CEUR-WS.org/Vol-1901/paperl9.pdf

The application of OpenCL to accelerate the lossless image compression
algorithm based on cascading fragmentation and pixels sequence ordering

A. Khokhlachev', V. Smirnovl, A. Korobeynikov1

Kalashnikov Izhevsk State Technical University, Studencheskaya 7, 426069, Izhevsk, Russia

Abstract

The previous papers of the authors offer approach to building the ordered sequence of image pixels at lossless compression, which comprises
methods of cascading fragmentation and the use of bypasses code book. For fragment sized 6*6 the code book contains 22144 various
bypasses, the cost of coding to be estimated for every one of them. The search of optimal bypass is an exhaustive search type. The present
paper describes ways of increasing the image lossless compression rate by using parallel computation based on OpenCL. Algorithm functions
with great runtime were changed in order to transfer calculations to OpenCL using GPU/CPU. The acceleration degree for different algorithm
functions gained in experiments amounted to 3..32.

Keywords: lossless image compression; cascading fragmentation; pixels sequence ordering; optimal bypass; code book; computational
acceleration; parallel computing; open computing language (OpenCL); graphics processing unit (GPU); central processing unit (CPU); Haar
integral-valued wavelet transformation; interchannel decorrelation

1. Introduction

At the moment there exist both a large number of compression algorithms of particular data classes and universal
compression algorithms. This work will address the lossless image compression algorithm based on optimization of bypass
image being developed by the authors and described in [1...3]. When processing test images [7], the algorithm gives the average
compression ratio of 1.54, which matches the analogues [S]. Let us consider test results by groups of images: 1) in group
«2.1.%.tiff» by 1.426 2) in group «2.2.*.tiff» by 1.547 3) in group «4.1.%.tiff» by 1.622 4) in group «4.2. % tiff» by 1.522 [5]. In
addition, the algorithm has some other advantages [5].

To achieve a high compression ratio it is necessary to use a number of demanding algorithm functions, which leads to longer
image processing program runtime. Presently, parallel computing is there. The aim of this work is to apply OpenCL to speed up
the lossless compression algorithm. To achieve this goal it is necessary to: analyze duration of program execution; find the
algorithm functions with time-consuming calculations; consider transfer of these functions to GPU. Image processing performed
in the algorithm is based on handling particular fragments, therefore, in general case, such tasks can be carried out
simultaneously. Furthermore, it is possible to perform the preprocessing functions for image fragments in parallel as well.

2. Basic algorithm

The basic algorithm inherently consists in cascading fragmentation of image [1], the search of the fragment optimal bypass
(path) [2], and dynamic programming of pixels delta-code at fragment bypass [6]. After encoding, the obtained data is further
compressed by Deflate algorithm using standard libraries . The compression ratio depends on the class of the image being
compressed, and on average equals 1.54 for the array of test images [5].

The runtime of image compression program depends on the processed image size. Due to a number of algorithmic solutions
such as cascading fragmentation, and the use of bypasses codebook instead of calculating the possible bypasses for each image
fragment, the runtime was reduced. However, the image compression duration is still high enough [5]: 1) in group «2.1.*tiff» -
101 seconds 2) in group «2.2.*tiffyy - 404 seconds 3) in group «4.1.*tiff - 24 seconds 4) in group «4.2.*tiff» - 141 seconds.

In computational terms the most complex of the basic algorithm functions is to estimate the encoding cost for all possible
bypasses. Meanwhile, this algorithm function is suitable for parallelization, since the optimal bypass choice uses exhaustive
search of obtained cost estimates. For a fragment sized 6*6 the total bypasses number from the upper left corner is 22144.

To use all multi-core CPU resources it is necessary to effectively implement paralleling of functions between all cores. The
basic program features parallel execution of optimal fragment bypass search cycle done with . Net Framework standard classes
(SSE instructions). It is possible to use a more powerful CPU, but even in this case, the speed increase will not be significant.

In recent years the increasing number of programs with parallel data processing use GPU computing [7]. This is dictated by a
growing gap in performance between CPU and GPU.

Taking into account the above said, it was decided to move part of the compression algorithm functions to GPU. Obviously,
this will require some significant changes in the functions, but it will allow for significant decrease in the program runtime
without changing the basic algorithm.

Currently there are several approaches to programs execution on GPU. OpenCL is an open standard [8], which can execute
programs on both CPU and GPU of different manufacturers. Therefore, in this research, to speed the algorithm, OpenCL was
chosen.

3" International conference “Information Technology and Nanotechnology 2017 110

Image Processing, Geoinformation Technology and Information Security / A. Khokhlachev, V. Smirnov, A. Korobeynikov

At the moment there exist quite a big number of various compression algorithms in general and algorithms for images in
particular. Images compressed both as lossy and lossless are widely and effectively used. For example, lossless compression is
used in PNG files where the actual compression is implemented with Deflate algorithm [9, 10], which is a combination of LZ
and Huffman algorithms in its turn. There are no free turn-key programs available for lossless image compression making use
of OpenCL. WinZip is an example of the lossless compression program based on universal algorithm and using OpenCL, which
provides for performance increase of about 45% [11].

In addition to the basic algorithm, image preprocessing was implemented which was described in the authors’ previous
works: interchannel decorrelation of image color layers [12] and the transformation of pixels matrix based on integer-valued

Haar wavelets [13]. These functions can be easily threaded for the implementation on OpenCL.

Encoding of bypass

Begin]
. a Y
s ;
<3 : -
2 Possible ways to | edge WI:] different | | 8
Q@ redictors |
2 bypass of fragment P ‘_%
Preparation of 2 ' and encoders =
Q. I
fragments = # i E ‘ ‘.%O
s =]
o Computing the ' go Choice of predictor <]
] I =
g delta-code of ‘:é and encoder i
: Interch | o0 bypasses edges ! ﬁ based on dynamic
nterchannel 5 c . |
i o =2 programming
g decorrelation of % 2
. ©
o color layers s Calculation of ‘ £ l
9 c encoding cost a
& $ g)
8 © for bypass 5 ‘ End ‘
@ Transformation 3 i “_é \ J
& based on integer- 8 I 5
Y i
' | valued wavelet Haar 2
i Search the minimum | '

; cost among the

possible bypasses

Fig. 1. Lossless image compression algorithm.

3. Methods of acceleration

The general problem solved in present research is changing the compression software in order to transfer part of calculations

to OpenCL. Image compression algorithm is shown in Fig. 1.

3.1. Preparation of fragments

The function receives separate color layers of an image. The function output is arrays of separate fragments of fixed size.

NMpumeyanume [K1]: Tlo pucynky:
preprocessing (ue xBaraet 6yksbr), Haar
integer-valued wavelet (mopsinox ci1oB), to
bypass fragments (He HyxeH npeior of),
search of (peaior HyxeH))),

Pixel values of the fragment nodes beyond the image borders are virtual pixels and the values of these pixels are set as constant
(white pixels on Fig. 2). The top left pixels of each fragment on level O constitute the fragments on level 1 and so on, as long as
the fragments number on a level is more than one. Data structure passed to the OpenCL kernel represents the matrix of image

values, the output structure is the array of separate fragments [1].

3.2. Preprocessing

3.2.1. Interchannel decorrelation of color layers
This function is designed to calculate the interchannel decorrelation between the groups of color channels (layers) of the

original image and to find the best variant to group them [12].
When function is started the arrays containing pixels values of all color channels of the fragment, and also the number of

channels have to be conveyed (Fig. 3). In addition, data on the possible grouping of channels is needed.
Formula for calculating interchannel decorrelation for arbitrary channels number based on the mean and interchannel

differences is applied [12]:
)]

n gl
Pl = Round(Z‘:Tlx

Pi=X'—X.i=2n

111

3" International conference “Information Technology and Nanotechnology 2017”

Image Processing, Geoinformation Technology and Information Security / A. Khokhlachev, V. Smirnov, A. Korobeynikov
where Round is the rounding operation to the nearest integer; X'— pixels value on each of the channels; &~ channel index; n—

the number of processed channels.

{9 l10111112)
 EPIEELT

Level 1

Level 0

Fig. 2. Preparation of fragments.

The color channels can be independent from each other, therefore, the grouping variant with a minimum encoding costs
estimate has to be selected. It is necessary to implement the decorrelation formulas for all dependent channels groups. The
minimum channels number in the group is 2. If the image consists of 3 channels (24 bits per pixel), we get the following

grouping variants:
XXX XEXDX2X X)X (XX D)X X3)
where decorrelation formulas are to be applied to groups of channels in parenthesis.
The calculation of decorrelation is performed for all possible groups (g=1..G). The result is the index of g grouping:
9 = aremin(Z5,(S1, Zi, Con(P)) ®

where P’ — is the pixel value after the interchannel decorrelation for the grouping index g; i~ channel index; j— pixel index;

n—number of channels; k&— number of pixels aumber-in the fragment.
Cost is the-a seme-estimation—function of encoding costs estimate, for example, the length of the Fibonacci code whieh

encoding the va-}ue—}"j_value, or the estimated length of binary coding:

log,|P + 1| +1 Q)

Fig. 3. Interchannel decorrelation of color layers.

3.2.2. Transformation based on Haar integer-valued wavelets-Hecr

This function is designed-intended for cascading processing of each image fragment by applying an integer-valued version of
the Haar wavelet transform [13].

The function is-passedreceives an array containing a single channel of image and the number of the processed fragments in
by width and height-which-need-to-processed.

In the-course of the algorithm execution ituses-additional arrays for each executable OpenCL kernel with-athe size equal-toof
one fragment each are used; for storing the intermediate-interim results of the cascading conversion.

3" International conference “Information Technology and Nanotechnology 2017 112

Image Processing, Geoinformation Technology and Information Security / A. Khokhlachev, V. Smirnov, A. Korobeynikov
The function result-isoutputs an array of the size equal-teof the original image.
Image matrix sheuld-has to be divided into blocks efsized 2*2. Then ealeulated-the values for a,h, v, d are to be found by the
formula [13]:

C2=X1 — X3
C3=X1 — X3
o=y — %,)

B 1og _ ~ 1y4
¢1=x; — Round (ZEFZ Ci) =X1—Z; ® ;2,-:1 Xi

a=c;
h=— Round(d/2) + c5
v=— Round(d/2) + c, (6)

d=c3 —c4 + ¢,

wWhere Round is the rounding operation to the nearest integer; x; — original pixels of the block.
The obtained values of a, h, v, d sheuld-have to be recorded in positions of the matrix; as shown in Fig. 4. Calculation should

&me and reducing their size #n-2-timesby half for-is each coordinate every time, as long as it is possible to form 2*2 block from YBEpEHA HACKOJIBKO 311€Ch 0GOCHOBAHO
i B %A NPUMEHSATD €TI0 B 3HAYEHUH MaciTag???
d'_values on a subsequent scale. with-size 2%2 is-absent:

be carried out as%mu-lﬂreselﬁﬂen at multiple scale; by repeating the transform on the blocks consisting of grouped values o', each ﬁ NMpumeuanue [K2]: Resolution He

It should be noted that when—wnh the fragment sized ef 2"*2™ it is possible to use preprocessing (interchannel decorrelation,
and Haar transform) after the function of dividing-en-the-fragmentations. In this case, the Haar transformation is possible only
within the same fragment. With-In this approach, the fragment encoding is completely independently of the other fragments and
therefore the decoding is possible for a single fragment.

x| X
1 2
1 X ; xz4 3
x| x| X
1 2 1 2
X3 | xt X
3 4 3 4

Fig. 4. Multiresolution-Multiple-scale transformation based on Haar wavelet-Haat. |
3.3. Search for optimal bypass of fragment

The function receives the fragments obtained after preprocessing functions (integer-valued Haar transform, interchannel |
decorrelation of color layers).

3.3.1. Calculation of encoding cost for all possible bypasses of fragment

3.3.1.1. Possible ways to bypass of a_fragment
Encoding and decoding a]gorithms have ilnformation about all the-possible bypasses for a given fragment size. is-knewn-for

All bypasses (paths) have been calculated in advance and eenstitute-stored in the bypasses codebook [2].

Therefore, in-encoding—and-decodingonlyneed-toknow-the bypass index, but not the edges of bypass (path), is the only
prerequisite for encoding and decoding.;-but-net-the-edges-ofbypass(path)-

3.3.1.2. Computing the delta-code of bypasses edges

This function is designed to calculate the difference of values for all pairs of nodes that make up the edge on a given fragment
bypass [2]. In-the-course-of the-funetionThe algorithm uses the-previously prepared fragments.

The result is a list of arrays containing the-delta-code of all edges for each fragment.

It is necessaryEor-each-fragment-youneed to make-compile an array of differences between the nodes values (delta-code)
connecting the edge e is-caleulated-accordingto-thewhich is done with formula:

4, = start(e) — Xstop(e) @)
WWhEre Xgare) Xsiop(e). areis the-pixel values are-connected by an edge e; start(e) and stop(e) are- nodes indeixes of edge e.
3.3.1.3. Calculation of encoding costs for bypass

For each fragment, estimates-the encoding costs for each of the possible bypasses are calculated. The function receives the
previously prepared fragments and details-data onef all the fragment bypasses in-afrom the codebook.

3" International conference “Information Technology and Nanotechnology 2017 113

Image Processing, Geoinformation Technology and Information Security / A. Khokhlachev, V. Smirnov, A. Korobeynikov
The result is the fragment-specific array containing estimated encoding costs for each bypass of the fragment (fEig. 5, tFable
1).
Estimationg of the-encoding costs of a bypass threugh-all-edges{with its-all delta-codes) of bypass edges it-is-pessible-to
predueecan be done in different ways. The cost of bypass fEor each fragment is-needhas to findbe found-the-cost-of the-bypass:

Zs = Yoy Cost(4,) - 2% ®

where E is— the length of bypass (the number of edges); e - edge index; S — the number of bypasses; s - bypass index; A, -
delta-code of edge; z°; — presence of thean- edge e in bypass s; Cost — is theseme@ estimation function of encoding costs, #-is
similar to the-Cost in interchannel decorrelation function.

It should be noted that the estimate of bypasses encoding costs based on the-table 1 is effective from the point of view of
parallel computing. s+—This function there—isrelies on parallel processing of all possible bypasses downloaded from the
codebook, for all fragments making up;ferming the processed image.

3.3.2. Search of the minimum emong-the-possible bypasses

After the-estimatesef-encoding costs of all paths is-seleetedare estimated, ¢ fragment-bypass with the
smallest estimate for each fragment is picked and saved.
s = argmin(Z) 9)
s

Fig. 5. Example of bypass ofer fragiment-3*3 fragment.

Table 1. Calculation of encoding cost for bypass-infragment3*3 fragment.
e | A | Z | T2 e | T
1 Ay 1 1 0
2 Ay 1 1 1
3 As [0| O 1
4 | A | 0|0 1
5 As 1 1 1
6 Ag 1 1 0
7 A7 1 0 0
8 Ag 1 1 1
9 Ay 0 1 1
10 | Ap | O 1 1
11 | Ay 1 0 1
12 | Ap 1 1 0

3.4. Encoding of bypass

This function is designed to encode the previously found optimal bypass. That is, the obtained array of bypass nodes values
with a minimum encoding costs; srust-is to be handled-by-theprocessed with predictor and encoded by-with the-encoder.

It should be nNoted that the-encoding of bypass whieh-previously was-found as optimal bypass-can be performed in various
ways. In particular, there-can-be-usedcertain —knewn-generiecommon methods_can be used: Huffman algorithm or arithmetic
coding.

As for the consideredin suggested-algorithm-it-is-offered-to-performthe- algorithm the bypass encoding efbypassis suggested
which employs-using a more sophisticated method [6]: 1) using a set of predictors and encoders for-to encode the bypass edge;
2) using dynamic programming fer-cheice-ofto choose predictors and encoders for edge in purpose to optimize (te-minimize) of
the total bypass encoding costs-efbypass.

3" International conference “Information Technology and Nanotechnology 2017 114

Image Processing, Geoinformation Technology and Information Security / A. Khokhlachev, V. Smirnov, A. Korobeynikov

14+4-3.4.1. Encoding of bypass edge with different predictors and encoders

In the simplest-most common case, the edge delta-code described above is used as the-a predictor-uses-the-edge-delta-code
deseribed-abeve, and Fibonacci codes are used as encoders-uses-theFEibonacei-codes-[3]. In this case, the applicationying of
dynamic programming to select the-predictor and the-encoder is not required. In amore complex cases the number of cheices-of
predictors and encoders variants may be more than one. For example, it-is-pessible-ease-with-the-predictors_are possible not only
on the basis of net-enly-the finite difference of the first degree, but higher degrees, and Rice codes with different bases can be
used as encoderswith-the-coders—with-use Rice-codes—with-different-bases. The use of a set of predictors and a-set-ef-encoders
increases the resulting image compression ratio, but this raises the problem of choosing the best predictor and encoder for the
current section of the bypass array.

<

<

14-4:2-3.4.2. Choice of predictor and encoder based on dynamic programming

In-this-embediment; This variation of compression algorithm te-encede-with which each bypass edge is encoded uses the mest
optimal encoding parameters (predictor/encoder) based-endefined by dynamic programming [6]. Ia-start-efthe-When function _is
started, it-isteaded-the table of encoding cost for every encoder for values of every predictors for all pixels on edges of the
optimal bypass_is downloaded and executed.

I-theresulttThe function ereates-produces a data file containing information swith-on the size of the-encoded using-eneeders
predictors values—for-edges—and additional information — optimal switching of the predictors/encoders for edges ef-bypass
encoding [6].

Due to the complexity of the dynamie—programming—algorithm it was found possible to transfer tete—run—en-OpenCh
managed-to-transfer-only a small part; responsible for the-coding directly to OpenCL. This part contains branching, and is
switching large sections of the algorithm_takes place. These operations are an integral part of the algorithm, er-ehangand
changinge the calculations flow in-aim-of parallel-exeeution-without the-use of branches is not possible.

2-4. Results and Discussion

SereenformThe interface of the developed software is shown in Fig. 6. The program displays the following information: usee
hardware-proeessor-devieeprocessing unit and software platform_being used; the number of files to be processed; the current
processed file; the execution duratien-time of the compression program particular functions; the-exeeution-duration—oefoverall
compression time; the compression ratio.

Fe-useHardware requirements for -OpenCL acceleration requires—the-presenee-ofare GPU or CPU with support of OpenCL
1.2 [8]. Yeumustinstal-tThe appropriate OpenCL support software whieh-distributed with equipment is to be installed.

Fo-The compilatione of the developed image compression program requires the following software components [8]: 1)

DotNetZip library, for the final compression of results using-thewith -Deflate algorithm; 2))-te-provide-OpenCl-bindingsfor C#;
use-the Cloo library from OpenTk to link OpenCL to C#; 3) te-compile-and-exeeutekernels—onthe-GPU—youmust-have-the

required header files for OpenCL support in order to compile and execute kernels on the GPU. lonic.Zip.dll library is used tFo
compress the encoding results—usedtibrarylonie-Zip-dll. In-additien—is—usedOther requirements include a set of libraries to
support wesk—OpenCL_running, bindings these libraries to .Net Framework and the source codes of the OpenCL kernels
compiled in course of program execution.

The basic program required about 250 MB of RAM. When-algerithm—wasTo adapted_the algorithm for accelerating on
OpenCL was-added-usinglarge-volume arrays were addedeflarse-volume and hence memory required-demand increased to 900
MB.

o Image compression EM

= Used equipment GeForce GTX 960
[v] Use OpenCL on the platform NVIDIA CUDAFiles for processing -
4 File
Platform processing 4.1.06.tiffConverting Haar...completed in 101
v | msThe calculation of the inter-channel
decorrelation. ..completed in 56 msSearch for optimal path
Devices traversal...completed in 461 msDynamic

7] GeForce GTX 960 programming...completed in 945
Processing completed in 2879 msSize source - 196748 B,
compressed - 52337 BCoefficient -

3,81967

=File processing 4.1.@5.tiffConverting Haar...completed in
19 msThe calculation of the inter-channel
decorrelation...completed in 5@ msSearch for optimal path
traversal...completed in 65 msDynamic
programming...completed in 1091

Processing completed in 2989 msSize source - 786572 B,
compressed - 198735 BCoefficient -

4,078657.
=File processing 4.2.06.tiffConverting Haar...completed in
78 msThe calculation of the inter-channel
decorrelation...completed in 55 msSearch for optimal path
traversal...completed in 946 msDynamic
programming...completed in 1091

Processing completed in 2989 msSize source - 786572 B,

File path C:\Users DEV\Pictures’ \test2

3" International conference “Information Technology and Nanotechnology 2017” 115

OTdopMmaTMpOBaHO:
MHOrOypOBHEBbIN + YPOBEHb: 3 +
Crunb Hymepauuu: 1, 2, 3, ... + HauaTtb
c: 1 + BolpaBHMBaHue: cnesa +
BbipoBHsTb No: 0 cM + OTcTyn: 0 cMm

OTcdopmaTUpOBaHO:
MHOrOypOBHEBbIN + YPOBeEHb: 3 +
Ctunb Hymepaumm: 1, 2, 3, ... + Havatb
c: 1 + BblpaBHVBaHve: cnesa +
BbipoBHATb No: 0 cm + Otctyn: 0 cm

OtcdopmaTUpOBaHO:
MHOrOypOBHEBbIN + YpOBeHb: 1 +
Crunb Hymepauum: 1, 2, 3, ... + Havatb
c: 1 + BolpaBHMBaHue: cnesa +
BbipoBHATL No: 0 cm + Otctyn: 0 cm

Image Processing, Geoinformation Technology and Information Security / A. Khokhlachev, V. Smirnov, A. Korobeynikov
Fig. 6. Sereenformlnterface of the developed software.

Test bateh—sample of images desigred—is intended to assess acceleration of all core functions of modified program in
comparing-withrelative to basic one. To estimate the dependence of the program speed-runtime on the te-images size. the-bateh
have-the-images of different sizes are sampled. To-cheek-usedFor test purposes 4 images from the standard set provided by the
Institute of signal precessine—and images processing were used: 4.1.06.tiff, 4.2.05.tiff, 4.2.06.tiff, 4.2.07.tiff. The color depth of
the images are-is 24 bit. Image sizes_are: 256*%256, 512*512, 1024*1024, 2048*2048.

At tTesting was-performed-using-image compression was performed with bothas- the-the basic program on the CPU AMD
Phenom II X4 955 platform and a program using OpenCL. For testing OpenCL parallel processing was-used-different 4 different
devices were used: 1) GPU AMD Radeon HD6850; 2) GPU Nvidia GTX 960; 3) CPU AMD Phenom II X4 955; 4) CPU AMD
FX-4300. The time spent on the-particular functions of the algorithm, and the total processing time for each image are given in
Table 2 and Fig. 7, where Flis— integer-valued Haar transform, F2 — interchannel decorrelation of color layers, F3 - search of
the optimal bypass, F4 - encoding bypass using dynamic programming.

When-testineforeEach fragment hadwas fixed size: 6*6 pixels, and the number of bypasses: 22144 at testing.

It should be noted, that swher—usingthewith -GPU Nvidia GTX 960 _configurations, according to Profiler, the load does not
exceed 60% while-despite numerous sthe-high-number-of- processing devices and high work frequency. aecerdingto-Profiler
the-load-dees-not-exceed-6 Compression-The image of size 2048%2048 pixels size could not be compressed on the GPU AMD
Radeon HD6850 failed—to—preduece-due to thetaek—ofinsufficient graphics memory. In the—future, to avoid this—siuatiensuch
failures, the neeessary-moditication—of-the-program_needs to be modified: te—+un-the performed calculations flow should be
divided into several sreups-threads and processed sequentially.

In the basic program were—not—implementedthe functions of the integer-valued Haar transform and the—interchannel
decorrelation were not implemented, and therefore, testing of these functions was not carried out.

Testing shewed-yielded approximately the same reduction in the-compression-total-overall compression time when-uastrgwith
both CPU and GPU application. The larger the size of the processed image, the greater the acceleration obtained as long as there
is memory available te-for OpenCL.

GPU shewed-the-bestresultsperformed better in the—fer searching of the-optimal bypass_task. CPU swellswith-thefunetionof
handles dynamic programming well; due to beeause-efpresences of a large number of branches in the function, despite the small
number ef -processerof processor cores.

Time spent on c€alculatingens—ef interchannel decorrelation and integer-valued Haar transform is-performed-using OpenCL
forashert-timels insignificant compared to total compression time.

Table 2. Results of processing of test images.

Used Image Execution time of compression Acceleration,
program / size, particular functions, miliseconds Times
device pixels F1 F2 F3 F4 Total F3 F4 Total
256*256 71 65 | 677 528 2581 2,2 9.0 2.8
AMD
512%512 43 |63 | 913 1129 4643 6,1 134 5.2
Radeon
1024*1024 | 66 | 187 | 2017 4492 15217 | 12,9 13,5 6,4
HD 6850
2048*2048 | 151 | 438 | — — — — — —
256*256 23 120 | 160 360 2057 9.4 13,2 3,5
Nvidia
512%512 11 36 | 411 1153 4402 13,6 13,1 5,5
= GeForce
g 1024*1024 | 33 148 | 1474 4226 13416 | 17,7 144 7.3
2 | GTX 960
o 2048*2048 | 122 | 675 | 5354 14530 | 50031 | 31,8 159 8,6
=
; 256*256 34 |30 | 350 499 2581 43 9.5 2.8
<
‘go AMD 512%512 18 |48 | 913 1146 4207 6,1 132 5,7
g
~

FX-4300 1024*1024 | 45 206 | 3324 4093 15514 | 79 14,8 6,3
2048*2048 | 172 | 920 | 13164 13629 58567 12,9 17,0 74

256*256 31 32 | 455 664 2407 33 7,2 3,0
AMD
512*512 21 56 1378 1222 5981 4,0 124 4,0
Phenom II
%4955 1024*1024 | 67 | 239 | 4571 4477 16777 57 13,6 58
2048*2048 | 227 | 992 | 18432 12804 | 61350 9,2 18,1 7,0
256*256 — | — 1504 4751 7273 1,0 1,0 1,0
Basic program /
512*512 — | — | 5570 15155 24183 1,0 1,0 1,0
AMD Phenom II
1024*1024 | — | — | 26107 | 60698 97297 1,0 1,0 1,0
X4 955
2048*2048 | — | — 170161 | 231398 | 431555 | 1,0 1,0 1,0

3" International conference “Information Technology and Nanotechnology 2017 116

Image Processing, Geoinformation Technology and Information Security / A. Khokhlachev, V. Smirnov, A. Korobeynikov

35

Reducing the treatment time, once

0
256*256 512*512 1024*1924 2048*2048

e GeForce GTX 960 Search of the optimal bypass emmGeForce GTX 960 Search of the optimal bypass

AMD FX-4300 Encoding bypass AMD FX-4300 Encoding bypass

Fig. 7. Comparison of image compression acceleration.

3.5. Conclusion i

In the—eeurse—of-this work was—medified-the basic program foref lossless image compression wwitheunttesseswas modifieds
with the aim of inereasing-shortening its runtimethe-speed. The-pParallel processing based on OpenCL was used for program
acceleration. This solution significantly affected the processing speed, erabling-making it possible to reduce computational time.
This modification will allew—provide for more efficient use of the program in the future, will-facilitate future-further research
aimed at improving the compression ratio.

The changing of optimal bypass search function allowed for te-ebtain-the-aceeleration up to 32-fold acceleration on the-large
images. This acceleration has been achieved because ef-exeeuting-OpenCE-functions executed on OpenCL are almost linear,
and branching, even-where-they-arewhen it is the case, is limited tohave only a few simple operations. Furthermore,For-fatare
program—nodifieation thete acceleratione of this function is important for future program modification because it is—makes
possible to use fragments of larger size that-which was previeusly-impessibleunattainable earlier due to tee-muchgreat execution
time. Amongother thingsMoreover, fragments with-the-sized of 2°42" swill-effectivelyallow -applying the integer-valued Haar
transformation for-the fragmentto them, and will-allew-te-compressing every-cach fragment separately.

Semewhat-worse—is—thesttaation—withAs regards dynamic programming, the prospects are not as bright-during—enceding
fragment-bypass. Speed-Performance managed-te increase was gained mostly by-due to erdirary-conventional parallel execution
of some operations, shutdewn-efcancel of operations which-need-entyused solely for debugging purposes. and the-use of the
packet data read operations. The part that runs on OpenCL gives the increase in performance is-of only about 30% compared
wwith-to ordinary parallel computing. On the other hand, even this result is relatively good-enensh, given—thefaetprovided that
OpenCL function has rathera widetarge-eneugh branching. It should be nNoted that the-bypass encoding can be performed in
various ways, for-example;e.g. with Huffman algorithm or arithmetic coding.

References

[1] Smirnov VS, Korobeynikov AV. Cascade Image Splitting into Fragments at Lossless Compression on Basis of Image Bypass Optimization. Bulletin of
Kalashnikov ISTU 2012; 2: 143-144.

[2] Korobeynikov AV, Smirnov VS. Optimal Bypass Definition with Code Book Application at Images Lossless Compression. Bulletin of Kalashnikov ISTU
2012; 3: 114-115.

[3] Smirnov VS, Korobeynikov AV. Ordering the numeric sequence of image pixels at lossless compression. I International Forum “Instrumentation
Engineering, Electronics and Telecommunications (November, 25-27, 2015, Izhevsk, Russian Federation), 2015; 175-180.

[4] Sample images from the site of University of Southern California. URL: http://sipi.usc.edu/database/database.php?volume=misc (2017-01-10).

[5] Smirnov VS, Korobeynikov AV. The results of testing lossless compression algorithm based on cascade fragmentation method and ordering pixels sequence.
1I International Forum “Instrumentation Engineering, Electronics and Telecommunications (November, 23-25, 2016, Izhevsk, Russian Federation), 2016.

[6] Korobeynikov AV. The Use of Dynamic Programming and Fibonacci Codes for InterchannelDecorrelation. The Three-Channel Signals Lossless
Compression. Bulletin of KIGIT 2010; 1: 72-81. URL: http://elibrary.ru/item.asp?id=18348092 (2017-01-10).

[7] Denny Atkin. Computer Shopper: The Right GPU for You. URL: http://www.computershopper.com/feature/the-right-gpu-for-you (2017-01-10).

[8] Official webpage of the standart OpenCL. URL: https://www.khronos.org/opencl/ (2017-01-10).

[9] Portable Network Graphics (PNG) Specification (Second Edition). URL: https://www.w3.0rg/TR/PNG/ (2017-01-10).

[10] PNG Home Site. URL: http://www.libpng.org/pub/png/ (2017-01-10).

[11] WinZip official webpage. URL: http://www.winzip.com/win/ru/index.htm (2017-01-10).

[12] Franchenko RS, Korobeynikov AV. InterchannelDecorrelation for Any Number of Channels at Lossless Compression of Multichannel Signals. Bulletin of
Kalashnikov ISTU 2010; 1: 87-88.

3" International conference “Information Technology and Nanotechnology 2017 117

OTcdopmaTUpOBaHO:
MHOrOypOBHEBbIN + YpOBeHb: 1 +
Crunb Hymepauuu: 1, 2, 3, ... + Hauatb
c: 1 + BblpaBHMBaHue: cnesa +
BbipoBHsTb No: 0 cm + Otctyn: 0 cm

Image Processing, Geoinformation Technology and Information Security / A. Khokhlachev, V. Smirnov, A. Korobeynikov
[13] Smirnov VS, Korobeynikov AV. Lossless Image Compression Based On Integral-Valued Haar Wavelets. Intelligent Systems in Manufacturing. Bulletin of
Kalashnikov ISTU 2013; 2: 158-160.

3" International conference “Information Technology and Nanotechnology 2017 118

