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Abstract 

A new approach for solving ill-posed problems is proposed. The approach makes it possible to effectively calculate normal pseudosolutions 

for ill-conditioned systems of linear algebraic equations and to find an acceptable solution with a minimum filling of sparse matrices. 
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1. Introduction 

Many practical problems of finding solutions based on available data are typical representatives of ill-posed problems. It 

should be noted that such problems have a number of unpleasant properties of manipulating, and for their solution standard 

methods are inapplicable. Thanks to the works of academician A.N. Tikhonov developed a general strategy for constructing 

stable methods for solving ill-posed (unstable problems) in operator form [1]. It is based on the notion of a regularizing operator 

or a regularizing algorithm. Realizing this algorithm, it is necessary to solve the normal regularized systems of linear algebraic 

equations. This system is often ill-conditioned. It is necessary to choose the regularization parameter correctly in order to reduce 

the condition number. It is also important to choose a solution method that is numerically stable. Often ill-posed problems lead 

to systems with large and sparse coefficient matrices, in which most of the elements are zero. 

When storing and manipulating sparse matrices on a computer, it is beneficial and often necessary to use specialized 

algorithms and data structures that take advantage of the sparse structure of the matrix. Operations using standard dense-matrix 

structures and algorithms are slow and inefficient when applied to large sparse matrices as processing and memory are wasted on 

the zeroes. Sparse data is by nature more easily compressed and thus require significantly less storage.  

A serious problem in the storage and processing of sparse matrices is the fill-in. The fill-in of a matrix are those entries 

which change from an initial zero to a non-zero value during the execution of an algorithm. To reduce the memory requirements 

and the number of arithmetic operations used during an algorithm it is useful to minimize the fill-in. 

In this paper we propose an approach using a special form of augmented regularized normal equations. This approach 

allows solve the system of equations for substantially smaller values of the regularization parameter, as well as to reduce the 

error of the solution and reduce the fill-in. 

2. Statement of the Problem 

Consider the system linear algebraic equations 

𝐴𝑥 = 𝑏,                                                                                         (1) 

where 𝐴 ∈ 𝑅𝑛×𝑚, 𝑏 ∈ 𝑅𝑛 . 
The regularized solution of the system (1) is found as 𝑥 = Argmin𝑥∈𝑅𝑚{‖𝐴𝑥 − 𝑏‖2

2 + 𝛼2‖𝑥‖2
2}, which is equivalent to solving 

 the regularized normal system 

(𝐴𝑇𝐴 + 𝛼2𝐸)𝑥 = 𝐴𝑇𝑏,                                                                          (2) 

where 𝛼2 is a regularization parameter. 

The condition number of the system (3) is found as 

𝑐𝑜𝑛𝑑2(𝐴𝑇𝐴 + 𝛼2𝐸) =
𝜎1

2+𝛼2

𝜎𝑚
2 +𝛼2,  

where 𝜎1 ≥ 𝜎1 ≥ ⋯ ≥ 𝜎𝑚 are the singular values of A.  

Since the matrix of the system is symmetric, then in the case of well conditionality, it is solved by the Cholesky method. 

System (2) is often ill-conditioned, then methods based on orthogonal transformations are applied, but they lead to a significant 

increase in the number of the arithmetic operations. Therefore, instead of system (2), we propose to consider an approach based 

on an augmented regularized system of equations.  

3. The Method of Augmented Regularized Normal Equations with Pivoting 

Instead of system (3), it is proposed to consider the equivalent system of algebraic equations [2]: 

(
𝐸 𝐴

𝐴𝑇 −𝛼2𝐸
) (

𝑟
𝑥

) = (
𝑏
 0 

)                                                                                     (3) 

where 𝑟 = 𝑏 − 𝐴𝑥 is the residual vector. 

The condition number of the system matrix (3) is slightly less than the condition number of the normal system equations 

matrix (2). Therefore, in order to reduce the condition number, the parameter 𝛽 > 0 is introduced into the system (3): 
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(
𝛽𝐸 𝐴

𝐴𝑇 −
𝛼2𝐸

𝛽

) (
𝑟

𝛽

𝑥
) = (

𝑏
 0 

) ↔ С(𝛽) = 𝑑.                                                                        (4) 

A regularized normal system is equivalent to a regularized augmented system. The minimum of the condition number of 

the matrix (4) is attained for 𝛽∗ = √𝜎𝑚
2

2
+ 𝛼2, where 𝜎𝑚 is the minimal singular number of the matrix A.  

When choosing 𝛽∗∗ = √𝛼2the spectral condition number of the system matrix (4) will be √
𝜎1

2+𝛼2

𝛼2 . Thus, this approach 

make it possible to increase the numerical stability of the problem and to reduce errors in solving of the equations system (1).  

The augmented system of equations modification leads to an increase in the dimension of the original problem. Using 

known methods to solve it leads to computational difficulties. Therefore, it is proposed to consider the modification of the 

direct projection method [4, 6] with the pivoting, which allows to reduce the number of arithmetic operations to obtain the 

augmented system of equations solution. 

Due to the special structure of the linear algebraic equations augmented system matrix and direct projection method 

vectors in the augmented system, from 𝑝 = 𝑛 + 𝑚 equations n are solved analytically. This means that it is possible to calculate 

in advance the values of the first n vectors and indicate the vectors structure in the next steps of the algorithm. 

For sparse systems, in order to reduce the fill-in, it is proposed to apply the Markowitz strategy in the direct projection 

method.[3] 

Let the k-th step of the direct projection method be performed. The number 𝑟(𝑖, 𝑘) denotes the number of non-zero 

entries in the i-th row of the active submatrix С𝑘and 𝑠(𝑗, 𝑘) is the number of non-zero elements in the j-th column of С𝑘.The 

Markowitz count of an entry с𝑖𝑗
(𝑘)

is a value 

𝑀𝑖𝑗𝑘 = (𝑟(𝑖, 𝑘) − 1)(𝑠(𝑗, 𝑘) − 1), (𝑖, 𝑗 = 1 … 𝑘). 

The count 𝑀𝑖𝑗𝑘 is equal to the number of elements that change the value at the transition to the next elimination step, if 

the entry с𝑖𝑗
(𝑘)

 is chosen as the pivot one, it is the upper border for the fill-in that occurs when с𝑖𝑗
(𝑘)

 is selected.  

Let 

𝑀𝑘 = min{𝑀𝑖𝑗𝑘| 𝑖, 𝑗 = 𝑘 … 𝑛}. 

The Markowitz strategy is that at each step k, the entry with the Markowitz count 𝑀𝑘 is taken as the pivot.  

This does not necessarily mean that the fill-in minimum at the k-th step will be obtained; however, finding Markowitz 

count is much easier than calculating the value of the fill for each entry С𝑘. 

To ensure numerical stability, we will choose the elements of the active submatrix for the role of the pivot, satisfying the 

condition 

|с𝑖𝑗
(𝑘)

|𝑢 ≥ max
𝑘≤𝑥≤𝑚,𝑘≤𝑦≤𝑛

|с𝑥𝑦
(𝑘)

|, 

where it is recommended to select the parameter u> 1.  

Table 1 lists the matrices from the Harwell-Boeing Collection with their characteristics: the size, the number of non-zero 

elements, and the condition number. [5] 

Table 1 . The tested matrices characteristics. 

Matrix Size Non-zeros Condition number 

ash958 958 × 292 1916 2,1903E+6 

flower_8_1 628 × 513 1538 7,0295E+15 

ch7-8-b1 1176 × 56 2352 4,7861E+14 

mk11-b1 990 × 55 1980 9,8787E+7 

well1033 1033 × 320 4732 1,6613E+2 

photogrammetry 1388 × 390 11816 4.3591E+08 

ash608 608 × 188 1216 1,7661E+6 

We give the system of equations solution (1) using the ill-conditioned matrix photogrammetry. The results of the 

numerical experiment are shown in Table 2. 

Table 2.  The results for photogrammetry matrix. 

Method Matrix Pivoting Relative error Time, c 

Cholesky factorisation 𝐴𝑇𝐴 - 2.8400E-8 20.1600 

Direct projection 

method 
C 

row 3.7416E-11 42.3949 

Markowitz strategy 3.4203E-12 50.0140 

QR factorization 𝐴 - 4.6837E-12 78.6559 

From Table 2 we see that the direct projection method for the augmented system with pivoting and the use of the 

Markowitz strategy yields exactly the same results as the QR method, but requires less execution time. 
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4. Conclusion  

A new approach to solving ill-posed problems is considered. This approach makes it possible to effectively calculate 

normal pseudosolutions of ill-conditioned  linear equations systems and to find an acceptable solution in accuracy. Its 

modification for this problem, taking into account the sparseness of the augmented system, allows to significantly reduce the 

number of steps of the algorithm, as well as to reduce the amount of random-access memory and arithmetic operations. The 

Markowitz strategy in this modification allows to reduce the fill-in of a sparse matrix. This fact significantly simplifies the 

problem solving and reduces the time for calculation, which is a rather significant advantage. 
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