Constructing GPSJ View Graphs

Michael O. Akinde Michael H. Bohlen
Department of Computer Science  Department of Computer Science
Aalborg University Aalborg University
Fredrik Bajers Vej 7 E-1 Fredrik Bajers Vej 7 E-1
DK-9220 Aalborg @st, Denmark DK-9220 Aalborg @st, Denmark
strategy@cs.auc.dk boehlen@cs.auc.dk

1 Introduction

A data warehouse is a repository of integrated informa-
tion from multiple, independent data sources available for
guerying and analysis. As data warehouses contain inte-
grated information, often spanning long periods of time,
they tend to be orders of magnitude larger than conven-
tional operational databases; ranging from hundreds of gi-
gabytes to terabytes in size. The workload is typically
guery-intensive, with many complex queries that may ac-
cess millions of records and perform many joins and ag-
gregates.

Three costs must be balanced during physical database
design for warehouses: (1) the cost of answering queries,
(2) the cost of maintaining the warehouse, and (3) the cost
of secondary storage. The cost of (1) can be reduced by ma-
terializing (precomputing) frequently asked queries as ma-
terialized views in the data warehouse, but this increases
the maintenance costs of the warehouse. The problem of
selecting an appropriate set of views and indexes to ma-
terialize in a data warehouse is referred to as \thesv-
selection[Gup97] ordata warehouse configuratiqorob-
lem [TS97].

For the purpose of our discussion, we use the fol-
lowing terminology (precise definitions follow later). A
GPSJ queryis a generalized project-select-join query,
i.e., a project-select-join query extended with aggregation,
grouping, and group selection. This class of queries is
the single most important one used in data warehousing
[Kim96]. A GPSJ query grapls a directed acyclic graph.

It represents a specific strategy to evaluate a GPSJ query.

The copyright of this paper belongs to the paper’s authors. Permission toA GPSJ expression DAG)mpactIy encodes different pos-

copy without fee all or part of this material is granted provided that the sibilities to evaluate a GPSJ'query. It Compines multiple
copies are not made or distributed for direct commercial advantage. GPSJ query graphs into a single graph. Final\GRSJ

Proceedings of the International Workshop on Design and View graphencodes multiple evaluation strategies for dif-

Abstract

A data warehouse collects and maintains in-
tegrated information from heterogeneous data
sources for OLAP and decision support. An im-
portant task in data warehouse design is the selec-
tion of views to materialize, in order to minimize
the response time and maintenance cost of gener-
alized project-select-join (GPSJ) queries.

We discuss how te@onstructGPSJ view graphs.
GPSJ view graphs are directed acyclic graphs,
used to compactly encode and represent differ-
ent possible ways of evaluating a set of GPSJ
gueries. Our view graph construction algorithm,
GPSJVEWGRAPHBUILDER, incrementally con-
structs GPSJ view graphs based on a set of merge
rules. We provide a set of merging rules to con-
struct GPSJ view graphs in the presence of du-
plicate sensitive and insensitive aggregates. The
merging algorithm used in GPSJ®WGRAPH-
BUILDER ensures that each node is correctly
added to the view graph, and employs the merge
rules to ensure that relationships between nodes
from different queries are incorporated into the
view graph.

Management of Data Warehouses (DMDW’99) ferent queries. Put differently, a GPSJ view graph inte-
Heidelberg, Germany, 14. - 15.6. 1999 grates several GPSJ expression DAGs.

(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.) In this paper, we concentrate on thenstructionof
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/ GPSJ view graphs. Thategratortakes the set of GPSJ

M.O. Akinde, M.H. Bhlen 8-1



expression DAGs as input, and merges them into a GPSdierge rules used in the GP SIEWGRAPHBUILDER algo-
view graph according to a set of merging rules. The interithm.

grator and its embedding into the data warehouse configu- Specifically, given a set of data warehouse queries,
ration tool are illustrated in Figure 1. Given a set of queries®, Q», . . . @, the GPSJ view grap&(X) is incremen-

for the data warehouse and metadata (such as query freally constructed from the set of associated GPSJ expres-
quencies, schema information, etc.), the tool returns a dasion DAGs,G(Q1), G(Q2), - - - , G(Qy) by the algorithm

warehouse configuration. using a set of merging rules. We give a set of basic rules to
, integrate GPSJ expression DAGs into GPSJ view graphs.

GPSJ Queries .

Oy, O G, Metadata Dg:sr:?i/arehquse To thg best of our knovyledge, the rules and algorlthms for

guration merging such graphs in the presence of aggregation and

e oo f}----—---. grouping have not previously been considered in the litera-

" | Expresson DAG View Selection i ture.

} Generator Algorithm j In order to ensure an optimal solution to the view-

3 U ﬁ } selection problem, it is necessary to generate the entire

- Egreionnacs | ntegator [ FIViewermn GPSJ view g'raph. However, the pomplexﬂy (space and

| GQ2.6(Q2).-- .. GQn) G(v) 3 time) of algorithms for solving the view-selection problem

optimally is exponential in the number of nodes in the ex-
pression graph [TS97, Gup97, GM99]. Although we do not
Figure 1: Data Warehouse Configuration Tool directly represent the conventional (duplicate-preserving)
projection in the GPSJ view graphs of this framework, as
they can be discarded when they appear as interior nodes

Example 1.1 Consider the table: in the graph [RSS96, YKL97] and can be expressed using
accounts(a _personid, a _name, a _balance, a generalized projection when appearing as the outermost
atype, a _date) nodes [GHQ95], the complete GPSJ view graph in the pres-

ence of aggregation and grouping alone can still be huge.

and the SQL queries: Therefore, we provide a number of rules which can be used

Al SELECT  a_name max(a_balance) to reduce the size of the view graph.

FROM accounts
GROUP BY a_name 1.1 Related Work
The problem of constructing view graphs such as those de-
sum(a_balance) scriped in thi; paper i; most often qonsidered in relat.ion
FROM accounts to view-selection algorithms or physical Qatabase design.
GROUP BY a name Roussopolous [Rou8_2] presents an algorithm for generat-
- ing LAP schemas, which closely resemble our view graphs,
however, his algorithm does not consider aggregate func-
Figure 2 gives two simple expression DAGH,A1) and  tions and grouping.
G(A2), for these two queries. Equivalence nodes, repre- Other papers on view-selection employing view-graph
senting views which can be materialized in the data waretike structures [RSS96, TS97, GM99] either do not con-
house, are denoted in the figures using ovals and a labedider the construction of these structures, or consider only
Operation nodes are denoted using rectangles. The int@elect-join views without aggregation.
grator takes these expression DAGs as input, and merges Gupta [Gup97] suggests that the AND-OR view graph
them to derive the GPSJ view graghiX ) displayed onthe  pe constructed using the expression AND-OR DAGs of the
left. Note that during the merging process, additional opqueries. These expression AND-OR DAGs are to contain
eration nodes and edges may be derived, such as the noggly those views which will be considered (useful) for the
and edges connectingf to A4;. view selection algorithm. However, it is unclear how to
determine these “useful” views in the presence of aggre-
gation, and therefore how to construct the AND-OR view
egraph. This is the problem considered in this paper.

A2 SELECT a_personid,a_name,

A major part of the integrator is the GPSIEWGRAPH-
BUILDER algorithm. The algorithm starts with a (possibly
empty) GPSJ view graph and incrementally builds up th
“final” graph by integrating GPSJ expression DAGs into
it. The behavior of the algorithm is controlled by a set of
merging rules, which are also part of the integrator. ThisThe paper is structured as follows. Section 2 describes the
flexibility allows us to extend the GPSJ view graph frame-aggregation framework and notation used in this paper, and
work to consider more general view graphs and variougjives rules for recomputing aggregates using their disjoint
graph input types, simply by adding or modifying the set ofsets. Section 3 defines the GPSJ view graphs, and gives the

1.2 Paper Outline

M.O. Akinde, M.H. Bhlen 8-2



|
I
I
I
I
I
' i
I
i
A [sum(a_balance* count
O T%u)ersonld a_name ¢ )]

|: (aba ) ‘ T[sunersonld a name [sum(a balance)] !
TL, e [Max(@ balance) |

accounts ‘ T[aje'somd a_name, a_t belanoe

na . [sum(a_balance* count(*)] ‘
1 personid, a_name

T[a name [max(a_balance)]

[sum(a_balan

‘ T[a 1 personid, a name

‘ T% \_personid, a_name, a_balance o

[max(a_balance)]

I
I
|
! T[d_nane
|

G(AY) cA2) | G(X)
Figure 2: Combining two GPSJ Expression DAGs into a GPSJ View Graph

graphical notation used to illustrate the graphs. Section group-by attribute and/or aggregate functions required in a
gives rules and the algorithm for merging expression DAGsview for the computation of the aggregate in the first col-
for GPSJ queries. In Section 5 we give some rules for reumn. For example, we can compufe = n[sum(A)|R
ducing the size of the GPSJ view graph. Section 6 congiven the viewV = m4[count (x) as cnt](R) as@ =
cludes the paper and points to future research directions. w[sum(A * ent)](V').

. Aggregate | Prerequisite Computed
2 Aggregation Framework Attributes Aggregate
We use the generalized projection (GP) operator [GHQ95], count( *) | count( x) ascnt sum(cnt)

Ta[F(A)], to represent aggregation. Generalized project count( A) | count( A) ascntA | sum(cntA)
tion is an extension of duplicate eliminating projection,| count( A) | A,count( x) ascnt | sum(cnt)

whereG denotes the set of group-by attributes dndle- sum( A) sum( A) assumA sum( sumA)
notes a set of aggregate functiafis= fi, f-,... , f,, over sum( A) A, count( %) asent | sum( A x cnt)
attributes in the attribute set. max( A) max( A) asmazrA max(mazA)

In this paper, we consider only distributive aggregatg max( A) A max( A)
functions, i.e., aggregate functions that can be computedmin( A) min( A) asminA min( minA)
by partitioning their inputs into disjoint sets. The SQL | min( A) A min( A)

aggregate functionsount , sum, min, andmax, are all
distributive. The algebraic aggregate functeng can be
expressed in this framework usisgm/count .
Aggregate functions can be divided into the duplicategr
sensitive aggregates (referred to as DSAS), sucoast
andsum, and the duplicate insensitive aggregates (referreH1
to as non-DSAs), such amax and min. These char-
acteristics are of importance when computing an aggre3 GPSJ View Graphs
gate function from its disjoint sets. In general, non-DSAsSA GPSJ query is PSJ query enhanced with grouping and
can always be computed from views which contain theaggregation. More precisely, a GPSJ query is any query
same aggregate, or the attribute of the aggregate; e.gmhich can be written in GP normal form [GHQ95] (i.e., a
malmaz(B)|(ma,pR) = malmaz(B)](R). In order to  selection,s;, over a generalized projection, over a se-
do a similar transformation with DSAs, we need additionallection, s, over a set of joinsY,: o702 X). A large class
information about the number of duplicates. This infor- of queries can be expressed as GPSJ queries, in particular
mation can be acquired usingcaunt . We refer to the all SELECFFROMWHERESROUP BWAVING queries
process of computing aggregates from their group-by atean be reduced to this form if the attributes/aggregate
tributes using @ount as duplicate compensation. functions in theGROUP B¥YindHAVING clauses appear
Table 1 gives the rules for computing aggregates fronin the SELECT clause, no aggregate functions use the
the partial results of previously computed aggregates or thBISTINCT keyword, and theWHEREclauses are con-
group-by attributes. The prerequisite attributes are thos@inctive. Algorithms for solving the view-selection prob-

Table 1: Computing Aggregates from partial results and/or
oup-by attributes

An example of the application of such rules is the deriv-
g of A1 or A2 from the noded’ in Figure 2.

M.O. Akinde, M.H. Bhlen 8-3



lem [Gup97, TS97, GM99], usually model the problem as represented using a join on an empty condition
some form of graph structure representing multiple queries. (C =0).
We use GPSJ view graphs for this purpose.

A query graphfor a queryQ is a graph, where each leaf
node corresponds to a base table used to dé€fjrmad each
non-leaf node is an operator with associated children. Th
algebraic expression computed at the root node is equiv-
alent to@. Query graphs are used in query optimizers to @ @ @
determine the cost of a particular way of evaluating a query.
We refer to the leaves and root nodes of the query graph as
“equivalence” nodes and the non-leaf nodes as “operation” @ﬂ @(ﬂ iy
nodes. /

Expression DAGsre used to compactly represent the

space of the equivalent query graphs of a single query as @ @ o o

directed acyclic graph. An expression DAG is a bipartite
directed acyclic graph with equivalence nodes and Opefiy o 3. (a) Generalized Projection, (b) Selection, and (c)
atlon nodes. An equivalence node (with the possible ©X30in in GPSJ View Graphs
ception of leaf nodes) has edges to one or more operation
nodes. An operation node consists of an operator, edges to
either one or more predecessors that are equivalence nodgsfinition 3.2 (GPSJ View Graphs) A directed acyclic
and an edge to the derived equivalence node. We denotgraph G(X) having the base tables as the leaves is
an equivalence node by the algebraic expression it comealled a GPSJ view graph for the queries (or views)
putes. Its predecessor operation nodes correspond to vap, Q., ... , Q, if for each queryQ;, there is a subgraph
ious query graphs that yield a result that is algebraicallyz;(Q;) in G(X) that is an expression DAG @};. Each
equivalent to the label of the equivalence node. The leavegquivalence node in the GPSJ view graph is annotated
of an expression DAG are equivalence nodes correspondyith the query frequency, (frequency of queries on),
ing to base tables. Expression DAGs are used in rule-basaghdate frequency, (frequency of update on), and the
optimizers. sizes, of the view if materialized.

The GPSJ view graph is a multi-query expression DAG, ] . )
i.e., it represents expression DAGs of several queries in a UPdate frequence and size of the views in the GPSJ
single DAG. Each equivalence node in the view graph corVieW graph_can be re-calculated after the constructlon_of
responds to a view, which can be materialized in a dati® GPSJ view graph. Therefore, the only parameter of in-
warehouse. Like the expression DAG, the leaf equivalencterest during theonstructionof the GPSJ view graph is
nodes of a GPSJ view graph correspond to the base tabl&R€ query frequency,. We will not consider the update
of the data warehouse. We define the equivalence nodes Bgauency or size in the rest of this paper. Also, to avoid

In GPSJ expression DAGs and GPSJ view graphs the
three basic operations are denoted using the graphical no-
éation of Figure 3.

s

GPSJ view graphs as follows: cluttering up the figures, we will not annotate the graphs
with query frequencies in the examples.
Definition 3.1 (Equivalence Nodes of View Graphs) Animportant characteristic of the GPSJ view graph is its

Let R be the set of base tables in the data warehouse. Weimilarity to AND-OR view graphs. This means that stan-
define the set of equivalence nodlesf a GPSJ view graph  dard view selection algorithms [Gup97, GM99] can, with

recursively as: little or no modification, be used on GPSJ view graphs.
1. IfR; € R, thenR; € V. 4 Constructing GPSJ View Graphs
2. It R;, R; € V, then: The GPSJ view graph of a set of quer@s, Q-, ... ,Q

' i ' tructed by merging the expression DAB®) =
(@) o[C](R;) € V, wheres[C](R;) selects the sub- 'S CONS -
set of the tuples aR; that satisfies the condition G(Q1),G(Q3),...,G(Q,) for each of these queries.

¢. . ) Example 4.1 Consider the tableaccounts of Exam-
projection onR;. G is a subset of the attributes

in R; andF are a set of aggregate functionsover ~ SELECT ~ a_name, max(a_balance)
R;. FROM accounts

(©) X [C](Ri, R;) € V, wheresa [C](Ri, R;) is GROUP BY a _name
a join betweenR; and R; on the join condi- Figure 4 gives three equivalent query graphs for this query,
tion C. The Cartesian product of two views is and the expression DAG derived from these query graphs.

M.O. Akinde, M.H. Bhlen 8-4



‘ GP5 = T[sLname [max(a_balance)]

[1‘ ‘GP3= L perme . ype " X@D0)]

» D D
© ? ? : ‘Gp4: TL, e (M@ baancel]

‘Tl:a\_name [max(a_balance)] ‘ ‘T[a_name [max(a_balance)] ‘ ‘T[a_neme [max(a_balance)] ‘ | o ‘GPl - T[a [max(a_balance)]
I 1 name

‘ T[d id, ' bl ‘ T[d X [max(a_balance)]
ersonid, a_name, a_balance name, .t
accounts LP ype ‘ GP2= [aJ:ersumd a_name, a_balance

Expression DAG of QG1, QG2, and QG3

QG1 QG2 QG3

Figure 4: Equivalent query graphs and the resulting expression DAG

For the purposes of this paper, we assume that the com-

h . 1. Let the initial GPSJ View Graph G(X) contain
plete expression DAG has been generated. This issue has equivalence nodes Correspond?ng to the b(asg
no effect on the construction algorithm itself, as the in- relations used in the queries Q1,Q2,...,Qn.
puts of this algorithm is simply a set of graphs, however  annotate each equivalence node in G(Q) with

complete expression DAGSs are required to construct com- 7.

plete GPSJ view graphs. The complete expression DAG of3. For each  G(Q;) € 6(Q):

aggregate queries are typically very large, e.g., the space MERGEALGORITHM( G(X),G(Q;)) (cf. Figure 10)
complexity of the number of equivalence nodes in a simple .

aggregate query (i.e., one constructed using a single pro- Figure 5: GPSJWEWGRAPHBUILDER
jection over a base tabteR) is O(2"~ ™), wherem is the
number of attributes used in the view, amds the number
of attributes in the base table.

For example, the complete expression DAG of the query
in Example 4.1 hag®~2 = 8 different possible group-
ings, namely all combination of attributes that include
a_name anda_balance . Using these 8 groupings we The rules and merge algorithm are specified so as to ensure
end up with over 51 possible distinct query graphs. In adthat it is not necessary to iterate in the graph to discover
dition to these, we could also construct query graphs witRyhether two queries can be computed from each other us-

rules ensure that potential structural relationships between
equivalence nodes in different DAGs@€Q) are correctly
incorporated in the GPSJ view graph.

4.1 Merge Rules

max(a balance) instead of grouping oa_balance , ing a single operation. Assuming that the full expression
resulting in more than a hundred possible query graphs fobAG of a query has been materialized, three rules are suf-
this query. ficient to ensure that all derivations between nodes in the

For the purposes of algorithms such as those presentegtaphs of two different graphs will be derived. Note that
in [Gup97, GM99], we can not simply choose an “optimal” the set of views handled by the merge algorithm (i.e., GPSJ
query graph, as we might then miss important equivalenc&iews) can easily be extended by the introduction of ad-
nodes which could be shared by other queries. Howeveditional merge rules for other operators (e.g., outer join,
without knowledge about the other queries being considunion, etc.).
ered, itis impossible to know which views, and thus, which ~ We use standard inference rules on the fgrm - ¢ to
nodes of the view graph will be useful for the purposes ofstate that, giver and¢, we can inferp.
the view-selection algorithm, without sacrificing the opti-
mality of the solution. In Section 5, we will consider rules ryje 4.1 (Derivation from a Selection Node)
for reducing the size of GPSJ view graphs. Given informa-
tion about the set of queries being considered, this can be v, = o[C,](V), V2 = o[Co](V) F Vi = o[C1](V2)
done without sacrificing the performance guarantee of the
view selection algorithms being used. iff the selection conditiort’; restricts the same attributes

The incremental merging of each expression DAGasC>, and the conditiort”; is more restrictive thails.

G(Q;) of G(Q) into the view graph, is controlled by the
set of merging rules which we discuss below. The merge

M.O. Akinde, M.H. Bhlen 8-5



Figure 6: lllustration of Rule 4.1
Rule 4.2 (Derivation from a GP Node)
Vi = me [F1](V), Va = 7, [F2](V) B Vi = 7, [F'](Va)
iff:
1. G1 C Gy,

2. for each DSAf;(a;) € F) there exists a correspond-
ing DSA fi(a;) € F», or a count(x) € F» and
a; € G, and

3. for each non-DSA;(a;) € F) there exists a corre-
sponding non-DSK;(a;) € F» or a; € Gs.

The set of aggregate functio$ is derived fromF; and
F5 using the rules for recomputing distributive aggregate
functions from their component parts (see Table 1).

Figure 7: lllustration of Rule 4.2

Rule 4.3 (Derivation from a Join Node)
Vi =X[C1](Vi, V;),Va = M[CL](Vi, V) B
V1 = U[Cl](VQ)

iff the join conditionC'; restricts the same attributes 8%,
and the conditiorC’; is more restrictive thads.

Rule 4.3 can also be used to handle the viéwde-
rived from a Cartesian product. This is done by treating

the Cartesian product as a join on the empty condition, i.e.,

any join conditionC' will always be more restrictive than
the conditions of the Cartesian product.

M.O. Akinde, M.H. Bhlen

Figure 8: lllustration of Rule 4.3

4.2 The Merging Algorithm

Before we present the algorithm for merging, we shall
briefly describe the notation of the algorithm. Wed&tX)
andG(Q) represent the GPSJ view graph and the expres-
sion DAG of the queryy, respectively. We formally de-
scribe an expression DAG or view graph, following the de-
scription in Section 3.

Definition 4.1 (Graph Definition) A DAG or view graph
G(X) is atuple(Vx,Ox), whereVx is the set of equiva-
lence nodes, an@x is the set of operation nodes.

Each equivalence nodec Vx is atriple (v, O, Og),
whereuvy, is the label of the equivalence node, and Oy
are a set of labels, whei®, is the set of predecessor oper-
ations and0y is the set of derivative operations.

Each operation node € Ox is a triple (o1, E,, Eg),
whereoy, is the label of the operation nodé, and £, are
a set of labels, wher&, denotes one or more predecessor
equivalence nodes, arigj; is the derived equivalence node.
We refer toE,, and E,; as the predecessor and derivative
expressions.

Example 4.2 Consider the expression DAG in Figure 4.
Following Definition 4.1, we can define the expression
DAG G(X) as follows:

( ) =(Vx, Ox)

= {(accounts, {},{GP1,GP2,GP3}),
Al,{GP2},{GP4}),
A2, {GP3},{GP5}),
A" {GP1,GP4,GP5},{})}
GP1,{accounts},{A'}),
GP2,{accounts}, {Al}),
GP3, {accounts}, {A2}),
GP4, (A1}, {A)),
GP3, {42}, {A'})}

{

(
(
(
(
(
={
(
(
(
(



We define the graph as a set of equivalence nodes and
. nput

operation nodes (rather than as a set of nodes and edges) :fsThe GPSJ View Graph G(X)
these two kinds of nodes are treated separately in the algo- The Expression DAG  G(Q)
rithm. Recall our claim in Section 3 regarding the similarity Output B _ N
of GPSJ view graphs to AND-OR view graphs. To trans-MetJ:de modified GPSJ View Graph  G(X)
form an expression DAG or view graph defined as above et g(x) = (vx,0x)
into an AND-OR DAG, we simply transform the operation Let G(Q) = (Vg,00)

nodes into edges; each operation node corresponds to an If Vo =0 then

AND arc in the AND-OR DAG framework. For F;Ztcur:” v_G(?)'VQ,
We refer to the operation nodes connecting an equiva- For each v, € Vx:
lence node to its derivative nodes as derivative operation %% Step 1 - Check for Equality
nodes, and the operation nodes connecting it to its deriving If KAier:e( vj the;‘ do
equivalence nodes as predecessor operation nodes. Let gf _”“:”Jf 4
Else ’ ’ '
O Oopol.... O %% Step 2 - Check Ancestry
Pd1 |[PP d2 Pdn If v is a child of  wv; and v & Vx
then
Add( v, G(X)).
Else
%% Step 3 - Attempt to Derive
If wv; is derivable from vj using

Rules 4.1-4.3 or ( v; is derivable
from wv; using Rules 4.1-4.3 and

v; is not a child of v;) then do
If v € Vx then
Add( v;, G(X)).
Oppl Opp2 Oppm Add the deriving operation node
to v; and wvj.
. L . EndIf
Figure 9: Predecessor and derivative operation nodes of the End For
equivalence node; End For
Return G(X).
Definition 4.2 (Predecessor & Derivative Operations) Figure 10: MERGEALGORITHM(G(X), G(Q))
Given a DAG as in Figure 9, we define the predecessor op-
erationsPreOpsand derivative operationBerOpsof the Merge(vy, v2)
equivalence node; as: Let G(X)= (Vx,Ox)

Let &£ be the set of expressions
in the operation nodes
denoted by the labels of

PreOps(vi) = {Opp1,0pp2, - - . , Oppm }
DerOps(vi) = {Opd1,0pd2, cee 7Opdn}

To test whether a view; is a child (i.e., directly derived) DerOps(vy).
of v;, we testPreOps(v;) N DerOps(vj) # 0. If v, €& then:
In order to simplify the presentation of the algorithm, E=(E\{vi})U{v2}
we assume that the list of the viewg of the expression DerOps(vz2) = DerOps(ve) U DerOps(vy)
DAG G(Q) is an ordered set of views , vo, ... ,v, such Let O, be the set of operation
that no vieww; is derived from a view, ;, wherei and;j nodes denoted by the labels
are positive numbers. Such an ordering is easily imposed of DerOps(vy).
using a topological sort. The BRGEALGORITHM is given Ox =0x UOQOy,

in Figure 10. The explanations follow below.

The intuition behind the merging algorithm is as fol- Example 4.3 Consider the view grapf(X) = (Vx, Ox)
lows. We consider each view of the query graplt*(Q)  and the DAGG(Q) = (Vag, Og), where:
in connection with the views off(X), considering the

leaves/base tables 6f(Q) first. The time complexity of Vx = {{accl, {},{GP1}), (A1, {GP1},{})}
MERGEALGORITHM is O(|Vx |*(|Vx |+ |Vg])), assuming Ox = {{GP1,{accl}, {A1})}
that no views in&(Q) match with those i/ (X'), which is Vo = {({ace2,{},{GP2}), (A2, {GP2},{})}
a worst case. Oq = {(GP2,{acc2},{A2})}

If the viewswv; andv; are identical, we merge the two
views into a single equivalence node@{X), using the We assumeccl andacc2 are equivalent and/or represent
Merge function, which is defined as follows: the same view and perforMerge(acc2, accl). This re-

M.O. Akinde, M.H. Bhlen 8-7



sults in the following configurations:

DerOps(acc2) = {GP2}
& = {acc2, A2}

We then replacecc2 with accl, to get€ = {accl, A2}.
Finally, we addDerOps(acc2) to DerOps(accl) and add
the operation nodé P2 to O x to obtain the following con-
figuration of G(X):

Vx = {<a001, {}7 {GPI,GP2}>7 <A]-, {GP]-}a {}>}
Ox = {{GP1,{accl}, {A1}),(GP2,{accl}, {A2})}

G(X) G(Q

Merge
Figure 11: lllustration of Example 4.3

To add the operations (or set of operations) of an equiv
alence nodey; to ve, we first update the expressions of
the derivative operation nodes referencingo reference
vo. We then add the derivative operationsugfto v», and

add the operation nodes to the graph. The merge function

ensures that any child, of v; will also be detected as a
child of v;. Note that this implies that equivalence nodes

in G(X) can actually have operations connecting them to

equivalence nodes i6/(@)) during the processing of the

merge algorithm (as shown in Example 4.3). Due to the or-

dering imposed ofy however, we are always ensured that

any predecessor equivalence nodes will be merged into the

view graph first. Finally, we update the query frequelicy
of the merged view iz (X).

At the lowest level of the query graph, views corre-
spond to base relations. In this case, recognizing ident

cal views is a simple matter of name matching. For the
levels above, the recognition is done by checking whether

the derivation of a pair of views is equivalent. The prob-

Add(v, G(X))

Let G(X) = <VX;OX>1 v = <’UL,OP70I1>

Let O, be the operation nodes
denoted by the set of labels
Oq.

Vx =Vx Uw

Ox =0x UQO,

Because of the ordering imposed 6H(®), we only
need to add the derivative operation nodgsof v, as the
algorithm ensures that the predecessor nodes will have been
added previously.

Finally, we apply Rules 4.1 to 4.3 to check whether
either of the views); or v; can be derived from the other.
The test to check whethey; is a child ofv; is required
to avoid duplicate operation nodes being introduced in this
step, sincé&(X) is not an ordered list liké&/(Q)). Rules 4.1
to 4.3 provide us with information about the deriving oper-
ation nodev’, which can then be added €, andOy of v;
andv; as appropriate, to connect the two nodes. It is criti-
cal for the correctness of the view selection algorithm, that
it has full information about the connectivity of the view
graph.

Example 4.4 Consider the tables

accounts(a_personid,a_name,a_balance,
a_type,a_date)
transaction(t_personid,t_change,t date)

with the following three SQL queries:

Q1 SELECT a_name,max(a_balance)
FROM accounts
GROUP BY a_name

Q2 SELECT a_name,count(t_personid)
FROM accounts,transaction
WHERE t_personid = a_personid

AND t _change > 250
GROUP BY a_name

Q3 SELECT a name,a_balance
, FROM accounts,transaction
- WHERE t_personid = a_personid

AND t _change > 500
GROUP BY a_name,a_balance

lem of testing for equivalence of GPSJ queries is consid- The expression DAGs are given in Figure 12. For sim-
ered in [GHQY95, SDJL96, NSS98, RSSS98]. The problenplicity of presentation, we give only very simple expres-
can be simplified by normalizing the expressions used t@ion DAGs, each representing two possible query evalua-
identify the equivalence nodes when constructing the extion paths.

pression DAGs.

If the view; is a child of some;, andv; or an identical
view does not already exist ii (X ), then we add; to the
GPSJ view grapl(X), using theAdd function:

We initialize the GPSJ view grapf(X) with the two
base table nodemccounts andtransaction (A and
T in the figures). The initial merging af1 results in a
“graph” similar to that ofQ)1 in Figure 12, except for the

presence of the unconnected equivalence riade

M.O. Akinde, M.H. Bhlen



@,

‘ T[d_name [max(a_balance)] ‘

TT, neme [max(a_balance)] \. @

=z

‘ T[a X [max(a_balance)]
1 personid, a_name

‘T[afname, a_balance []‘ ‘T;:Lname, a _balance Il ‘

’ Cata)  (ATs)

‘ O [t_change > 500] ‘ ‘ D< [t_personid=a_personid] ‘

‘ TL, 1 ame [count(t_personid)] ‘ ‘ T, 1ame [count(t_personid)] ‘
‘ Traﬁ sonid, a_name, 3 balance []‘ P<] [t_personid=a_personid] O [t_change > 500]
‘ O [t_change > 250] ‘ ‘ <] [t_personid=a_personid] ‘ S =

‘ T% . I[ max(a_balance)]
1 personid, a_name

O [t_change > 250]

Figure 12: The Expression DAGs of the three queries Q1, Q2, and Q3

Figure 13 shows the GPSJ view graph afferhasbeen 5 Reducing the GPSJ View Graph
merged into the graph, and Figure 14 illustrates the com- o ) ) )
plete view graph afte®3 has been merged into the graph. The actual running time of view selection algorlthms de-
In Figure 14 additional operations have been added to thB€NdS on the size and structure of the generated view graph.
graph using the rules of Section 4.1 to derive and Q1 The full expression DAG of an aggregate query is typically

from A2, AT4 from AT?2, andT2 from T'1. huge (cf. the very simple query in Example 4.1); this re-

. . . sults in a blow-up of the size of the view graph structure
In the view graph of Figure 14, each of the equivalence S .

X . o -~ ~and longer running time or larger space requirements of the
nodes represents a view which could be materialized in the.

data warehouse to answer one of the quegis 02, o View selection algorithm. A solution to the performance
(03, while the paths in the graphs repreqsent V\?ays ,of Comproblem of view selection algorithms is to prune the search
puting the queries from these views. It is thus possible t space of the algorithm [TS97, YKL97]. This corresponds

apply a view selection algorithm to select and identify use(?to reducing the size of GPSJ view graphs.

ful sets of views to materialize. For example, if we wished OPViously, a view selection algorithm cannot consider

to select a set of viewa/, such thatl/ U{Q1, 02, 03} are or select a view, if that view is not represented in the GPSJ
self-maintainable (i.e., can be maintained on changes to thd&" 9raph. Therefore, care must be taken to ensure that we

base tables without referencing these), we could materia@© N0t remove equivalence nodes which might be consid-
ize 42 andT'1. ered by the view selection algorithm, if we wish to main-

tain a performance guarantee for the view selection, such
as those presented in [Gup97, GM99].

Recall our assumption that the complete expression
DAG is generated for each query, thus ensuring that the

M.O. Akinde, M.H. Bhlen 8-9



‘T[Ul name [count(t_personid)] ‘ ‘ Tl'a name [count(t_personid)] ‘

T

‘ O [t_change > 250] ‘ ‘N [t J)ersonld—a . personid] ‘

T[dfname [max(a_balance)]

TL, pame[max(a_balance)] ‘T[@ersom 4. . namdMax(@.betenca)] ‘

Figure 13: The view graph after merging Q1 and Q2

GPSJ view graph is also complete. However, given knowlwith respect to the set of queries, it follows tHatis not
edge about the complete set of queries to be considered,at “useful” view for the view selection algorithm. Recall
is possible to identify views which will never be consideredthe O(2"~™) space complexity for the number of equiva-
by the view selection algorithm. Removing such views al-lence nodes in the simple aggregate query expression DAG.
lows us to reduce the size and complexity of the GPSJ vieviRule 5.1 reduces the number of group-by attributes consid-
graph structure. ered in the expression DAG (the factoy, thus minimizing
We present two rules, which reduce the size of the GPSthe exponent.
view graph without affecting subsequent view selection al- Before giving the second rule, we first define superflu-
gorithms, i.e., these algorithms will still select the same sebus aggregates.
of views to materialize. This reduction, or pruning, of the
graph structure can occur at several different stages of thgefinition 5.1 (Superfluous Aggregates)An
configuration tool architecture (cf. Figure 1), either as agggregate functiory;(a;) is superfluous, if it can be com-
pl’e or pOSt Opt|m|za.t|0n of the Integrator Component Orputed from Other Components Of the same GP?TL4¢F] be
as part of the expression DAG generation. a GP over a table. A non-DSA(a;) € F is superfluous
if a; € A. ADSAf;(a;) € F is superfluous ifi; € A and
Rule 5.1 (Pruning Group-by attributes) Let A; be the count(a;) € F'.
set of group-by attributes, attributes used in join and se-
lection conditions, and attributes used in aggregate func-Rule 5.2 (Eliminate Superfluous Aggregates)
tions in@;. ThenA = {4, 45,... ,A,} includes allthe  Let A, be the set of group-by attributes ard be a set
attributes used in the querigg;, @2,... ,Q,. Thenthe of aggregate function over the attributels,,,, and A, =
only views which are of interest for the view selection algo-4,, N A,,,. If V! = 74, [F](V) is a view in the expres-
rithm constructed using a GP are those with groupAy, sion DAG and4, # 0, then we replacd’’ with a view
whereA,, C A. V" = ma,[F'](V). F'is identical to F', minus the su-
perfluous aggregates. If a DSAcan be made superfluous

Intuitively, we are only interested in those views py introducing acount function toF’, we add theount
which contain attributes used in the set of queriesand remove;.

Q1,Q2,...,Q,. Ifwe have a view; = w4, 4,[F](V)

in our expression DAG, wherd; C 4 andA; € A, then The correctness of Rule 5.2 follows from the principles
we can create a view, = w4, [F](V) which can be used of duplicate compensation (cf. Section 2). Since super-
to answer the same set of queried/asand whose benefit fluous aggregates do not add additional value for the view
(i.e., measure of the usefulness of the view) will always beselection algorithm (i.e., if a query can be computed from a
greater than or equal to that 8. Sincel’, can replacé/; view containing superfluous aggregates, then it can equally

M.O. Akinde, M.H. Bhlen 8-10



‘ TL, pame[count(t_personi)] ‘

‘ TT, pame [count(t_personid)] ‘ O [t_change > 500]

O [t_change > 250] ‘ ‘ P [t_personid=a_personid] ‘

‘ Tg_naﬂe[mm(a7Mmce)] ‘ ‘ O [t_change > 500] ‘

‘ > [t_personid=a_personid] ‘

‘ T[diname[ma)(aibalance)] ‘ ‘ T, \_personid, aﬁname[ max(a_balance] ‘

O [t_change > 500]

‘ -,-[d . [max(a_balance)] ‘
1 personid, a_name

I

‘ T';a 1 personid, a_name, a_balance

O [t_change > 250]

Figure 14: The view graph after merging Q1, Q2, and Q3

M.O. Akinde, M.H. Bhlen 8-11



well be computed from one containing no superfluous agfGup97]
gregates), we eliminate such views to reduce the size of the
view graph.

, [Kim96]
6 Conclusion

The selection of which views to materialize is one of the[NSS98]
most important decisions in data warehouse design. The
view selection (or data warehouse configuration) problem
is to select a set of views to materialize in the data ware-
house, so as to optimize the total query response time un-
der some space or maintenance cost constraints. We dis-
cuss the view graph structures required by view selection
algorithms such as those proposed in [Gup97, GM99]. We
are not aware of any papers considering the constructiofRou82]
of such graph structures in the presence of aggregation and
grouping.

We describe an algorithm, GPSIBWGRAPH-
BUILDER for the construction of GPSJ view graphs from
the expression DAGs of GPSJ queries based on a set Q?SS%]
merge rules. We define a set of rules for merging complete
expression DAGs, and give a merge algorithm for carrying
out the incremental merging of an expression DAG with
the GPSJ view graph. We also give a number of rules for
reducing the size of the view graph constructed, while still
allowing us to keep the performance guarantee of the view
selection algorithms used.

In our future work, we intend to investigate the follow-
ing issues:

There is a lot of scope for reducing the size of the GPSJ
view graph generated for the view selection algorithm. It

H. Gupta. Selection of Views to Materialize in
a Data Warehouse. IRroceedings of the Sixth
ICDT, pages 98-112, 1997.

R. Kimball. The Data Warehouse Toolkilohn
Wiley & Sons, Inc., 1996.

Werner Nutt, Yehoshua Sagiv, and Sara
Shurin. Deciding equivalences among aggre-
gate queries. IProceedings of the Seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systerpages 214—
223, Seattle, Washington, USA, June 1998.
ACM Press.

N. Roussopolous. The Logical Access Path
Schema of a Database.lEEE Transactions
in Software Engineering SE-8(6):563-573,
November 1982.

Kenneth A. Ross, Divesh Srivastava, and S. Su-
darshan. Materialized View Maintenance and
Integrity Constraint Checking: Trading Space
for Time. In Proceedings of the 1996 ACM
SIGMOD International Conference on Manage-
ment of Data pages 447-458, Montreal, Que-
bec, Canada, June 1996.

[RSSS98] K. A. Ross, D. Srivastava, P. J. Stuckey, and

S. Sudarshan. Foundations of Aggregation
Constraints. Theoretical Computer Science
193:149-179, February 1998.

would be interesting to attempt to further examine the ef{SDJL96] Divesh Srivastava, Shaul Dar, H. V. Jagadish,

fects of “non-optimal” pruning strategies on the view se-
lection algorithms considered. Is it possible to tailor view
selection algorithms to particular pruning strategies?

The GPSJ view graph framework can easily be extended
with operations such as outer join, union, and other rela-
tional operators by extending the merge rules of the algorngn
rithm. This would allow us to consider a broader class of
views.

References

and Alon Y. Levy. Answering Queries with Ag-
gregation Using Views. IiProceedings of the
22nd Annual International Conference on Very
Large Data BasesBombay, India, September
1996.

Dimitri Theodoratos and Timos Sellis. Data
Warehouse Configuration. IRroccedings of
the Twenty-third International Conference on
Very Large Data Basepages 126-135, Athens,
Greece, August 1997.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass.[YKL97] J. Yang, K. Karlapalem, and Q. Li. Algorithms

Aggregate-Query Processing in Data Warehous-
ing Environments. In Umeshwar Dayal, Pe-
ter M. D. Gray, and Shojiro Nishio, editors,
Proceedings of the Twenty-first International
Conference on Very large Database&urich,
Switzerland, September 1995.

[GM99] Himanshu Gupta and Inderpal Singh Mumick.
Selection of Views to Materialize Under a
Maintenance Cost Constraint. To appear in the

Proceedings of the ICDT'99, 1999.

M.O. Akinde, M.H. Bhlen

for Materialized View Design in Data Ware-
housing Environment. In Umeshwar Dayal, Pe-
ter M. D. Gray, and Shojiro Nishio, editorBro-
ceedings of the Twenty-third International Con-
ference on Very Large Databasésigust 1997.

8-12



