging process, additional op-
eration nodes and edges may be derived, such as the node
and edges connectingA0 toA1.

A major part of the integrator is the GPSJVIEWGRAPH-
BUILDER algorithm. The algorithm starts with a (possibly
empty) GPSJ view graph and incrementally builds up the
“final” graph by integrating GPSJ expression DAGs into
it. The behavior of the algorithm is controlled by a set of
merging rules, which are also part of the integrator. This
flexibility allows us to extend the GPSJ view graph frame-
work to consider more general view graphs and various
graph input types, simply by adding or modifying the set of

merge rules used in the GPSJVIEWGRAPHBUILDER algo-
rithm.

Specifically, given a set of data warehouse queries,
Q1; Q2; : : :Qn, the GPSJ view graphG(X) is incremen-
tally constructed from the set of associated GPSJ expres-
sion DAGs,G(Q1); G(Q2); : : : ; G(Qn) by the algorithm
using a set of merging rules. We give a set of basic rules to
integrate GPSJ expression DAGs into GPSJ view graphs.
To the best of our knowledge, the rules and algorithms for
merging such graphs in the presence of aggregation and
grouping have not previously been considered in the litera-
ture.

In order to ensure an optimal solution to the view-
selection problem, it is necessary to generate the entire
GPSJ view graph. However, the complexity (space and
time) of algorithms for solving the view-selection problem
optimally is exponential in the number of nodes in the ex-
pression graph [TS97, Gup97, GM99]. Although we do not
directly represent the conventional (duplicate-preserving)
projection in the GPSJ view graphs of this framework, as
they can be discarded when they appear as interior nodes
in the graph [RSS96, YKL97] and can be expressed using
a generalized projection when appearing as the outermost
nodes [GHQ95], the complete GPSJ view graph in the pres-
ence of aggregation and grouping alone can still be huge.
Therefore, we provide a number of rules which can be used
to reduce the size of the view graph.

1.1 Related Work

The problem of constructing view graphs such as those de-
scribed in this paper is most often considered in relation
to view-selection algorithms or physical database design.
Roussopolous [Rou82] presents an algorithm for generat-
ing LAP schemas, which closely resemble our view graphs,
however, his algorithm does not consider aggregate func-
tions and grouping.

Other papers on view-selection employing view-graph
like structures [RSS96, TS97, GM99] either do not con-
sider the construction of these structures, or consider only
select-join views without aggregation.

Gupta [Gup97] suggests that the AND-OR view graph
be constructed using the expression AND-OR DAGs of the
queries. These expression AND-OR DAGs are to contain
only those views which will be considered (useful) for the
view selection algorithm. However, it is unclear how to
determine these “useful” views in the presence of aggre-
gation, and therefore how to construct the AND-OR view
graph. This is the problem considered in this paper.

1.2 Paper Outline

The paper is structured as follows. Section 2 describes the
aggregation framework and notation used in this paper, and
gives rules for recomputing aggregates using their disjoint
sets. Section 3 defines the GPSJ view graphs, and gives the

M.O. Akinde, M.H. B̈ohlen 8-2

accounts

A2A1

accounts

πa_personid, a_name, a_balance
[]

πa_personid, a_name
[sum(a_balance*count(*)]

πa_personid, a_name
[sum(a_balance)]

A’

A2

[max(a_balance)]πa_name

πa_personid, a_name
[sum(a_balance*count(*)]

πa_personid, a_name
[sum(a_balanc

[max(a_balance)]πa_name

A’

πa_personid, a_name, a_balance
[]

accounts

G(A1) G(A2)

[max(a_balance)]πa_name

A1

G(X)

Figure 2: Combining two GPSJ Expression DAGs into a GPSJ View Graph

graphical notation used to illustrate the graphs. Section 4
gives rules and the algorithm for merging expression DAGs
for GPSJ queries. In Section 5 we give some rules for re-
ducing the size of the GPSJ view graph. Section 6 con-
cludes the paper and points to future research directions.

2 Aggregation Framework

We use the generalized projection (GP) operator [GHQ95],
�G[F (A)], to represent aggregation. Generalized projec-
tion is an extension of duplicate eliminating projection,
whereG denotes the set of group-by attributes andF de-
notes a set of aggregate functionsF = f1; f2; : : : ; fn over
attributes in the attribute setA.

In this paper, we consider only distributive aggregate
functions, i.e., aggregate functions that can be computed
by partitioning their inputs into disjoint sets. The SQL
aggregate functionscount , sum, min , andmax, are all
distributive. The algebraic aggregate functionavg can be
expressed in this framework usingsum/count .

Aggregate functions can be divided into the duplicate
sensitive aggregates (referred to as DSAs), such ascount
andsum, and the duplicate insensitive aggregates (referred
to as non-DSAs), such asmax and min . These char-
acteristics are of importance when computing an aggre-
gate function from its disjoint sets. In general, non-DSAs
can always be computed from views which contain the
same aggregate, or the attribute of the aggregate; e.g.,
�A[max(B)](�A;BR) � �A[max(B)](R). In order to
do a similar transformation with DSAs, we need additional
information about the number of duplicates. This infor-
mation can be acquired using acount . We refer to the
process of computing aggregates from their group-by at-
tributes using acount as duplicate compensation.

Table 1 gives the rules for computing aggregates from
the partial results of previously computed aggregates or the
group-by attributes. The prerequisite attributes are those

group-by attribute and/or aggregate functions required in a
view for the computation of the aggregate in the first col-
umn. For example, we can computeQ = �[sum(A)]R
given the viewV = �A[count (�) as cnt](R) asQ =
�[sum(A � cnt)](V).

Aggregate Prerequisite Computed
Attributes Aggregate

count(�) count(�) ascnt sum(cnt)
count(A) count(A) ascntA sum(cntA)
count(A) A,count(�) ascnt sum(cnt)
sum(A) sum(A) assumA sum(sumA)
sum(A) A, count(�) ascnt sum(A � cnt)
max(A) max(A) asmaxA max(maxA)
max(A) A max(A)
min(A) min(A) asminA min(minA)
min(A) A min(A)

Table 1: Computing Aggregates from partial results and/or
group-by attributes

An example of the application of such rules is the deriv-
ing ofA1 orA2 from the nodeA0 in Figure 2.

3 GPSJ View Graphs

A GPSJ query is PSJ query enhanced with grouping and
aggregation. More precisely, a GPSJ query is any query
which can be written in GP normal form [GHQ95] (i.e., a
selection,�1, over a generalized projection,�, over a se-
lection,�2, over a set of joins,X ,: �1��2X). A large class
of queries can be expressed as GPSJ queries, in particular
all SELECT-FROM-WHERE-GROUP BY-HAVING queries
can be reduced to this form if the attributes/aggregate
functions in theGROUP BYandHAVINGclauses appear
in the SELECT clause, no aggregate functions use the
DISTINCT keyword, and theWHEREclauses are con-
junctive. Algorithms for solving the view-selection prob-

M.O. Akinde, M.H. B̈ohlen 8-3

lem [Gup97, TS97, GM99], usually model the problem as
some form of graph structure representing multiple queries.
We use GPSJ view graphs for this purpose.

A query graphfor a queryQ is a graph, where each leaf
node corresponds to a base table used to defineQ, and each
non-leaf node is an operator with associated children. The
algebraic expression computed at the root node is equiv-
alent toQ. Query graphs are used in query optimizers to
determine the cost of a particular way of evaluating a query.
We refer to the leaves and root nodes of the query graph as
“equivalence” nodes and the non-leaf nodes as “operation”
nodes.

Expression DAGsare used to compactly represent the
space of the equivalent query graphs of a single query as a
directed acyclic graph. An expression DAG is a bipartite
directed acyclic graph with equivalence nodes and oper-
ation nodes. An equivalence node (with the possible ex-
ception of leaf nodes) has edges to one or more operation
nodes. An operation node consists of an operator, edges to
either one or more predecessors that are equivalence nodes,
and an edge to the derived equivalence node. We denote
an equivalence node by the algebraic expression it com-
putes. Its predecessor operation nodes correspond to var-
ious query graphs that yield a result that is algebraically
equivalent to the label of the equivalence node. The leaves
of an expression DAG are equivalence nodes correspond-
ing to base tables. Expression DAGs are used in rule-based
optimizers.

The GPSJ view graph is a multi-query expression DAG,
i.e., it represents expression DAGs of several queries in a
single DAG. Each equivalence node in the view graph cor-
responds to a view, which can be materialized in a data
warehouse. Like the expression DAG, the leaf equivalence
nodes of a GPSJ view graph correspond to the base tables
of the data warehouse. We define the equivalence nodes of
GPSJ view graphs as follows:

Definition 3.1 (Equivalence Nodes of View Graphs)
LetR be the set of base tables in the data warehouse. We
define the set of equivalence nodesV of a GPSJ view graph
recursively as:

1. IfRi 2 R, thenRi 2 V .

2. IfRi; Rj 2 V , then:

(a) �[C](Ri) 2 V , where�[C](Ri) selects the sub-
set of the tuples ofRi that satisfies the condition
C.

(b) �G[F](Ri) 2 V , where�G[A] is a generalized
projection onRi. G is a subset of the attributes
inRi andF are a set of aggregate functions over
Ri.

(c) 1 [C](Ri; Rj) 2 V , where./ [C](Ri; Rj) is
a join betweenRi and Rj on the join condi-
tion C. The Cartesian product of two views is

represented using a join on an empty condition
(C = ;).

In GPSJ expression DAGs and GPSJ view graphs the
three basic operations are denoted using the graphical no-
tation of Figure 3.

σ [C]π [F]
A

[C]

Rπ Rσ

RR R

RQ

Q

Figure 3: (a) Generalized Projection, (b) Selection, and (c)
Join in GPSJ View Graphs

Definition 3.2 (GPSJ View Graphs) A directed acyclic
graph G(X) having the base tables as the leaves is
called a GPSJ view graph for the queries (or views)
Q1; Q2; : : : ; Qn if for each queryQi, there is a subgraph
Gi(Qi) in G(X) that is an expression DAG ofQi. Each
equivalence nodev in the GPSJ view graph is annotated
with the query frequencyfv (frequency of queries onv),
update frequencygv (frequency of update onv), and the
sizesv of the view if materialized.

Update frequence and size of the views in the GPSJ
view graph can be re-calculated after the construction of
the GPSJ view graph. Therefore, the only parameter of in-
terest during theconstructionof the GPSJ view graph is
the query frequencyfv. We will not consider the update
frequency or size in the rest of this paper. Also, to avoid
cluttering up the figures, we will not annotate the graphs
with query frequencies in the examples.

An important characteristic of the GPSJ view graph is its
similarity to AND-OR view graphs. This means that stan-
dard view selection algorithms [Gup97, GM99] can, with
little or no modification, be used on GPSJ view graphs.

4 Constructing GPSJ View Graphs

The GPSJ view graph of a set of queriesQ1; Q2; : : : ; Qn

is constructed by merging the expression DAGsG(Q) =
G(Q1); G(Q2); : : : ; G(Qn) for each of these queries.

Example 4.1 Consider the tableaccounts of Exam-
ple 1.1 and the SQL query :

SELECT a_name, max(a_balance)
FROM accounts
GROUP BY a_name

Figure 4 gives three equivalent query graphs for this query,
and the expression DAG derived from these query graphs.

M.O. Akinde, M.H. B̈ohlen 8-4

πa_name, a_type
[max(a_balance)]

A’

πa_name
[max(a_balance)]π [max(a_balance)]

a_name πa_name
[max(a_balance)]

π []
a_personid, a_name, a_balance

πa_name
[max(a_balance)]

π [max(a_balance)]
a_name, a_type

πa_name
[max(a_balance)]

[max(a_balance)]
a_nameπ

π []
a_personid, a_name, a_balance

QG1 QG2

Expression DAG of QG1, QG2, and QG3

QG3

A1 A2

A’

accounts

A’

accounts

A’

accounts accounts

GP1 =

GP3 =

GP4 = GP5 =

GP2 =

Figure 4: Equivalent query graphs and the resulting expression DAG

For the purposes of this paper, we assume that the com-
plete expression DAG has been generated. This issue has
no effect on the construction algorithm itself, as the in-
puts of this algorithm is simply a set of graphs, however
complete expression DAGs are required to construct com-
plete GPSJ view graphs. The complete expression DAG of
aggregate queries are typically very large, e.g., the space
complexity of the number of equivalence nodes in a simple
aggregate query (i.e., one constructed using a single pro-
jection over a base table�R) is O(2n�m), wherem is the
number of attributes used in the view, andn is the number
of attributes in the base table.

For example, the complete expression DAG of the query
in Example 4.1 has25�2 = 8 different possible group-
ings, namely all combination of attributes that include
a name and a balance . Using these 8 groupings we
end up with over 51 possible distinct query graphs. In ad-
dition to these, we could also construct query graphs with
max(a balance) instead of grouping ona balance ,
resulting in more than a hundred possible query graphs for
this query.

For the purposes of algorithms such as those presented
in [Gup97, GM99], we can not simply choose an “optimal”
query graph, as we might then miss important equivalence
nodes which could be shared by other queries. However,
without knowledge about the other queries being consid-
ered, it is impossible to know which views, and thus, which
nodes of the view graph will be useful for the purposes of
the view-selection algorithm, without sacrificing the opti-
mality of the solution. In Section 5, we will consider rules
for reducing the size of GPSJ view graphs. Given informa-
tion about the set of queries being considered, this can be
done without sacrificing the performance guarantee of the
view selection algorithms being used.

The incremental merging of each expression DAG
G(Qi) of G(Q) into the view graph, is controlled by the
set of merging rules which we discuss below. The merge

1. Let the initial GPSJ View Graph G(X) contain
equivalence nodes corresponding to the base
relations used in the queries Q1;Q2; : : : ; Qn.

2. Annotate each equivalence node in G(Q) with
fv .

3. For each G(Qi) 2 G(Q):
MERGEALGORITHM(G(X);G(Qi)) (cf. Figure 10)

Figure 5: GPSJVIEWGRAPHBUILDER

rules ensure that potential structural relationships between
equivalence nodes in different DAGs ofG(Q) are correctly
incorporated in the GPSJ view graph.

4.1 Merge Rules

The rules and merge algorithm are specified so as to ensure
that it is not necessary to iterate in the graph to discover
whether two queries can be computed from each other us-
ing a single operation. Assuming that the full expression
DAG of a query has been materialized, three rules are suf-
ficient to ensure that all derivations between nodes in the
graphs of two different graphs will be derived. Note that
the set of views handled by the merge algorithm (i.e., GPSJ
views) can easily be extended by the introduction of ad-
ditional merge rules for other operators (e.g., outer join,
union, etc.).

We use standard inference rules on the form ; � ` ' to
state that, given and�, we can infer'.

Rule 4.1 (Derivation from a Selection Node)

V1 = �[C1](V); V2 = �[C2](V) ` V1 = �[C1](V2)

iff the selection conditionC1 restricts the same attributes
asC2, and the conditionC1 is more restrictive thanC2.

M.O. Akinde, M.H. B̈ohlen 8-5

[C]1σ

[C]1σ

[C]σ 2

1V

2V

V

Figure 6: Illustration of Rule 4.1

Rule 4.2 (Derivation from a GP Node)

V1 = �G1
[F1](V); V2 = �G2

[F2](V) ` V1 = �G1
[F 0](V2)

iff:

1. G1 � G2,

2. for each DSAfi(ai) 2 F1 there exists a correspond-
ing DSA fi(ai) 2 F2, or a count(�) 2 F2 and
ai 2 G2, and

3. for each non-DSAfi(ai) 2 F1 there exists a corre-
sponding non-DSAfi(ai) 2 F2 or ai 2 G2.

The set of aggregate functionsF 0 is derived fromF1 and
F2 using the rules for recomputing distributive aggregate
functions from their component parts (see Table 1).

V

1V

2Vπ [F1]

π [F1’]

π [F2]

G1

G1

G2

Figure 7: Illustration of Rule 4.2

Rule 4.3 (Derivation from a Join Node)

V1 = 1[C1](Vi; Vj);V2 = 1[C2](Vi; Vj) `

V1 = �[C1](V2)

iff the join conditionC1 restricts the same attributes asC2,
and the conditionC1 is more restrictive thanC2.

Rule 4.3 can also be used to handle the viewV de-
rived from a Cartesian product. This is done by treating
the Cartesian product as a join on the empty condition, i.e.,
any join conditionC will always be more restrictive than
the conditions of the Cartesian product.

[C]2

[C]1σ

V V

V
1

V
2

i j

[C]1

Figure 8: Illustration of Rule 4.3

4.2 The Merging Algorithm

Before we present the algorithm for merging, we shall
briefly describe the notation of the algorithm. We letG(X)
andG(Q) represent the GPSJ view graph and the expres-
sion DAG of the queryQ, respectively. We formally de-
scribe an expression DAG or view graph, following the de-
scription in Section 3.

Definition 4.1 (Graph Definition) A DAG or view graph
G(X) is a tuplehVX ; OXi, whereVX is the set of equiva-
lence nodes, andOX is the set of operation nodes.

Each equivalence nodev 2 VX is a triple hvL; Op; Odi,
wherevL is the label of the equivalence node.Op andOd

are a set of labels, whereOp is the set of predecessor oper-
ations andOd is the set of derivative operations.

Each operation nodeo 2 OX is a triple hoL; Ep; Edi,
whereoL is the label of the operation node.Ep andEd are
a set of labels, whereEp denotes one or more predecessor
equivalence nodes, andEd is the derived equivalence node.
We refer toEp andEd as the predecessor and derivative
expressions.

Example 4.2 Consider the expression DAG in Figure 4.
Following Definition 4.1, we can define the expression
DAG G(X) as follows:

G(X) =hVX ; OXi

VX = fhaccounts; fg; fGP1; GP2; GP3gi;

hA1; fGP2g; fGP4gi;

hA2; fGP3g; fGP5gi;

hA0; fGP1; GP4; GP5g; fgig

OX = fhGP1; faccountsg; fA0gi;

hGP2; faccountsg; fA1gi;

hGP3; faccountsg; fA2gi;

hGP4; fA1g; fA0gi;

hGP5; fA2g; fA0gig

M.O. Akinde, M.H. B̈ohlen 8-6

We define the graph as a set of equivalence nodes and
operation nodes (rather than as a set of nodes and edges) as
these two kinds of nodes are treated separately in the algo-
rithm. Recall our claim in Section 3 regarding the similarity
of GPSJ view graphs to AND-OR view graphs. To trans-
form an expression DAG or view graph defined as above
into an AND-OR DAG, we simply transform the operation
nodes into edges; each operation node corresponds to an
AND arc in the AND-OR DAG framework.

We refer to the operation nodes connecting an equiva-
lence node to its derivative nodes as derivative operation
nodes, and the operation nodes connecting it to its deriving
equivalence nodes as predecessor operation nodes.

v i

Op Op Op

dnOp Op Opd2

p2 pmp1

d1

Figure 9: Predecessor and derivative operation nodes of the
equivalence nodevi

Definition 4.2 (Predecessor & Derivative Operations)
Given a DAG as in Figure 9, we define the predecessor op-
erationsPreOpsand derivative operationsDerOpsof the
equivalence nodevi as:

PreOps(vi) = fOpp1; Opp2; : : : ; Oppmg
DerOps(vi) = fOpd1; Opd2; : : : ; Opdng

To test whether a viewvi is a child (i.e., directly derived)
of vj , we testPreOps(vi) \DerOps(vj) 6= ;.

In order to simplify the presentation of the algorithm,
we assume that the list of the viewsVQ of the expression
DAG G(Q) is an ordered set of viewsv1; v2; : : : ; vn such
that no viewvi is derived from a viewvi+j , wherei andj
are positive numbers. Such an ordering is easily imposed
using a topological sort. The MERGEALGORITHM is given
in Figure 10. The explanations follow below.

The intuition behind the merging algorithm is as fol-
lows. We consider each viewvi of the query graphG(Q)
in connection with the views ofG(X), considering the
leaves/base tables ofG(Q) first. The time complexity of
MERGEALGORITHM isO(jVX j�(jVX j+jVQj)), assuming
that no views inG(Q) match with those inG(X), which is
a worst case.

If the viewsvi andvj are identical, we merge the two
views into a single equivalence node inG(X), using the
Merge function, which is defined as follows:

Input
The GPSJ View Graph G(X)
The Expression DAG G(Q)

Output
The modified GPSJ View Graph G(X)0

Method
Let G(X) = hVX ; OXi
Let G(Q) = hVQ;OQi
If VQ = ; then

Return G(X).
For each vi 2 VQ:

For each vj 2 VX :
%% Step 1 - Check for Equality
If vi = vj then do

Merge(vi; vj)
Let fvj = fvj + fvi .

Else
%% Step 2 - Check Ancestry
If vi is a child of vj and vi 62 VX
then

Add(vi, G(X)).
Else

%% Step 3 - Attempt to Derive
If vi is derivable from vj using
Rules 4.1-4.3 or (vj is derivable
from vi using Rules 4.1-4.3 and
vj is not a child of vi) then do

If vi 62 VX then
Add(vi, G(X)).

Add the deriving operation node
to vi and vj .

EndIf
End For

End For
Return G(X).

Figure 10: MERGEALGORITHM(G(X); G(Q))

Merge(v1;v2)
Let G(X) = hVX ; OXi
Let E be the set of expressions

in the operation nodes
denoted by the labels of
DerOps(v1).

If v1 2 E then:
E = (E n fv1g) [fv2g

DerOps(v2) = DerOps(v2) [DerOps(v1)
Let Ov1 be the set of operation

nodes denoted by the labels
of DerOps(v1).

OX = OX [Ov1

Example 4.3 Consider the view graphG(X) = hVX ; OX i
and the DAGG(Q) = hVQ; OQi, where:

VX = fhacc1; fg; fGP1gi; hA1; fGP1g; fgig
OX = fhGP1; facc1g; fA1gig
VQ = fhacc2; fg; fGP2gi; hA2; fGP2g; fgig
OQ = fhGP2; facc2g; fA2gig

We assumeacc1 andacc2 are equivalent and/or represent
the same view and performMerge(acc2; acc1). This re-

M.O. Akinde, M.H. B̈ohlen 8-7

sults in the following configurations:

DerOps(acc2) = fGP2g
E = facc2; A2g

We then replaceacc2 with acc1, to getE = facc1; A2g.
Finally, we addDerOps(acc2) toDerOps(acc1) and add
the operation nodeGP2 toOX to obtain the following con-
figuration ofG(X):

VX = fhacc1; fg; fGP1; GP2gi; hA1; fGP1g; fgig
OX = fhGP1; facc1g; fA1gi; hGP2; facc1g; fA2gig

GP2GP1

G(X)

GP1

G(X)

GP2

G(Q)

Merge

A1 A2 A1 A2

acc1 acc2 acc1

Figure 11: Illustration of Example 4.3

To add the operations (or set of operations) of an equiv-
alence nodev1 to v2, we first update the expressions of
the derivative operation nodes referencingv1 to reference
v2. We then add the derivative operations ofv1 to v2, and
add the operation nodes to the graph. The merge function
ensures that any childvk of vi will also be detected as a
child of vj . Note that this implies that equivalence nodes
in G(X) can actually have operations connecting them to
equivalence nodes inG(Q) during the processing of the
merge algorithm (as shown in Example 4.3). Due to the or-
dering imposed onVQ however, we are always ensured that
any predecessor equivalence nodes will be merged into the
view graph first. Finally, we update the query frequencyfv
of the merged view inG(X).

At the lowest level of the query graph, views corre-
spond to base relations. In this case, recognizing identi-
cal views is a simple matter of name matching. For the
levels above, the recognition is done by checking whether
the derivation of a pair of views is equivalent. The prob-
lem of testing for equivalence of GPSJ queries is consid-
ered in [GHQ95, SDJL96, NSS98, RSSS98]. The problem
can be simplified by normalizing the expressions used to
identify the equivalence nodes when constructing the ex-
pression DAGs.

If the viewvi is a child of somevj , andvi or an identical
view does not already exist inG(X), then we addvi to the
GPSJ view graphG(X), using theAdd function:

Add(v;G(X))
Let G(X) = hVX ; OXi, v = hvL; Op; Odi
Let Ov be the operation nodes

denoted by the set of labels
Od.

VX = VX [v
OX = OX [Ov

Because of the ordering imposed onG(Q), we only
need to add the derivative operation nodesOd of v, as the
algorithm ensures that the predecessor nodes will have been
added previously.

Finally, we apply Rules 4.1 to 4.3 to check whether
either of the viewsvi or vj can be derived from the other.
The test to check whethervj is a child ofvi is required
to avoid duplicate operation nodes being introduced in this
step, sinceG(X) is not an ordered list likeG(Q). Rules 4.1
to 4.3 provide us with information about the deriving oper-
ation nodeo0, which can then be added toOp andOd of vi
andvj as appropriate, to connect the two nodes. It is criti-
cal for the correctness of the view selection algorithm, that
it has full information about the connectivity of the view
graph.

Example 4.4 Consider the tables

accounts(a_personid,a_name,a_balance,
a_type,a_date)

transaction(t_personid,t_change,t_date)

with the following three SQL queries:

Q1 SELECT a_name,max(a_balance)
FROM accounts
GROUP BY a_name

Q2 SELECT a_name,count(t_personid)
FROM accounts,transaction
WHERE t_personid = a_personid

AND t_change > 250
GROUP BY a_name

Q3 SELECT a_name,a_balance
FROM accounts,transaction
WHERE t_personid = a_personid

AND t_change > 500
GROUP BY a_name,a_balance

The expression DAGs are given in Figure 12. For sim-
plicity of presentation, we give only very simple expres-
sion DAGs, each representing two possible query evalua-
tion paths.

We initialize the GPSJ view graphG(X) with the two
base table nodesaccounts andtransaction (A and
T in the figures). The initial merging ofQ1 results in a
“graph” similar to that ofQ1 in Figure 12, except for the
presence of the unconnected equivalence nodeT .

M.O. Akinde, M.H. B̈ohlen 8-8

A

σ [t_change > 250]

σ [t_change > 250]

AT1

AT1

[t_personid=a_personid]

[t_personid=a_personid]

Q1

A1
πa_name [max(a_balance)]

πa_name [max(a_balance)]

πa_personid, a_name
[max(a_balance)]

A T

πa_name

Q2

πa_name [count(t_personid)]

AT2 AT3

T1

πa_personid, a_name
[max(a_balance)]

[count(t_personid)]

A T

π

Q3

σ [t_change > 500]

σ [t_change > 500]

T2

AT4 AT5

a_personid, a_name, a_balance
[]

πa_name, a_balance [] πa_name, a_balance []

A1

A2

[t_personid=a_personid]

[t_personid=a_personid]

Figure 12: The Expression DAGs of the three queries Q1, Q2, and Q3

Figure 13 shows the GPSJ view graph afterQ2 has been
merged into the graph, and Figure 14 illustrates the com-
plete view graph afterQ3 has been merged into the graph.
In Figure 14 additional operations have been added to the
graph using the rules of Section 4.1 to deriveA1 andQ1
fromA2,AT4 fromAT2, andT2 from T1.

In the view graph of Figure 14, each of the equivalence
nodes represents a view which could be materialized in the
data warehouse to answer one of the queriesQ1, Q2, or
Q3, while the paths in the graphs represent ways of com-
puting the queries from these views. It is thus possible to
apply a view selection algorithm to select and identify use-
ful sets of views to materialize. For example, if we wished
to select a set of viewsM , such thatM[fQ1; Q2; Q3g are
self-maintainable (i.e., can be maintained on changes to the
base tables without referencing these), we could material-
izeA2 andT1.

5 Reducing the GPSJ View Graph

The actual running time of view selection algorithms de-
pends on the size and structure of the generated view graph.
The full expression DAG of an aggregate query is typically
huge (cf. the very simple query in Example 4.1); this re-
sults in a blow-up of the size of the view graph structure
and longer running time or larger space requirements of the
view selection algorithm. A solution to the performance
problem of view selection algorithms is to prune the search
space of the algorithm [TS97, YKL97]. This corresponds
to reducing the size of GPSJ view graphs.

Obviously, a view selection algorithm cannot consider
or select a view, if that view is not represented in the GPSJ
view graph. Therefore, care must be taken to ensure that we
do not remove equivalence nodes which might be consid-
ered by the view selection algorithm, if we wish to main-
tain a performance guarantee for the view selection, such
as those presented in [Gup97, GM99].

Recall our assumption that the complete expression
DAG is generated for each query, thus ensuring that the

M.O. Akinde, M.H. B̈ohlen 8-9

πa_name [max(a_balance)]

πa_name [max(a_balance)]

Q1

σ [t_change > 250]

σ [t_change > 250]

AT1

[t_personid=a_personid]

A T

πa_name

Q2

πa_name [count(t_personid)]

AT2 AT3

T1

πa_personid, a_name
[max(a_balance)]

[count(t_personid)]

A1

[t_personid=a_personid]

Figure 13: The view graph after merging Q1 and Q2

GPSJ view graph is also complete. However, given knowl-
edge about the complete set of queries to be considered, it
is possible to identify views which will never be considered
by the view selection algorithm. Removing such views al-
lows us to reduce the size and complexity of the GPSJ view
graph structure.

We present two rules, which reduce the size of the GPSJ
view graph without affecting subsequent view selection al-
gorithms, i.e., these algorithms will still select the same set
of views to materialize. This reduction, or pruning, of the
graph structure can occur at several different stages of the
configuration tool architecture (cf. Figure 1), either as a
pre- or post-optimization of the Integrator component, or
as part of the expression DAG generation.

Rule 5.1 (Pruning Group-by attributes) Let Ai be the
set of group-by attributes, attributes used in join and se-
lection conditions, and attributes used in aggregate func-
tions inQi. ThenA = fA1; A2; : : : ; Ang includes all the
attributes used in the queriesQ1; Q2; : : : ; Qn. Then the
only views which are of interest for the view selection algo-
rithm constructed using a GP are those with group-byAgb,
whereAgb � A.

Intuitively, we are only interested in those views
which contain attributes used in the set of queries
Q1; Q2; : : : ; Qn. If we have a viewV1 = �A1;A2

[F](V)
in our expression DAG, whereA1 � A andA2 6� A, then
we can create a viewV2 = �A1

[F](V) which can be used
to answer the same set of queries asV1 and whose benefit
(i.e., measure of the usefulness of the view) will always be
greater than or equal to that ofV2. SinceV2 can replaceV1

with respect to the set of queries, it follows thatV1 is not
a “useful” view for the view selection algorithm. Recall
theO(2n�m) space complexity for the number of equiva-
lence nodes in the simple aggregate query expression DAG.
Rule 5.1 reduces the number of group-by attributes consid-
ered in the expression DAG (the factorn), thus minimizing
the exponent.

Before giving the second rule, we first define superflu-
ous aggregates.

Definition 5.1 (Superfluous Aggregates)An
aggregate functionfi(ai) is superfluous, if it can be com-
puted from other components of the same GP. Let�A[F] be
a GP over a table. A non-DSAfi(ai) 2 F is superfluous
if ai 2 A. A DSAfi(ai) 2 F is superfluous ifai 2 A and
count(ai) 2 F .

Rule 5.2 (Eliminate Superfluous Aggregates)
Let Agb be the set of group-by attributes andF be a set
of aggregate function over the attributesAagg , andAv =
Agb \ Aagg . If V 0 = �Agb

[F](V) is a view in the expres-
sion DAG andAv 6= ;, then we replaceV 0 with a view
V 00 = �Agb

[F 0](V). F 0 is identical toF , minus the su-
perfluous aggregates. If a DSAfi can be made superfluous
by introducing acount function toF , we add thecount
and removefi.

The correctness of Rule 5.2 follows from the principles
of duplicate compensation (cf. Section 2). Since super-
fluous aggregates do not add additional value for the view
selection algorithm (i.e., if a query can be computed from a
view containing superfluous aggregates, then it can equally

M.O. Akinde, M.H. B̈ohlen 8-10

πa_name [max(a_balance)]

πa_name [max(a_balance)]

Q1

TA

σ [t_change > 250]

AT1

T1

A2

πa_personid, a_name, a_balance
[]

πa_personid, a_name
[max(a_balance)]

A1

πa_personid, a_name
[max(a_balance)]

πa_name [max(a_balance)]

σ [t_change > 500]

AT4

σ [t_change > 500]

πa_name, a_balance [] πa_name, a_balance []

Q3

AT5

σ [t_change > 500]

T2

Q2

πa_name [count(t_personid)]

σ [t_change > 250]

πa_name

AT2 AT3

[count(t_personid)]

[t_personid=a_personid]

[t_personid=a_personid]

[t_personid=a_personid]

Figure 14: The view graph after merging Q1, Q2, and Q3

M.O. Akinde, M.H. B̈ohlen 8-11

well be computed from one containing no superfluous ag-
gregates), we eliminate such views to reduce the size of the
view graph.

6 Conclusion

The selection of which views to materialize is one of the
most important decisions in data warehouse design. The
view selection (or data warehouse configuration) problem
is to select a set of views to materialize in the data ware-
house, so as to optimize the total query response time un-
der some space or maintenance cost constraints. We dis-
cuss the view graph structures required by view selection
algorithms such as those proposed in [Gup97, GM99]. We
are not aware of any papers considering the construction
of such graph structures in the presence of aggregation and
grouping.

We describe an algorithm, GPSJVIEWGRAPH-
BUILDER for the construction of GPSJ view graphs from
the expression DAGs of GPSJ queries based on a set of
merge rules. We define a set of rules for merging complete
expression DAGs, and give a merge algorithm for carrying
out the incremental merging of an expression DAG with
the GPSJ view graph. We also give a number of rules for
reducing the size of the view graph constructed, while still
allowing us to keep the performance guarantee of the view
selection algorithms used.

In our future work, we intend to investigate the follow-
ing issues:

There is a lot of scope for reducing the size of the GPSJ
view graph generated for the view selection algorithm. It
would be interesting to attempt to further examine the ef-
fects of “non-optimal” pruning strategies on the view se-
lection algorithms considered. Is it possible to tailor view
selection algorithms to particular pruning strategies?

The GPSJ view graph framework can easily be extended
with operations such as outer join, union, and other rela-
tional operators by extending the merge rules of the algo-
rithm. This would allow us to consider a broader class of
views.

References

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass.
Aggregate-QueryProcessing in Data Warehous-
ing Environments. In Umeshwar Dayal, Pe-
ter M. D. Gray, and Shojiro Nishio, editors,
Proceedings of the Twenty-first International
Conference on Very large Databases. Zurich,
Switzerland, September 1995.

[GM99] Himanshu Gupta and Inderpal Singh Mumick.
Selection of Views to Materialize Under a
Maintenance Cost Constraint. To appear in the
Proceedings of the ICDT’99, 1999.

[Gup97] H. Gupta. Selection of Views to Materialize in
a Data Warehouse. InProceedings of the Sixth
ICDT, pages 98–112, 1997.

[Kim96] R. Kimball. The Data Warehouse Toolkit. John
Wiley & Sons, Inc., 1996.

[NSS98] Werner Nutt, Yehoshua Sagiv, and Sara
Shurin. Deciding equivalences among aggre-
gate queries. InProceedings of the Seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 214–
223, Seattle, Washington, USA, June 1998.
ACM Press.

[Rou82] N. Roussopolous. The Logical Access Path
Schema of a Database.IEEE Transactions
in Software Engineering, SE-8(6):563–573,
November 1982.

[RSS96] Kenneth A. Ross, Divesh Srivastava, and S. Su-
darshan. Materialized View Maintenance and
Integrity Constraint Checking: Trading Space
for Time. In Proceedings of the 1996 ACM
SIGMOD International Conference on Manage-
ment of Data, pages 447–458, Montreal, Que-
bec, Canada, June 1996.

[RSSS98] K. A. Ross, D. Srivastava, P. J. Stuckey, and
S. Sudarshan. Foundations of Aggregation
Constraints. Theoretical Computer Science,
193:149–179, February 1998.

[SDJL96] Divesh Srivastava, Shaul Dar, H. V. Jagadish,
and Alon Y. Levy. Answering Queries with Ag-
gregation Using Views. InProceedings of the
22nd Annual International Conference on Very
Large Data Bases, Bombay, India, September
1996.

[TS97] Dimitri Theodoratos and Timos Sellis. Data
Warehouse Configuration. InProccedings of
the Twenty-third International Conference on
Very Large Data Bases, pages 126–135, Athens,
Greece, August 1997.

[YKL97] J. Yang, K. Karlapalem, and Q. Li. Algorithms
for Materialized View Design in Data Ware-
housing Environment. In Umeshwar Dayal, Pe-
ter M. D. Gray, and Shojiro Nishio, editors,Pro-
ceedings of the Twenty-third International Con-
ference on Very Large Databases, August 1997.

M.O. Akinde, M.H. B̈ohlen 8-12

