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Abstract 

The paper considers the problem of online monitoring the condition of cutting tools to avoid its unexpected failure. To approach this problem 

we proposed a model of milling process based on Morlet decomposition of vibroacoustic signals. In addition, using the wavelets scalogram, 

we imposed a new condition that helps to improve early wear detection of the cutting tool. The findings of this research reveal the advantages 

of the proposed model compared to the previously reported models that rely on Haar wavelets and Short-time Fourier transform.  
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1. Introduction 

The increasing demands for the characteristics of modern gas turbine engines make it necessary to improve the accuracy and 

reliability of their manufacture. This improvement permits to increase the durability of critically important components such as 

rotating turbine discs. The processing characteristics sharply deteriorate at high mechanical strength at high temperatures as well 

as low thermal conductivity of Ti / Ni-based alloys [1-5]. Cutting off parts from nickel-base heat-resistant alloys (for example, 

Inconel 718, Udimed 720) leads to both a rapid wear of the cutting tool and tool surface [1, 11-16], which can be generally 

called surface anomalies. These surface anomalies are the result of the bad processing characteristics of nickel-base alloys and 

the trend of rapid tool wear at cutting regardless of the types of machining operations [11, 12, 14-22]. Aircraft engine 

manufacturers are developing a monitoring system to detect anomalies in the processing and to react against it [34]. 

The procedure behind most monitoring systems consists of the following steps. First, it is a need to measure parameters 

second, these parameters need to be analyzed by means of specific methods such as wavelet decomposition, Shot-time Fourier 

transform (STFT) and etc. One of the efficient methods of spectral analysis is the wavelet transformation (decomposition), the 

advantage of which is the possibility to analyze non-stationary signals. The wavelets frequently used in practice are described in 

[8, 34, 37]. 

The main purpose of this study is to develop a model of milling process based on Morlet decomposition of vibroacoustic 

signals and, thus, to propose tool wear condition. This condition is of use in solving the problem of identifying both non-

stationary modes and early tool wear. 

2. Problem statement 

STFT assumes the stationarity of signals during a given time interval [19-22]. It can be expressed by 
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where  tf  is a given signal,  th  is a Hanning window [28],  is a time delay. 

The main drawback of STFT is the assumption of stationarity (permanence) of the signal on the time interval of the window. 

This issue increase errors in the analysis for such dynamic processes as milling process. 

Wigner [29, 30] and later Cohen [21] improved the classical Fourier transform (Т-F). Results of the Wigner distribution can 

comprise a cross-interference, because of signal is multicomponent. 

Cohen [21] introduced the general class of distribution function in Т-F as 
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where  mf * is the complex conjugate value,   ,  is a kernel function,  is a distribution parameter (in frequency domain). 

Choi and Williams [31] made an improvement on Wigner distribution (WD). The Choi-Williams distribution (CWD) is 
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If   is large, CWD approaches to “plan” Wigner distribution. As   reduces, cross interference decreases [32]. 

Zhao–Atlas–Marks distribution (ZAMD) [33] reduces the cross interference comprised in multicomponent signals. ZAMD is 

useful in modeling of small spectral peaks and analyze non-stationary multicomponent signals [32]. ZAMD has a kernel 

represented by (4), q  is permanent. 
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As a result, power spectral density is defined by 
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Formant analysis [33] is used to analyze a vibroacoustic signals because these signals have multi-frequency components 

connected with different anomalies while cutting [35, 6]. 

The efficiency of time-frequency methods is presented in Fig. 1 [7]. 

 
Fig. 1. Comparative efficiency of the STFT, CWD, ZAMD methods and formant-analysis [31]. 

One of the first and simplest wavelets is the discreet Haar wavelet: 
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The informative parameter characterizing the cutting tool (CT) wear is the dispersion of the detail coefficients of the Haar 

wavelet decomposition of AE signal. This parameter is insensitive to changes in processing modes [31]. The minimum duration 

of the analyzed sample is 0.1 s. Wear identification of cutting tool is carried out according to the energy value of the j-th detail 

factors. For Haar wavelet decomposition, it is advisable to take 3 <j <6. The forecast of CT wear in real time is in correction of 

the base model estimation from the results of current measurements of the AE signal parameters by an additive component 

obtained on the basis of extrapolation of the residual function. The study [35] proposes the adaptation of the suggested method 

for molding conditions by automatic window selection of a fragment of the AE signal which falls on the cutter tooth. 

The main drawback of the Haar wavelet is the asymmetric and non-smooth, consequently, an infinite alternation of "petals" 

arises in the frequency domain due to sharp boundaries in the time domain. The complex Morlet wavelet does not suffer from 

these drawbacks. 

3. A model of milling process based on Morlet wavelets decomposition of vibroacoustic signals 

Wavelet transformation coefficients can be defined as [10, 36, 37]: 
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where  tf  is a random process,  t is a chosen wavelet, 0a is a scale parameter, 0b is a shift parameter. 

Morlet wavelet is given by 
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where j is the imaginary unit, parameter 2k  [37] controls the time-frequency resolution. 

The graphical results of wavelet transformation can be calculated by 
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where 1,,0  aNi , 1,,0  bNj , aN  is a counting scale, bN  is a counting shift. 

The scalogramms are obtained from (9) as 
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We propose to use the equation (11) to calculate area under curve of scalogramms: 
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where   is a frequency of quantization interval, y is a scalogramm, N is a counting rate of scalogramms. 

We use a new identification criterion (12) to analyze processing parameters. This criterion is a cross-factor 
CF  of the 

spectral energy density in the frequency bands  max  of every local maximum of scalogramms. We built the 

scalogramms in the frequency intervals  . 
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To identify wear the following equations were considered: 
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where 0t  is the time of tool work without wear out, dt  is the time of tool work with wear out. 

In accordance with equations (11-13), the calculation of the wear identification coefficient can be made by: 
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4. Results 

4.1. Experiments design 

The phenomena explained by the dislocation theory, of deformation distortions of the crystal lattice, friction, the formation 

and extension of cracks, phase transformations leads to AE. In metal cutting, the processes arised at an interaction between the 

part and tool are the most important sources of AE [23]. 

We register acoustic emission and power cutting of milling by the lateral and end surfaces of the milling tool. The main 

system element for measuring power cutting is the piezo-multicomponent dynamometer Kistler – Type 9257B (Switzerland) 

This dynamometer was installed at the base of the machining center Micron UCP 800. We use the LTR22 analog to frequency 

converter to record vibroacoustic signals with the microphone sensor (OCTAFON-110). 

The connection scheme of the experimental setup for data collection is shown in Fig. 3. 

 
Fig. 2. Scheme of AE parameter measurement: 1 - sample, 2 – milling cutter, 3 – microphone- vibration meter, 4 – PC with software ПК, 5 – crane system 

LTR22, 6 – dynamometric table built up on the machine platen. 

We used the four-tooth carbide monolithic milling tool by Seco JHP 780120E2R15Q0Z4-M64 with a diameter of 12 mm. In 

the experiments, we used new milling tools and tools with worn teeth, Fig. 4. 

 
Fig. 3. Milling cutters for carrying out the research. 
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The machining process with variable allowance was simulated to analyze the influence of the cutting depth on the acoustic 

emission parameters and the stability of the wear identification technique. The processed sample of steel 45 was a blank part 

with a stepwise increase in allowance during milling (Fig. 4). A special groove on the surface of the blank part is designed to 

simulate intermittent cutting. 

 
Fig. 4. Experimental sample. 

The cutting conditions for the experiments are given in Table 1. 

Table 1. Technological cutting parameters for material Steel 45. 

Cutting speed 50 m/min 

№ exp. F, mm/tooth Ap, mm Aе, mm 

1 

0,05 2 

0,2 

2 0,3 

3 0,4 

4.2. Experiment results 

а) c)  

b) d)  

e) f)  

Fig.5. Wavelet spectrum of analyzed signals. 
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We use six different AE signals to analyze the cutting process with a multi-tooth tool. The signals denoted by the numbers 1, 

2, 3 and 28, 29, 30 correspond to the regimes of Table 1 and are obtained by examining the new tool (a, b, c) and the worn tool 

(r, d, e). Fig. 5 shows the wavelet spectrum calculated by (9), where the X-axis of the wavelet spectrum graph represents the 

time in seconds, and the Y-axis represents the frequency in rad/s. The larger the value of the spectrum is, the lighter the pattern 

is. 

Fig. 6 shows the scalogramms of the analyzed signals, which were obtained on the basis of the wavelet spectrum by (10). 

 
Fig.6. Scalogramms of analyzed signals. 

The blue color shows the scalogramms of the signals corresponding to the state of the new tool, and the red one shows the 

worn tool. 

The analysis of scalogramm of acoustic signal shows that it is possible to distinguish 3 characteristic maxima localized in the 

following frequency bands (in rad/s): 750550  low , 15001200  mid , 21001950  hi . 

The values of local maximum were calculated by (11). Results are shown in Table 2. 

Table 2. The area of local maximum of scalogramms. 

Frequency bands of local 

maximum max , rad/s 

 0max
ts  - new tool  dts

max - worn tool 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

550-750 0,06213 0,0823 0,13359 0,17766 0,62313 0,44226 

1200-1500 0,44037 0,31129 0,54264 0,32205 0,09416 0,44105 

1950-2100 0,10634 0,09448 0,12908 0,31057 0,09919 0,351 

Total area of 

scalogramms s  
0,62765 0,65945 0,77467 0,88101 0,80046 1,32121 

The wear coefficient 
maxk  for 3 modes are given in table 3. 

Table 3. Wear coefficient values. 

Frequency bands of local 

maximum, rad/s 
Mode 1 Mode 2 Mode 3 

low  550-750 0,491 0,160 0,515 

mid  1200-1500 1,919 4,013 1,626 

hi  1950-2100 0,481 1,156 0,486 

The results of analysis are presented in Table 3. These results make it possible to see the characteristic feature: in the low-

frequency region (550-750 rad/s), as the tool wear, 
maxk  decreases, and in the area of conditionally medium frequencies region 

(1200-1500 rad/s) – increases. 

The revealed regularity helps to formulate the condition for the appearance of a critical wear value when machining with a 

multi-tooth tool: 
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where midlow kk ,  are the limit values of the wear identification coefficient for the low and medium frequency range, respectively.  

In other words, as the cutting tool wear, the spectral density of the energy of the Morlet wavelet image in the low-frequency 

region low  increases (
maxk  decreases), and in the medium frequencies region mid  decreases (

maxk  increases).  

5. Conclusion  

A model of milling process based on Morlet decomposition of vibroacoustic signals were proposed. Analyzing of the wavelet 

scalogramms of the signal at various processing modes, we received stable frequency bands of local maxima: 550-750 rad/s, 
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1200-1500 rad/s and 1950-2100 rad/s. Authors obtained trends to change the spectral energy density at the tool wear for the first 

and second frequency bands. The cross-factor 
maxCF  can serve a numerical characteristic of change of this trend. The cross-

factor determined by the dependence (10) and equal to the ratio of the average spectral density of the signal energy in the 

frequency bands of the local maximum of the scalogramm to the average spectral energy density throughout the frequency 

region of the scalogramm resolution. To identify the wear we proposed a new coefficient 
maxk  that equal to the ratio of the 

cross-factors of acoustic emission signals for a new and wear tool, respectively. The coefficient of the wear identification 

increases where the dimensional wear increases in low-frequency region. These coefficient decreases in medium frequencies 

region. The experimentally determined regularity of the change a new condition that helps to improve early wear detection of 

the cutting tool made it possible to formalize the tool wear model with criterial constraints on the dependence. 
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