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Abstract 

The suggested method is aimed at studying the dynamics of the magnetospheric current systems during magnetic storms. The method is based 

on algorithmic solutions for processing of geomagnetic field variations, detection of local increases in geomagnetic disturbance intensity and 

estimation of their dynamic characteristics. Parameters of the algorithms allow us to evaluate the characteristics of small-scale local features 

emerging during geomagnetic activity slight increases and large-scale variations observed during magnetic storms. To evaluate the method, 

geomagnetic data from the stations located in the north-east of Russia and equatorial India were used. The method testing showed the 

possibility to apply it for the detection of pre-storm anomalous effects in geomagnetic data.  
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1. Introduction 

The work is devoted to the creation of methodical and software means for the analysis of recorded geomagnetic data. At 

present, theoretical and experimental bases of construction of systems for data processing and analysis are intensively 

developing, in particular in geophysics (for example, http://www.cosmos.ru/magbase; http://matlab.izmiran.ru/magdata/; 

https://www.ngdc.noaa.gov/; http://smdc.sinp.msu.ru/). It is caused by the increase of human society demands in automation of 

data flow processing. The subjects of this investigation are complex dynamic processes in the Earth magnetosphere and 

ionosphere determined by the phenomena and processes of solar origin. Solar activity impact on the Earth magnetosphere has 

quite a complicated character. Many aspects of it are still under-investigated [1]. As long as the state of magnetospheric-

ionospheric system is an important factor of space weather which affects many aspects of our life, works in this area are of high 

scientific interest [1].  

The Earth magnetic field variations reflect different geophysical processes in the Earth near space. During magnetic storms 

they contain uneven local features occurring at random times and carrying important information on the processes in the 

magnetosphere [2-14]. Traditional methods for data analysis applying basic models of time series, different techniques of 

smoothing and Fourier analysis methods are not effective enough to investigate fast unsteady processes. As it was noted in the 

papers   [15-18], they do not allow one to identify thin local features characterizing short-period oscillations during increased 

geomagnetic activity and to estimate their dynamic characteristics before and during storms. At present, modern mathematic 

methods and technologies are intensively developing in this area [3-9, 14, 18-25]. Based on Data Mining application in order to 

improve the processes of geophysical data recording and organization of world data centers, methods for automation of expert 

work in this area have been developed (creation of so called “artificial experts”) to solve geomagnetic data analysis problems, to 

detect noise at the stage of their preliminary processing, to identify anomalies during magnetic storms, to process magnetograms 

etc. [19-25]. To solve these tasks, the authors apply of the papers [9] a new approach, «discrete mathematical analysis» (DMA), 

which includes fundamental notions of mathematical analysis and modern approaches based on L. Zadeh’s logic. A group of 

scientists from India (Kaleekkal Unnikrishnan) developed a technique for modeling of geomagnetic field variations for low-

latitudinal stations. It is based on neural networks. The developed approach allowed them to improve the quality of the 

forecasting technique for magnetic storms (in 86% of cases) in comparison to the nearest method based on logistic regressive 

model obtained in 2005 (in 77% of cases) [23]. A group of scientists from Egypt (Space Weather Center, Faculty of Science, 

Helwan University, Cairo, Egypt) suggested to apply neural networks to predict the time of interplanetary shock wave 

propagation [24]. Based on the neural networks, the authors [25] suggested an algorithm for interplanetary magnetic field data 

processing and Dst-index calculation. The authors of that paper suggest an approach based on the combination of neural 

networks with wavelet transform and show the efficiency of joint application of mathematical apparatus data in comparison with 

a neural network in the problems of analysis of natural time series with complicated structures [26-29], in particular, for 

geomagnetic data analysis [28, 29]. It is shown in these papers that wavelet transform allows us to investigate the data structure 

in detail and to detect informative components which, in their turn, improve the procedure of neural network training and its 

performance efficiency. At present time, wavelet transform is widely used in the problems of analysis of the Earth magnetic 

field variations [2-5, 10, 14]. In the paper [2] wavelet transform is applied to investigate the relations between short-period 

oscillations of the geomagnetic field, solar wind parameters and interplanetary field during geomagnetic storms. Based on the 

wavelet transform, we solve such problems as denoising and elimination of a periodic component from geomagnetic field 

variations which is caused by the Earth rotation [4]. Applying the discrete wavelet transform, the authors of the paper [3] 

suggested an algorithm for automatic detection of magnetic storm initial stage periods. On the basis of the analysis of 

geomagnetic field variation wavelet spectrum, a method for forecast of strong geoeffective solar flares was proposed [13]. In 

http://www.cosmos.ru/magbase
https://www.ngdc.noaa.gov/
http://smdc.sinp.msu.ru/
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terms of wavelets, the authors of this paper suggested a new model of geomagnetic field variations [14, 30] and developed 

automatic algorithms do detect calm diurnal variation and to estimate disturbance intensities [30]. This approach allowed us to 

automate the procedure for calculation of geomagnetic activity index K, close to J. Bartels method, and to decrease the 

calculation error in comparison to the current methods [30]. In this paper we continue the investigation in this direction where a 

special emphasis is placed on the development of calculation solutions to detect and to estimate short-time anomalous increases 

in geomagnetic disturbance intensity which may occur before magnetic storms and have applied significance. The important 

thing in this approach is the possibility to apply the geomagnetic field data recorded on the ground, the analysis methods of 

which may significantly contribute to the current forecast methods. Taking into account incomplete prior knowledge on the 

dynamics of magnetospheric current systems and the limited scope of the obtained information on the processes in the near 

Earth space, noises, possible equipment failures etc., successful solution of the problem of space weather forecast requires a 

complex of methods and technologies. The confirmation of it is the large number of papers and scientific groups which aim their 

efforts at creating methods for recognition and classification of the effects in geophysical observation time series with 

applications in space weather problems.  

2. Description of the method  

In the papers [14, 30] the authors propose geomagnetic field variation representation based on multiscale wavelet 

decompositions:  
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Minimizing the errors in the class of orthonormal functions, the Daubechies basis of order 3 was determined as the wavelet 

basis [30].  

 The set of indices D can be determined on the basis of the following criteria [14, 30]:  
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The measure of geomagnetic disturbance of the component )(tg j
 on the scale j  is [14, 30]: 
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(see relation (1)),  and the equivalence of discrete and continuous wavelet decompositions,  in order to obtain more detailed 

information on the properties of the function f  under analysis, continuous wavelet transform may be applied [31, 32] 
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In this case, when a scale a  vanishes, the wavelet coefficients    abfW ,

 

characterize the local properties of the 

function f  in the vicinity of the instant time bt   [31, 32]. 

 

Following the relation (3) as a measure of geomagnetic disturbance intensity, it is logical to consider the wave coefficient 

amplitude  

       abab fWi ,,  . 

The intensity of field multi-scale disturbances at an instant time bt   is estimated on the basis of the value [14, 30] 
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In the case of field positive disturbances (current variation increase relatively the characteristic level), bI  value is positive. In 

the case of field negative disturbances (variation decrease relatively the characteristic level), bI  value is negative.  

To distinguish the periods of increased geomagnetic activity, the following threshold function is applied:  
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the time window length, abfW ,  is the average value, U  is the threshold coefficient.   

It is obvious that the parameters of function (5), the window length l  and the threshold coefficient U , are adjustable and 

determine the size of a time window within which geomagnetic disturbances are estimated and the level of determined 

geomagnetic disturbances (we applied the window length of 1440l  that corresponds to 24 hours and the threshold 

coefficient 7U ). 

To estimate the intensity of the detected disturbances at an instant time bt   according to the paper [30], we apply the value 

of  
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and taking into account that a wavelet is a window function [31], we obtain a dynamic spectrum of geomagnetic disturbance 

intensity.  

 

3. Processing results of geomagnetic data during the magnetic storms on January 7, 2015 and March 17, 2015 

Based on the suggested method, we processed and analyzed the data from the sites in the north-eastern segment of Russia 

(Table 1). To analyze the processes in the magnetosphere at the near equatorial latitudes, the data of the Indian HYB 

“Hydarabad” and CPL “Choutuppal” sites were used. The considered events and the results of application of the developed 

method for detection of anomalous increases of geomagnetic disturbance intensity before magnetic storms is shown in Table 2. 

Analysis of the results of Table 2 indicates the possibility of occurrence of weak geomagnetic disturbances before magnetic 

storms, which was first mentioned in the papers [33, 34]. It shows high sensitivity and the efficiency of the method suggested in 

the paper. In what follows are the detailed results of geomagnetic data processing during geomagnetic storms which occurred on 

07.01.2015, 17.03.2015, 21.06.2015, 15.08.2015, 19.12.2015. 
 
Table 1. Sites of the north-eastern segment of Russia. 

Observatory 
Code 

IAGA 

Geographical 

latitude 

Geographical 

longitude 

Geomagnetic 

latitude 

Geomagnetic 

longitude 

Local time 

(LT) 

Magadan (1) MGD 5933.1 15048.3 5132.4 1462.4 UTC+11 

Paratunka (1) PET 5258.3 15815.0 4551.6 13757.6 UTC+12 

Khabarovsk (1) KHB 4829.0 13504.0 3915 15648.6 UTC+10 

Choutuppal (2) CPL 1717.33 7855' 837.2 15234.8 UTC+5:30 

Note: site affiliation is indicated in brackets (1) – IKIR FEB RAS, (2) – CSIR-National Geophysical Research Institute. 
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Table 2. Results of detection of anomalous increases of geomagnetic activity before storms. 

Date of a 

storm 

Storm source Time of storm 

beginning (UT) 

max

Kp 

max 

Dst 

Anomalies detected before a magnetic 

storm  

Maximum value of the 

detected disturbance 
intensities  

Time interval before a 

magnetic storm 

beginning  

Scales KHB site CPL site 

07.01.2015 CME 6:15 6 -103 4 hours 55 minutes 4-10 20 0 

12 hours 10 minutes 2-8 12 27 

21 hours 14-20 1085 328 
17.03.2015 CME 4:45 8 -233 11 hours 15 minutes 5-40 523 225 

12 hours 10 minutes 20-34 232 0 

16 hours 30 minutes 6-10 3 2 
21.06.2015 CIR/CME 16:55 8 -111 7 hours 10-16 2 53 

10 hours 0-8 2 0 

15.08.2015 CME/CIR 8:30 6 -64 5 hours 8-12 0 209 
5 hours 20 minutes 40-60 2 415 

5 hours 30 minutes 8-20 65 35 

7 hours 0-8 3 0 
10 hours 16-32 1 0 

13 hours 30 minutes 8-22 18 19 

18 hours 40 minutes 0-4 1 0 
19.12.2015 CME 16:18 7 -170 1 hour 8-32 1 0 

7 hours 20 minutes 6-12 4 0 

15 hours 30 minutes 2-8 5 0 
25 hours 30 minutes 0-4 1 1 

 
Fig 1. Processing results of the data for January 7, 2015; a) Bz component of the Interplanetary Magnetic Field; b) AE-index (yellow line), AU-index (blue 

line) and AL-index (red line); c) Dst-index; d) H-component of the magnetic field; e) geomagnetic disturbance intensity (relation (5)); f) dynamic spectrum of 
geomagnetic disturbance intensity. 
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Fig. 2. Processing results of the data for August 15, 2015; a) Bz component of the Interplanetary Magnetic Field; b) AE-index (yellow line), AU-index (blue 

line) and AL-index (red line); c) Dst-index; d) H-component of the magnetic field; e) geomagnetic disturbance intensity (relation (5)); f) dynamic spectrum of 
geomagnetic disturbance intensity. 

Fig. 1 shows the results of processing of geomagnetic data during the magnetic storm on January 7, 2015. This event was 

caused by coronal ejection of solar material (CME on January 4, http://ipg.geospace.ru/space-weather-review-07-01-2015.html). 

Its dynamics was of classical character with clearly defined major phases of a storm in Dst-variation (Fig. 1c). The results of 

estimation the geomagnetic disturbance intensity shows that during the initial stage of the storm, from about 07:00 UT, 

geomagnetic activity gradually increased and the Dst-index had positive values. Maxima of disturbance intensity (Fig. 1e) are 

observed during Dst-index decrease and AE-index increase characterizing the occurrence of an intensive substorm in the auroral 

zone. The dynamic spectrum of geomagnetic disturbance intensity (relation (5)) illustrated in Fig. 1f shows the regions of 

disturbance concentration and propagation in the areas under analysis. During the event, a general picture of the dynamics of 

magnetospheric current systems is observed. The beginning of the storm from 6:00 to 08:00 UT was the most clearly defined at 

the near equatorial site (India). During the main phase of the storm, activation areas are observed in the dynamic spectra of all 

the sites (Fig. 1f; red color is the intensity increase; blue color is the intensity decrease). They are likely to characterize large-

scale processes in the magnetosphere probably associated with energy accumulation and release during the event. At the most 

northern site Magadan, local regions (from 10:00 to 11:00 UT) are distinguished. They are likely to be associated with auroral 

processes. 

Fig. 2 shows the data processing for the magnetic storm on August 15, 2015 which was caused by a solar medium coronal 

mass ejection (CME on August 12) and high-velocity flows from a coronal hole (CIR). The magnetic storm began at 08:30 UT 

during a sharp increase of solar wind velocity and increase of the magnetic field horizontal component at all the sites under 

analysis. Short-period anomalous increases of geomagnetic activity began about 12 hours before the magnetic storm (Fig. 2e). 

The highest values of geomagnetic disturbance intensity are observed at the sites during the main phase of the storm (the period 

of significant decrease of Dst-indes). The wavelet spectrum of geomagnetic disturbance intensity shows that geomagnetic field 
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disturbances at all the sites increased in the vicinity of special points (points of local extreme periods, function inflection) of 

Dst-variation (08:00-10:00; 11:00-13:00 UT). It indicates active processes in the magnetosphere at these time periods. The 

disturbances at the near equatorial site CPL had the most clearly defined character.  

The results of application of the developed method for detection of pre-storm anomalies of geomagnetic disturbance intensity 

increases are illustrated on the example of the event on August 15, 2015 in Fig. 3. Analysis of Fig. 3e shows synchronous 

anomalous increases of geomagnetic activity 18 hours before the magnetic storm. Several minutes before registration of the 

event at the sites, short-time geomagnetic disturbance intensity significantly increased and reached the maximum values during 

the initial phase.   

 
Fig. 3. Processing results of the data for August 13-15, 2015; a) Bz component of the Interplanetary Magnetic Field; b) AE-index (yellow line), AU-index 

(blue line) and AL-index (red line); c) Dst-index; d) H-component of the magnetic field; e) detection of the periods of increased geomagnetic activity (relation 
(6)). 

4. Conclusions 

A detailed analysis of geomagnetic data during strong magnetic storms in 2015 was carried out by the suggested method. 

The dynamic spectrum of geomagnetic disturbance intensity showed spatial pattern of the events and allowed us to analyze 

geomagnetic disturbance propagation along the observation meridian and at the near equatorial sites. During the main phases of 

the storms, activation areas were detected. They have large spatial scales and are likely to be associated with the processes of 

energy accumulation and release in the magnetosphere. Before the events, synchronous local increases of geomagnetic activity 

were observed at the sites under analysis. They are likely to be associated with nonstationary effect of solar wind plasma on the 

Earth magnetosphere in the course of an interplanetary disturbance approaching. Such anomalous pre-storm effects are 

mentioned in the papers [33, 34]. According to the processing results of large experimental material and joint analysis of 

geomagnetic field H-component oscillations with the oscillating processes on the Sun, the authors [13, 33] showed that the 

success rate of the suggested forecast method for the geoeffective flare events is 90%. This result indicates high probability of 

possible occurrence of pre-storm anomalous features in geomagnetic data. The possibility of automatic registration of 

anomalous feature data is an important aspect of the suggested method for space weather forecast.  
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