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Abstract 

Automatic analysis of electroencephalograms (EEGs) is one of the promising areas of research, which results can be used, in particular, to 

build systems of mental control of objects. The Dynamic Time Warping procedure (DTW) is used in this work for comparing signals 

representing EEG. An important feature of the problem we are considering is the need for multiple comparison of signals at the stage of 

machine learning, which requires enormous computational costs. We propose a parallel algorithm that was implemented in C++ using the MPI 

technology and tested using the resources of the supercomputer complex of Moscow State University “Lomonosov”. The results of its testing 

on real data showed that the proposed method allows achieving an almost linear speedup and reducing the total calculation time from 29 days 

to 3.5 hours using 128 processes, which opens the possibility of improving the quality of automatic analysis of electroencephalograms.  
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1. Introduction 

Electroencephalography is a method, which consists in reading electrical signals using electrodes located on the scalp. These 

signals are generated by the brain in the process of brain activity [1,2] and recorded as electroencephalograms for their 

subsequent analysis.  

Automatic analysis of brain electroencephalograms (EEGs) is one of the promising areas of scientific research, which results 

can be used, in particular, to build systems for mental control of external devices, e.g. a computer (brain-computer interface, 

BCI) [3].  

The idea of such “brain-computer” interface is based on the fact that signals generated by the brain under the influence of 

certain (target) stimuli, corresponding to a specific task, contain specific components which are absent under the influence of 

other stimuli. This happens in particular in the recognition of an object of a given type among a number of other objects. It is 

obvious that the problem of automatic recognition of the target object on the basis of the analysis of electroencephalograms 

plays one of the key roles in the construction of a system for the mental control of external objects [4,5]. Thus, it is especially 

important to improve the quality of its solution.  

In this paper we, following [5], focus on the experimental research scheme, according to which a person is provided with a 

series of mammogram images and his task is to find among them mammograms containing pathologies (the so-called target 

mammograms). EEG signals from 66 electrodes fixed on different parts of one's head are recorded during the process of viewing 

images. The task in this case is the automatic detection of signals registered in the process of viewing target mammograms. 

Figure 1a shows the process of registering electroencephalograms, and figures 1b and 1c - examples of mammograms with 

pathology and without pathology, respectively [5]. 

 
                 a)                   b)                     c)  

Fig. 1. a) The process of registering electroencephalograms, b) an example of a target object (mammograms with pathology), c) an example of an un-target 

object (mammograms without pathologies). 

Figure 2 shows examples of signals recorded from two of the 66 electrodes during viewing target (solid lines) and non-target 

(dashed lines) objects. The signals are subjected to preprocessing (filtration, scaling and smoothing by a sliding window), used 

by us to improve the quality of target objects recognition. 
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From a mathematical point of view, the electroencephalograms, which need to be analyzed for each of the 66 electrodes, 

fixed in different parts of the head are single-component discrete signals. 

       
Fig. 2. Examples of signals received from two electrodes. The solid lines show the signals corresponding to the target objects, and the dotted lines show the 

nontarget objects. 

Obviously, the analysis of electroencephalograms must inevitably be based on comparing the signals representing them. 

Since the form of the response to the stimulus and the time of its onset can vary, in this work, for the comparison of signals an 

adapted version of Dynamic Time Warping (DTW) procedure is used. This algorithm based on the search for optimal pairwise 

alignment of compared signals by local compression and stretching of their axes. Initially, the DTW method was proposed to 

compare speech signals [6], but was later adapted for many other areas [7,8].  

The task of analyzing electroencephalograms within the framework of this work is formulated in the form of a two-class 

pattern recognition problem, which solution is carried out in two stages - training and recognition [9]. At the training stage, a 

decision rule is formed for assigning new signals to the target or non-target class on the basis of processing a certain finite set of 

signals with a known class affiliation. At the recognition stage, the constructed decision rule is applied to new signals. 

Recognition can be carried out very quickly, while the process of constructing a good decision rule, which allows to classify 

new signals with high accuracy, is very laborious.  

Modern methods of machine learning in the construction of decision rules are based on measures of object comparison and 

allow us to automatically choose the most suitable ones in the training process, improving the quality of the solution of the 

problem [10]. The great complexity of training is due to the necessity of multiple comparison of long signals in the calculation 

of a whole series of matrices of their pairwise dissimilarity (for different electrodes, different types of preprocessing, different 

values of the parameters of the comparison algorithm), choosing the most suitable of which is not possible a priori.  

In accordance with the above, an extremely topical task is to increase the productivity of the electroencephalogram 

comparison.  

There are a number of ways to speed up the Dynamic Time Warping procedure, however, they either do not guarantee the 

finding of the optimal solution [6,11-14], or the performance improvement is provided only in cases, when comparing close or 

sparse signals [15,16]. But such situations are rare in the analysis of electroencephalograms. The use of modern parallel 

computing technologies is a fundamentally different direction for increasing productivity of signals comparison. However, the 

implementation of known parallel versions of DTW procedure (as well as similar tasks with cycles having diagonal 

dependencies) do not give the desired effect due to the need for frequent synchronization of processes or threads, and in some 

cases may even lead to an increase in the operating time compared to the serial version because of less efficient work with the 

cache memory [17-21]. 

In this paper, we propose a parallel algorithm that significantly improves the performance of calculating the matrix of pairwise 

comparisons for any signals representing fragments of an electroencephalogram. Increase in productivity is performed without 

loss of accuracy of calculations due to taking into account the features of the task, allowing to implement parallelization at a 

higher level. 

The proposed algorithm is implemented in C ++ programming language using the MPI technology [21] and tested using the 

resources of the supercomputer complex of Moscow State University “Lomonosov” [23]. The results of the research on real data 

showed that the proposed method allows to achieve near-linear acceleration, and to reduce the total calculation time from 29 

days to 3.5 hours using 128 processes, which opens the possibility of improving the quality of automatic analysis of 

electroencephalograms. 
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2. Comparison of fragments of electroencephalograms based on DTW 

2.1. The mathematical formulation of the problem of comparing two signals 

Let 1 2( , ,..., )Nx x x
x

x =  and 1 2( , , ..., )Ny y y=
y

y  - are two single-component discrete signals, which length are Nx and Ny , 

respectively, and which consists of ,i jx y RО , 1,...,i Nx= , 1,...,j N= y elements.  

Specific pairwise warping 

 

of two signals x  and y uniquely determines the correspondence of signal's elements and has a length Nw , equal to the number 

of such pairwise correspondences. At that first and last elements of signals are certainly corresponded to each other: 

1,1 1,2 1,= =w w  ,1N N
w xw = , ,2N N

w yw = .   

A warping of two signals is considered as optimal one if it ensures the minimum value of the following optimality criterion: 

  (1) 

where 

  

 

 

 

0b і  - penalty for non-parallel references between elements of signals, corresponded to local warping axes. 

The optimal value of the criterion can be considered as a dissimilarity of the signals: 

ˆ( , ) ( , , )r J=x y x y w .   

2.2. A sequential algorithm for computing the dissimilarity of two signals 

The minimum of the optimality criterion (1) can be found by means of the dynamic programming procedure [24]. It is 

convenient to represent the algorithm of finding the optimal warping in terms of an oriented graph of pairwise correspondences 

(Figure 3), in which the nodes correspond to the comparison of the signal's elements, the horizontal and vertical edges 

correspond to the local warping of the axes (passing through them is penalized with the positive penalty b ), and the diagonal 

edges - parallel references between signal's elements. 

The algorithm of finding the optimal pairwise warping consists in consecutive passing through all the vertices of the graph, 

beginning with the upper left and ending with the bottom right vertex. An incomplete value of the optimality criterion 𝐽�̅�,1 is 

calculated at each vertex on the basis of the initial parts of the signals 1.. 1( ,..., )i ix xx = , 1.. 1( ,..., )j jy yy = : 

 

The sought value of the dissimilarity of two signals: 𝑟(𝐱, 𝐲) = √𝐽𝑁𝑥𝑁𝑦 . 
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Fig. 3. A graph of pair correspondences of signal samples representing an electroencephalogram. 

2.3. Calculation of the matrix of values of dissimilarity of electroencephalograms 

As already mentioned above, at the stage of learning the computer algorithms for data analysis, it is necessary to calculate the 

matrices of the values of dissimilarity for all pairs of signals representing fragments of electroencephalograms from a certain 

training set 1 2{ , , ..., }KX = x x x .  

The matrix of pairwise dissimilarities calculated in accordance with the algorithm given in Section 2.2 is symmetric and 

contains zero values on the main diagonal, so it is sufficient to calculate only the values belonging to the upper (or lower) 

triangle (Figure 4), the number of which can be determined according to the expression ( )1 / 2K K - . 

 
Fig. 4. Matrix of values of pairwise dissimilarity of signals. 

 

Since the number of computations has a quadratic dependence on the number of signals compared, even for a small volume 

of training set. In this work the training set consists of K = 755 fragments of electroencephalograms (for each electrode) and so 

it is necessary to perform 284635 pairwise comparisons of signals to calculate one matrix. Thus, it is necessary to perform 

56357730 pairwise comparisons of signals to calculate such matrices for all 66 electrodes and for three different values of the 

penalty for warping signal's axes. Since the time of one pairwise comparison requires, on average, 0.045 seconds, the calculation 

of all the matrices takes about 29 days, which makes it impossible to carry out experiments on real data and requires taking 

special measures to improve computing performance. 

3. Parallel comparison of fragments of electroencephalograms 

The task of computing several matrices of pairwise dissimilarity of fragments of electroencephalograms has several levels of 

data parallelism. Independently from each other can be calculated: 

1) the incomplete values of the criterion, located on one minor diagonal of the graph of pairwise correspondences, 

2) all elements belonging to the upper (or lower) triangle of the matrix of values of pairwise dissimilarity (Figure 4), 

3) all matrices of pairwise dissimilarity. 

Parallelization at the first level requires frequent interaction of processes or threads and is associated with the costs of 

synchronization, what can also lead to inefficient use of the cache [17-21] and, accordingly, does not provide the desired 

acceleration of computations. 

Parallelization at the third level obviously makes sense only if the number of matrices that need to be calculated is greater 

than the number of available calculators. It also seems inappropriate, since in this study we focus on the computational 

capabilities provided by the supercomputer complex “Lomonosov” of Moscow State University [23], consisting of more than 

5000 nodes and more than 12000 processor cores. 
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So, in the framework of this paper, parallelization is performed at the second level, i.e. the tasks of calculating the elements 

of a single matrix of pair-wise dissimilarity for a set of signals are identified as parallel tasks. In this case, if it is necessary to 

calculate several matrices, then they are computed sequentially. 

MPI technology [21] has been chosen as a technology for organizing parallel computing, which allows to organize the 

interaction of processes running on different computing nodes. 

In this case, since even for the Lomonosov supercomputer, the number of elements of each calculated matrix turns out to be 

much larger than the number of processors, then the parallel tasks are aggregated by means of a one-time distribution of the 

matrix elements between the processes. 

In this paper the following scheme is used to distribute ( 1) / 2M K K= -  elements between the P  processes: the first 

modM P processes receive the ( mod ) / 1M M P P- +  elements, and the remaining modM M P-  processes receive the 

( mod ) /M M P P- elements, where mod  is the modulo operation which gives the remainder after division of one integer by 

another. 

This scheme allows us to distribute the work between processes as evenly as possible. The one-time even distribution of 

elements between the processes proves to be the most effective in this situation, since all compared signals have the same length 

and, accordingly, the comparison of any pairs of signals takes approximately the same time. As a result,this scheme allows to 

ensure the most efficient use of the resources of the computer system. 

Graphical representation of the scheme of data distribution by processes is shown in Fig. 5.  

 

Fig. 5. Scheme of data distribution by processes for three processes. 

According to the proposed scheme of parallel computing, each process independently of the others: 

1) reads the original signals representing fragments of electroencephalograms from the input file, 

2) determines the number of matrix's elements that it must process and the linear index of the initial element belonging to its 

range, according to the above-mentioned principle of uniform distribution of elements between processes, 

3) calculates the row and column number determining the position of the given element in the matrix from the found linear 

index, 

4) performs a sequential search of the consecutive elements of the matrix belonging to the upper triangle starting from the 

element defined in clause 2, at that performs for each element of its range a comparison of the corresponded signals (according 

to the sequential algorithm described in Section 2.2) and stores the calculated values in their copy of the dissimilarity matrix.  

Calculations continue until the number of elements obtained in step 2 is processed.  

All results are merged on the process with the number 0 using the function MPI_Reduce, after each process computes its 

elements of the dissimilarity matrix.   

4. Experimental study 

Brain electroencephalograms obtained in the course of the study described in [5] have been used to investigate the proposed 

algorithm.  

In total, it is required to calculate three matrices (for different values of the penalty) of a pairwise dissimilarity of 755 signals 

for each of the 66 electrodes. I.e. it is required to calculate 198 matrices. However, the calculation of all matrices of dissimilarity 

takes approximately the same time and in this connection, it is enough to perform testing for one of the matrices. 

The performance study was implemented using the resources of the MSU supercomputer complex “Lomonosov” [23]. 

Testing was conducted for different matrix sizes and different number of processes to identify possible behavioral features of the 

proposed algorithm. The results of time measurements in the calculation of one matrix of pair-wise dissimilarity of signals are 

given in Table 1. 

The acceleration, which was obtained for each case, was calculated as the ratio of the sequential computation time to the 

calculation time on P processes. The results are shown in Table 2. 
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Table 1. Time of calculating the matrices of pairwise comparison of signals for different matrix sizes and different number of processes 

Number of signals Running time of the algorithm (sec) 

Number of processes 

1 2 4 8 16 32 64 128 

10 2,14918 1,12535 0,701826 0,48118 0,21083 0,191736 0,205418 0,353755 

20 9,04609 4,61894 2,38828 1,15214 0,619012 0,381232 0,297953 0,392734 

40 37,1698 18,7533 9,42092 4,82778 2,34974 1,26236 0,822015 0,615929 

100 232,34 117,278 58,3369 29,1305 14,696 7,72897 4,09282 2,46599 

200 943,653 472,307 238,218 117,96 59,0047 30,2108 15,3994 8,34048 

300 2124,3 1083,46 541,713 268,855 133,068 67,1879 34,5807 17,4532 

500 5912,42 3010,1 1498,6 736,2 371,859 185,836 93,3412 49,3313 

755 13675,7 6864,46 3418,42 1700,52 847,277 422,34 212,281 106,928 

Table 2. Acceleration obtained in calculating the matrices of pairwise comparison of signals for different matrix sizes and different number of processes 

Number of 

signals 

Acceleration of the algorithm 

Number of processes 

1 2 4 8 16 32 64 128 

10 1 1,909788 3,062269 4,466478 10,1939 11,20906 10,46247 6,075335 

20 1 1,958477 3,787701 7,851554 14,61376 23,72857 30,3608 23,03363 

40 1 1,98204 3,945453 7,69915 15,81869 29,44469 45,21791 60,34754 

100 1 1,981105 3,982728 7,975833 15,80974 30,06093 56,76771 94,21774 

200 1 1,997965 3,9613 7,999771 15,99284 31,23562 61,27856 113,1413 

300 1 1,960663 3,921449 7,901285 15,96402 31,6173 61,43022 121,7141 

500 1 1,964194 3,945296 8,030997 15,89963 31,81526 63,34202 119,8513 

755 1 1,992247 4,000591 8,042069 16,14077 32,38078 64,42263 127,8963 

Figure 6 shows graphs illustrating the data from Tables 1 and 2. 

 
         a)                                  b)  

Fig. 6. Graphs of a) time dependence and b) acceleration of the algorithm from the number of processes. 

As expected, the acceleration achieved by using the proposed parallel algorithm increases with the size of the calculated 

matrix of signal dissimilarity. And the acceleration is almost linear in the calculation of the total matrix. 

Thus, the proposed approach launched on 128 processes of “Lomonosov” supercomputer complex allowed us to reduce the 

time of calculating one complete matrix of dissimilarity of fragments of electroencephalograms by 127.89 times. The calculation 

time for one matrix was reduced from 3.8 hours to 1.78 minutes, and the total calculation time of all 198 matrices was reduced 

from 29 days to 3.5 hours. 

5. Conclusion 

In this paper, a high-performance algorithm is proposed which calculates the matrix of the dissimilarity of signals 

representing fragments of brain electroencephalograms. The proposed algorithm was implemented in C++ programming 

language with using MPI parallel programming technology. It was tested using the resources of “Lomonosov” supercomputer 



High-Performance Computing / A.I. Makarova , V.V. Sulimova 

3rd International conference “Information Technology and Nanotechnology 2017”      24 

complex at Moscow State University [23]. Experimental studies implemented on real data have shown that the proposed 

algorithm allows to achieve an almost linear speedup and to reduce the total calculation time from 29 days to 3.5 hours by using 

128 processes. And so, it opens the possibility of improving the quality of automatic analysis of electroencephalograms. 
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