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Abstract 

A calculation of the electrostatic field distribution in the electrode system of a high-voltage gas-discharge device is made. The application of 

the conformal mapping method in order to obtain an analytical description of the of equipotentials and field lines distribution is described. The 

figures of the electrostatic field distribution are calculated, which made it possible to determine their relationship with the cathode-anode 

distance, the voltage at the electrodes and the hole diameter in the anode of the gas discharge device. The electrostatic field distribution of the 

device forming the off-electrode plasma is analyzed. 
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1. Introduction 

The off-electrode gas-discharge plasma formed by a high-voltage gas discharge is used for plasmachemical etching of quartz, 

for preparing Ohmic contacts of semiconductor elements, cleaning the surfaces of semiconductor and dielectric substrates, 

contacts of small-size relays [1-4]. The high uniformity of the charged particles flow in the region of the gas discharge cross 

section and the independence of the discharge parameters from the dimensions of the treated area [5, 6] causes the wide 

propagation of this discharge. These advantages are a consequence of the singularity of the lines of the force and equipotentials 

distribution of the off-electrode plasma generator [7-9]. In turn, of the electrostatic field distribution depending on the design 

parameters determines the physics of the charged particles interaction processes with atoms and molecules of the residual gas. 

Existing publications contain no information on the relationship between such parameters and the electrostatic field distribution. 

Due with the laboriousness of the experimental study of this problem the computational model is proposed for the field 

distribution in the electrode system of a gas-discharge device. 

2. Calculation of electrostatic field distribution of the off-electrode plasma generator 

A high-voltage gas discharge is formed only in the area of the anode hole [8]. Outside this area, the electrode system design 

is a flat capacitor with uniform field distribution. Therefore, the design of a gas discharge device can be modeled by a electrode 

system in which the cathode and anode area outside of the electric field inhomogeneity are removed to infinity (fig. 1).  

 
Fig.1. Schematic diagram of a device forming a high-voltage gas discharge: h is the anode–cathode distance, D is the radius of the anode orifice, V is the anode 

potential, 0 is the cathode potential. 

Obtaining an analytical description of the distribution of the electrostatic field in the hole area in the anode is hampered 

because field unevenness. To simplify such a problem, it is necessary to reduce it to the solution of the two-dimensional task, 

which will make it possible to simplify considerably the calculation of field lines and equipotentials by finding the complex 

potential for the canonical domain with a simple form of boundaries [10, 11]. Since the thickness of the anode has a value in the 

range of up to 0.5 mm, its influence on the formation of the electrostatic field is insignificant, because this thickness is smaller 

than the cathode-anode distance (h to 10 mm). Therefore, this quantity can be neglected. 

The symmetry principle of the conformal mapping method allows us to consider only the right part of the obtained electrode 

system for the solution of the posed task by realizing the projection of the electrodes on the complex plane Z. This projection is 

shown in Fig. 2 (polygon) А1А2А3А4. 

Simulation of the electrostatic field begins with finding the conformal mapping )(fZ   of the upper half-plane Im > 0 

to the region of the Z field with the electrodes 21AA  
(cathode), 43AA (anode)

 
(fig. 2) with internal angles  k  at the vertices.

 

Then an additional mapping )( f
 
of the half-plane  onto a strip

 V Im0  with internal angles  k  
at the vertices 

(fig. 3). 
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Fig.2. Diagram of the half-plane mapping onto plane (the electrode system). 

 
Fig.3. Diagram of the additional mapping of the half-plane Im > 0 onto the strip V Im0 .  

At the first stage, the vertices
 4321 AAAA  of the Z-plane are associated with certain points of the real axis of the plane . 

According to the theorem of uniqueness of a conformal mapping for a present correspondence of three arbitrarily chosen 

boundary points, for example, 0, 1, ∞, we can obtain the correspondence [11]:   

2

4321

10 a

AAAA

.

 

According to the technique developed in [10-12], the angles μk are determined, which complement the internal angles αk at 

the vertices of the quadrangle 4321 AAAA  to π. Considering the inner region of a quadrilateral and moving in the positive 

direction of traversing its boundary, i.e. counterclockwise, we find the angles: 2/11   )2/11( 11   ;
 

12   

);01( 22  
 13   )21( 33   ; 2/34   )2/11( 44   .  

To find the mapping function of a domain bounded by a polygon
 4321 AAAA

 
the Schwarz-Christoffel integral [11] is used: 
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In the expression (1) instead of а1 – an we substitute the corresponding points 0, 1, а
2
, ∞. According to [10], the factor related 

to the vertex а4 in the Schwarz-Christoffel integral is omitted, since а4 = ∞. 

In this case, the expression (1) has the form: 
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The value of the constant coefficient 1C
 
is determined from the correspondence of the points 1A ↔ 0, which allows us to 

write the equation: 
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The transition from the lower electrode to the upper one, corresponding to the transition of the ray А1А2 to the ray А2А3 (fig. 

2), allows us to determine the constants a
2
 and C. As a result, the function receives an increment: 

.ihZ                             (3) 
In addition, with such a small increment Δω, the increment of the first term in (2) is also small because of the continuity of 

this term at ω = 1. Taking into account that the argument varies from π to 0 as we go around the point ω = 1, the increment of 

the second term has the form: 

.)ln()ln(
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This allows us to write the expression: 
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Equating (3) and (4), we obtain: 

  .12 iaСih   

Thus, the change of the coefficient value 
2a can be described by the equation: 
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The correspondence of the points 
2a  and А3 makes it possible to transform expression (2) to the form: 
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Whence we obtain the following equality: 
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(6) 

Given specific values of D = 0.9 mm, h = 1.2 mm, we can obtain a solution of the transcendental equation (6) and find the 

value of the constant 179.42 a . Substituting it in (5), we obtain
 

24.0С  mm. 

As a result, the function realizing the conformal mapping of the half-plane ω onto the plane Z has the form: 
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Thus, expressions (5), (6) allow us to find a constant C whose value depends on the design parameters D and h. 

At the second stage, an additional mapping of the half-plane Im > 0 is applied to the strip V Im0  with cuts along the 

corresponding rays (fig. 3). In this case we have a capacitor with infinite plates in the plane  . 

Considering only the right triangle with vertices В1В2В3 because of the electrode design symmetry, we put the points 0, 1, ∞ 

lying on the real axis ω in correspondence to these vertices [11]: 
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The inner angles 

k  
at the vertices of the triangle В1В2В3 and the angles '

k , that complement the angles 
k  to π, are defined 

similarly to αk, µk,: 1'
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The obtained values ,2/1,0,2/1 321    ensure equality
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i , which confirms the correctness of the sought 

angles values according to [11]. 

An additional conformal mapping is also determined by the Schwarz-Christoffel integral [10]: 
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The introduction of the new variable ω=u

2
 allows us to obtain the solution of the given integral:  
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From the correspondence of the points B1↔ 0 according to the technique outlined above, there is a constant С3.  
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The constant С2 is defined similarly to the constant C in the first stage, namely, by traversal of the point ω = 1, we get the 

increment 

.iV  

Since the increment of the argument changes from π to 0 upon traversal of the above point, the increment of function ξ 

corresponds to the expression: 
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which allows us to obtain equality: 
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Solving this equality, we define
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The final function conformally mapping the half-plane  to the strip V Im0  has the form:  
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Using (7) and (9), we obtain a system of equations: 
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From (10) we find  
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(11) 

By separating the real and imaginary parts of equation (11), the parametric equations of lines of equal potential and field lines 

of force are found. After separation, we obtain a system of equations describing the coordinates of the electric field distribution 

in the electrode system of a gas-discharge device: 
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(12) 

Substituting the parameters h, V, D into the expressions (5), (6) and system (12) and changing the values of the variables v 

and u with the necessary step, we can determine the number of the field lines and equipotential distribution (fig.4 and fig.5).  

Changing the voltage at the electrodes does not lead to a change in the field configuration, but it affects the energy of charged 

particles. Thus, the equations system (12) allows to obtain the electrode system configuration to form the required electric field 

by varying the parameters h, V, D. 
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Fig.4. Field lines and equipotentials distribution in the electrode system of the gas-discharge device obtained by the equations system (12): a – h = 2.7 mm,  

D = 1 mm, V = 1200 V; b – h = 2.7 mm, D = 3 mm, V = 1200 V; c – h = 2.7 mm, D = 5 mm, V = 1200 V. 

3. Analysis of the field lines and equipotentials distribution 

The initial coordinate (x = x0, y = y0 = 0) of the rectilinear segment of the field line can be determined with the aid of the 

system (12), giving the values u = u0 and v0 = 0. Then, searching further all the values of v = v1-vn for which the coordinate x = x0 

is constant, and the y varies in the limits y1-yn. Further on, comparing the obtained maximum value of yn with the mean free path 

of the electron kλе (k = 1,2,3) and the potential at the given point with the ionization energy of the working gas atom (molecule) 

Ei, we verify the fulfillment of the condition for the emergence of an high-voltage discharge γQ ≥ 1 [ 8] is, where γ is the number 

of electrons knocked by one ion from the cathode (γ-process), Q is the number of positive ions formed by the electron on the 

trajectory of its motion due to inelastic collisions with atoms and molecules of the working gas (α-process). The energy 

c 

a 

b 
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accumulated by the electron on the mean free path must be higher than the ionization energy of the working gas atom, and the 

energy of the positive ion bombarding the cathode must be sufficient for the emission of electrons necessary for sustaining the 

self-dependent discharge. Analogously, changing the values u = u1-un for v0 = 0, the corresponding x = x1-xn are determined. 

Further on, searching further values of v = v1-vn for each x, we find y = y1-yn = 0-kλе. In other words, by repeating the 

comparison process, we can find all field lines with initial coordinates 
e

xx ,...,0
, on the rectilinear segments of which the 

ionization process takes place (α-process), and, accordingly, the length of the cathode region
e
xx 2  where the electron 

emission from the cathode (γ-process) takes place [13].  

 

 
Fig.5. Field lines and equipotentials distribution in the electrode system of the gas-discharge device obtained by the equations system (12): a – h = 1 mm,  

D = 3 mm, V = 1200 V; b – h = 2.7 mm, D = 3 mm, V = 1200 V; c – h = 4 mm, D = 3 mm, V = 1200 V. 

a 

b 

c 
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In order to compare the maximum values of yn with kλe, it is necessary to find the mean free path of an electron. Using the 

expression λe = 1/(Ni) [14], we obtain the value 0.203 cm, which makes it possible to determine  318x  μm. The 

calculated value of x  correlated well with the experimental data of [9], namely, the size of the region on the cathode surface 

with intense sputtering by positive ions is 300 μm (fig. 6). 

 
Fig 6. The profile of the etching pit on the surface of the cathode formed by positive ions. 

This value is comparable with the size of the region x  on which the rectilinear segments of field lines correspond to the value 

kλе and the condition for the emergence of an high-voltage discharge is observed. 

4. Conclusions 

The parametric equations system presented in this paper makes it possible to simulate the of the field lines and equipotentials 

distribution in the electrode system of the off-electrode plasma generator and to monitor the dependence of this distribution on 

the design parameters of the system: the anode-cathode distance, the hole diameter in the anode, and also on the applied voltage 

at the electrodes. In addition, estimates are made in this paper: the length of the rectilinear segments of the field lines on which 

the condition is satisfied, the size of the cathode spot x  within which the γ process is realized. The discrepancy between the 

calculated value and the experimental value does not exceed 6%, which indicates that the model corresponds to the actual 

physical processes occurring in the electrode system of a high-voltage gas discharge. Therefore, it becomes possible to optimize 

the devices design forming the off-electrode plasma without costly experimental investigations. 
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