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Abstract 

In this paper a viral evolution model with specific immune response is considered. By introducing of dimensionless variables and parameters 

this model can be modified to the singularly perturbed system of partial integro-differential equations with two small parameters. The 

transition from the initial-boundary value problem of the initial system to the generating problem makes it possible to reduce the dimension of 

the system and, as a consequence, to reduce the computational volume. The theorem on the passage to the limit is also represented. 
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1. Introduction 

The presence of several time scales in the models of evolution biology is more a rule than an exception. This is due to the fact 

that an extremely slow biological evolution process proceeds against the background of significantly faster interactions of 

different nature. To model such processes with several time scales, systems of differential equations with a small parameter for a 

part of the derivatives (the so-called singularly perturbed systems of differential equations) are usually used. Numerical analysis 

of such systems involves a large amount of computation due to the presence of variables that vary with significantly different 

velocities. Therefore, it becomes relevant to construct simplified (reduced) models of lower dimensionality, but with a high 

degree of accuracy reflecting the behavior of the original processes.  

One of the reduction methods for singularly perturbed systems are the integral manifold method, developed in [1-3], and the 

passage to the limit to the solution of the degenerate system, used in present paper. In this case, the dimension of the systems 

under consideration is reduced. Below, this approach is used to reduce the dimension in the initial-boundary value problem for a 

system describing the dynamics of populations of healthy and infected cells and cytotoxic T-lymphocytes. 

2. Biological background 

 A virus is a small infectious agent that is basically composed of a coat of protein, which covers a genetic code (DNA or 

RNA). A remarkable feature of viruses is inability to replicate themselves. Thus a virus particle attaches to a host cell and injects 

the genetic material into the cell. Further new virus particles released from the host cell and move around in the infected 

organism and infect new host cells. When a virus is replicated, mutations happen randomly.  A mutant can be seen as a new 

strain of virus, where a viral strain is a genetic variant or subtype of a virus.  

The immune system attacks a virus in order to stop it from growing or to kill it all together. The two main branches of the 

immune system are humoral and cell-mediated responses. The latter is composed of killer T-cells (also called cytotoxic T-

lymphocytes, CTL). Specific immune cells can recognize the physical structure of a pathogen. When discovering the pathogen, 

the immune cells multiply rapidly in order to kill off the pathogen. Killer T-cells fight infected cells. CTL response is generally 

considered to be the most effective response of the immune system. 

3. Model 

Let us consider the model of viral dynamics with specific immune response [4]:  
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Each virus phenotype is described by a set of parameters and all possible values of these parameters form a phenotype space, 

which is assumed to be a one-dimensional and continuous:   ,0s ( s  is a dimensionless quantity). Variables  ,, stv  

,3mmcell  and  ,, stz  ,3mmcell  are the population of infected cells of phenotype s  at a time ,t  ,day  and the population of 

CTL-cells, able to kill infected cells of phenotype s  at a time t , respectively. Uninfected target cells with concentration  ,tu  

,3mmcell  are produced at constant rate ,b   ,3 daymmcell   and have a natural death at a rate ,c  day1 . Uninfected cells 

become infected at a rate ,   dayvirionmm 3 . The quantity      



0

, dsstvstIF   is called the infective force. Infected cells 
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die naturally at a rate ,m  ,1 day  and are eliminated by CTL response at a rate ,   dayvirionmm 3 . The activation term of 

CTL response is assumed to be proportional to  stv ,  with a coefficient ,q  day1 , since the number of infected cells has to be 

different from zero in order to activate the growth of  stz , . After activation of CTL response the activated cells will multiply 

by cloning (the so-called “clonal expansion”). To model this phenomenon, a logistic term is employed. Random mutations are 

described by the dispersion with a coefficient ,  day1 . Since  stv ,  is a distribution, it is natural to assume that   .0, tv

The boundary condition at 0s  is the non-flux condition   00, 



t

t

v
 for convenience. Non-negative initial conditions at 0t  

are   00 uu  ,    svsv 0,0   and   )(,0 0 szsz   (it is assumed that a host is already infected by a virus). 

Without loss of generality, for simplicity, we assume that only   depends on s  and that m ,  , q ,   are constant and have 

common values for all phenotypes. 

Although the model is stated for   ,0s , the parameters s  is usually assumed to belong a finite interval  ,0 , and the 

boundary condition   0, tv  is replaced by the condition   0, 



t

s

v
. 

4. The dimensionless system 

Let us introduce the following notations tTt  , sSs  ,   )(
~
tuUtTu  ,    stvVsStTv ,

~
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~
,  , and assume 

that 12 ST , cbU 
~

,  ZqV
~~

 , pZ 
~

. Then the initial-boundary value problem for model (1) takes the form 
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The parameter T  must be taken so that the inequality 1  holds. For example, 1T , then 1 TS  .  The 

parameter   is proportional to the mutation probability. For HIV   does not exceed day11010 97   , and HIV is known as 

one of the most rapidly mutating RNA-viruses, so that   is substantially smaller for more slowly mutating RNA-viruses (and so 

much the more DNA-viruses). As c , then 1 . Thereby system (2) is a singularly perturbed system with two small 

parameters and as result has three time scales. It should be noted that a system with several time scales was considered in the 

original work [5]. Further to simplify the notation, we omit the bar. 

5. Reduction of dimension 

Setting 0  in (2), we obtain the so-called first-order degenerate system 
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The third equation  is algebraic and has two roots   2411
2,1

vz  . For the first-order associated system 
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where v  enters as a parameter, only one of the roots, namely     2411 vvz  , is the asymptotically stable (in the sense 

of  Lyapunov) stationary point, because   
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041ˆ1ˆ
ˆ

ˆ



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At the initial value of the parameter v , i.e., at  svv 0 , the system (5) with the initial condition   )(,0ˆ 0 szsz   has a unique 

solution  sz ,ˆ   for 0 , and besides     svsz 0,ˆlim 





   ,0s  (see Appendix). Thereby the initial point  sz0  of the 
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first-order associated system (5) belongs to the domain of attraction of the stable stationary point    sv0 . Thus, for sufficiently 

small  , problem (2), (3) has a unique solution and, for some 
1
t , the following limiting equalities hold [6]: 
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where    ,,tu ,   ,,, stv ,   ,,, stz  are the solutions of the system (2) and  ,
0
tu ,  ,,

0
stv  are the solutions of the 

system (4). Note that the third limiting equality holds for 0t , as the solution  vz   of reduced system (4), generally 

speaking, does not satisfy initial condition for this variable in (3). The boundary layer phenomenon occurs. Equation (5) is also 

called the boundary layer equation. Naturally, there is no boundary layer if the initial point falls on the slow surface [7-9]. The 

system (4) has a dimension one less in comparison with (2). 

Let 0 in (4). Then we obtain the second-order degenerate system 
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first equation in which is algebraic with respect to u  and has a root   

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stable (in the sense of  Lyapunov) stationary point of the second-order associated system 
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The latter equation  with the initial condition   00ˆ uu   at the initial value of the parameter  svv 0  has a unique solution 
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where  stv ,
00

 is the solution of the second equation in (7) with boundary and initial conditions for variable v  in (3). The 

passage to the limit for 
0
u  is not carried out at point 0t . As a result, a system of three integro-differential equations reduces 

to one integro-differential equation. The existence and uniqueness of the solution of the initial value problem for integro-

parabolic equation in (7) can be justified with the use of the approach outlined in the monograph [10]. 

6. Admissibility of the passage to the limit 

In work [6] the theorem, that connects the solutions of the singularly perturbed system of partial integro-differential equations 

with one small parameter, is proved. Generalize this theorem to the case of two small parameters. 

Consider the singularly perturbed system of partial integro-differential equations 
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with the initial and boundary conditions 
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where Rvzu ,, , Rt , 1,0    are the small positive parameters. 

We assume that system (10) satisfies the following conditions. 

I. The functions  xuf , ,  vsg , ,  vzh , , and  vzusq ,,, , together with their partial derivatives with respect to all variables, 

are uniformly continuous and bounded in the respective domains  bxau  ,
1

,  cvs  ,0
2

, 

 cvdz  ,
3

,  cvdzaus  ,,,0
4

. 
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II. The equation   0, vzh  has an isolated root  vz   in the domain  cv   and in this domain function  vz   is 

continuously differentiable. 

III. The inequality    0,   vvh
z

 holds for cv  . This condition implies that the stationary point  vz ˆ  of the first-

order associated system 
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which contains v  as a parameter, is Lyapunov asymptotically stable as   uniformly with respect to v , cv  . If 

assumption III is satisfied, then we say for brevity that the zero of the function  v  is stable. 
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for 0 ,  s0 . Further, this solution tends to the stationary point    sv0  as  , i.e. )(0 sz  belongs to the domain of 

attraction of the stable stationary point    sv0 . 

V. The equation   0, xuf  has an isolated root  xu   in the domain  bx   and in this domain function  xu   is 

continuously differentiable. 
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which contains v  as a parameter, is Lyapunov asymptotically stable as   uniformly with respect to v , cv  . If 

assumption VI is satisfied, then we say for brevity that the zero of the function  x  is stable. 
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for 0 . Further, this solution tends to the stationary point       
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has a unique solution  stv , ,       
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Theorem. If conditions I-VII are satisfied, then, for sufficiently small  ,  , problem (10), (11) has a unique solution 

  ,,tu ,   ,,, stz ,   ,,, stv , which is related to the solution  tu ,  stz , ,  stv ,  of the truncated problem (16), (17) by the 

limit formulas 
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Here T  is an arbitrary number such that     
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The proof of this theorem is the same as one in [6].
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7. Conclusion 

In this paper the procedure that the original system of three integro-differential equations reduces to a single integro-

differential equation is given for a viral evolution model with specific immune response. The theorem on the passage to the limit 

is also formulated. The limiting equalities for fast variables whose physical meaning is the concentration of populations of 

healthy cells and killer T-cells are valid only for some segment  T, , 0 , separated from zero. To construct an approximate 

solution in a neighborhood of the point 0t  Tikhonov-Vasil’eva boundary function method [11] can be applied. In the paper 

[12] a model of viral evolution without immune response (but this model is described by a system of the same type which this 

work deals with) was considered.  By the method mentioned above the solutions in powers of small parameters were found. 

 It should be noted that the mathematical models of evolution biology are usually formulated as integro-differential equations 

and PDE. Thus the same concept and the same techniques can be used to a model of evolution based on any other model virus 

dynamics.  
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Appendix 

Let us solve the initial value problem 
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where  sz ,ˆ   is unknown function, functions  sv0 ,  sz0  are given. This equation is the Riccati equation. Performing 

successively in the equation of change of variables   21ˆˆ 0
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ˆ1 zy  , we first bring it to the Bernoulli equation, 

and then to a linear nonhomogeneous equation of the first order 
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