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Abstract

The paper describes the construction of the motion and interaction model for agents with memory. Agents move on the landscape

consisting of squares with different passability. We briefly characterize the cellular automata-based model with one common

to all agents layer corresponding to the landscape and many agent-specific layers corresponding to an agent’s memory. Also,

we develop methods for the random landscape generation and the simulation of a communication system. Finally, we study a

connection between the discrete agent motion model and the continuous concentration law for the system of agents.

Keywords: cellular automaton; motion model; conflict model; agent system; random landscape generation; landscape metrics;

concentration law

1. Introduction and definitions

Previously the author studied cellular automaton-based models of motion [1] and communication [2]. The initial idea of the

proposed model described in the article [3]. In this paper I continue the previous work, propose cellular automaton that takes

into account the history of the movement of agents. Also, I obtain few quantitative characteristics of the model and found the

continuous equation and corresponding problem for the partial differential equation which describes a dependence of the agents’

number in the direction of agents motion on time and position. Note, that an automaton of the type mentioned above can be viewed

as a 0th order reflexive automaton [4].

Give definitions according to the work [5].

Definition 1. Let us call landscape Ll(n × m) rectangle from n × m = N cells ωi j, (i, j) ∈ I ⊂ Z
2 with equal size belonging to l

different classes and that to i-th class it belongs Ni cells, i.e.
∑l

i=1 Ni = N.

Note that for landscapes generated for testing of path-finding algorithms, landscape cells will be divided into classes according to

the maximum possible cell-crossing speed.

Definition 2. Configuration entropy of the landscape L = Ll(n × m) is defined as

S (Ll(n × m)) = −
l
∑

i=1

Ni

N
ln

Ni

N

and characterizes landscape heterogeneity in whole.

Definition 3. Total Edge is the total number of abutting edges of cells, belonging to different classes, in L. We will further denote

the Total Edge of the landscape L as T E(L).

Definition 4. Total Edge Density (TED) of the landscape L is the ratio T E(L) to the total cell quantity N in the L

T ED(L) = T E(L)/N.

Definition 5. Denote Euclidean distance between x = (x1, . . . , xn), y = (y1, . . . , yn), x, y ∈ Rn as

‖x − y‖ =
( n
∑

i=1

|xi − yi|2
)1/2

.

2. Description of the automaton

Let the Ag = {ag1, . . . , agk} is the system of agents, which move across the landscape Ll(n × m), and initial and final cells of

the landscape are specified for each agent. The idea of the article is that in the model in addition to the total for all agents “layer”

corresponding to objective reality, each agent would have been “layer” corresponding to the information about the reality, which

is known to this agent.

The behavior of the agents of the system is modeled by a cellular automaton in which the set of cells is World = {(i, j, id)|i, j ∈
Z, id = 0, k} ⊂ Z

3. In the set World we will allocate k + 1 cell planes: a layer of the objective reality OWorld = {(i, j, 0)|i, j ∈ Z},
and the layers of subjective reality of agent with identifier ag = 1, k S Worldag = {(i, j, ag)|i, j ∈ Z}. In this way,

World = OWorld ∪
( k
⋃

ag=1

S Worldag

)

.

We assume that the rectangle K ⊂ World, K = {(i, j, id)|i = 0, LK , j = 0, LK , id = 0, k} is selected and all cells are in the resting

state outside of it.
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Fig. 1. The sample of the cellular automaton.

2.1. Objective reality

Let the objective reality layer OWorld consists of cells (i, j) ∈ Z
2 with different impassability ui j. The value of ui j is the

number of discrete time units which is required to pass the square ωi j with coordinates (i, j). If ωi j is completely impassable then

put ui j = −1. Also cells can include the information about an agent in a cell, the agent’s destination square etc.

2.2. Subjective reality

The subjective reality layer consists of cells (i, j) so that each its cell (i, j) corresponds the cell (i, j) of the objective reality

layer. Cells of the subjective reality layer ag contain the information about the current position of the agent ag, about the history

of the ag motion and about the impassability of known to the agent ag cells.

2.3. The automaton’s functioning

Briefly describe the cellular automaton (CA) functioning. Let us denote

D = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}.

Definition 6. Let us call agent’s cellular route the sequence

M = {(i1, j1), (i2, j2), . . . , (is, js)|(ik, jk) ∈ Z2, k = 1, s, (ik+1 − ik, jk+1 − jk) ∈ D, k = 1, s − 1},

such as the agent in the square ωi1, j1 will be sequentially move into squares ωi2, j2 , . . . , ωis, js
. Denote the set of all cellular routes

starting in the cell with coordinates cA ∈ Z2 and ending in the cell with coordinates cB ∈ Z2 as M (cA; cB).

Let us define a function

θ(x) =















0, x < 0,

1, x ≥ 0.

Introduce the notation:

ψ3(u,Tmax) =















u, u ≥ 0,

Tmax, u < 0.

If cell impassability does not change over time, then it is not necessary to consider the routes containing impassable cells. However,

if the impassable cell can become passable, these routes should be taken into account. To do this, define the functional

T̃h(M) =
∑

(i, j)∈M

‖di j‖ψ3(ui j,Tmax).

We call weight of the route M for the agent ag the following:

Λ(M;α, β, γ, Tmax) = αT̃h(M) + β
∑

(i, j)∈M

θ( fi j) + γ
∑

(i, j)∈M

visi j(ag),

where ui j is the impassability of the square ωi j, visi j is the number of visits of the square ωi j (it is contained in the subjective

reality layer S World(ag)), α, β, γ are parameters.
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The agent in the square ωi j each discrete time tick tries to find locally optimal (in a neighborhood Vo(i, j) with radius o) route

Mo such that Λ(Mo;α, β, γ, Tmax) → min and go through this route. Therefore, the agent’s route at whole constructs from locally

optimal subroutes.

Agent ag can apply previously described approach for route searching in undiscovered by this agent areas, i.e. in consisting

of cells ωi j with visi j(ag) = 0. More standard approaches to optimum route search, for example, Dijkstra’s algorithm, can be used

in areas composed of cells already visited. However, the use of standard methods of searching for an optimal route is limited to a

rate of landscape change over time. It is possible that information about the visited cells become outdated (parameter timei j(ag) is

used for determining the actuality of information), or even impassibility of the cells would change directly during the process of

passing the route selected as the globally optimal.

Thus, depending on the speed of the landscape changes, it is necessary to find a compromise between the approach “Reacting”,

which evaluates the current situation immediately near of the agent and the approach “Planning”, in which searched globally

optimal trajectory. For example, it is pointless to set the radius o of the neighborhood Vo(i, j), in which agent searches locally

optimal route more than the number of ticks during which the landscape has remained unchanged.

The example of the described cellular automaton is depicted on the fig. 1. Increasing of the impassability at the mentioned

figure is indicated with a darker tone, crosses “×” in the layer S World mark already visited cells, marks “?” correspond to cells

whose status is unknown.

3. Function of obstacles

Turn to the continuous formulation of obstacle avoidance problem to construct transfer function for our CA. The agent moves

in the domain Ω with changing over time obstacles from the point A to the point B with route r(t), t ∈ [0,T ] in the shortest time T .

This problem has the form

‖ṙ(t)‖ = v(t, r(t)), (1)

r(0) = A, r(T ) = B, (2)

T → min . (3)

We will call further the function v : [0,T ] × Ω → R as “function of obstacles”. Divide the segment [0,T ] onto the k subsegments

with length τ > 0, domain Ω onto squares ωi j with numbers (i, j) ∈ Z2 and the length of a side h. Approximate at each moment of

time kτ ∈ [0,T ] on the square ωi j function v(kτ, ·) with the constant function vk
i j

(h, τ).

Go to the discrete time for the model simplifying. Let

th =
h

max(i, j)∈Ih,k∈Tτ vk
i j

(h, τ)
.

If relations

ui j(k) =
h

thvk
i j

(h, τ)
=

max(i, j)∈Ih,k∈Tτ vk
i j

(h, τ)

vk
i j

(h, τ)

hold, define that square ωi j on the state in moment kτ ∈ [0,T ] is crossable in non-diagonal direction in ui j(k) ticks.

Moreover, it is possible to go to the integer values of the ui j(k) by discarding the fractional part and taking ũi j(k) = [ui j(k)].

We associate with the agent in the square ωi, j value errci j of the cumulative discrete time error. Also we associate with the square

ωi j error value erri j = {ui j(k)}. When an agent starts to cross the next square ωi′ j′ , the value errci′ j′ increments on the erri′ j′ , sets

errci j = 0 and if errci′ j′ > 1 then agent passes one tick independently from the value of the function of obstacles in the square ωi′ j′

and sets errci′ j′ = errci′ j′ − 1.

Let

T : M (cA; cB)→ R

the functional of time which is required to going through cellular route.

If values of the ui j do not change in a time of the movement from the point A to the point B, then the problem (1)–(3) can be

represented as discrete problem

T (M) = th

∑

(i, j)∈M

‖di j‖ui j → min .

It is clear that possible to minimize functional

Th(M) =
∑

(i, j)∈M

‖di j‖ui j → min

instead functional T .

It is possibly (but not very easy) to prove that the CA mentioned earlier finds the approximation of the solution of the problem

(1)–(3) in some subdomain of theΩ. The sequence of such approximations rh converges to the optimal solution r, and the following

estimate holds:

|r(l(t)) − rh(lh(t))| ≤ (h
√

2 + τ)(e‖∇(t,x,y)v‖C([0,T ]×Ω)K − 1) + h
√

2, (4)
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where l, lh are parameterizations of routes, h is the length of the square ωi j side, τ is the length of the time tick, K > 0 is the

constant depending on a class of routes considered.

Definition 7. Define the obstacle which is exists in the moment t ∈ [0,T ] as simply connected set Obst ⊂ Ω such that any

robst ∈ Obst is the point of a local minimum of the function of obstacles v(t, ·) and exists r0 ∈ Ω such that v(t, r0) > v(t, robst).

4. The model of a communication system and conflict

Definition 8. Let us define communication graph as follows

Γ(t) = (Ag,Comm, ϕ(t),M(t)),

where Comm is the set of channels, ϕ(t) : Ag × Comm → {0, 1} is the incidence function, M(t) : Comm → R
n is the markup

function in the moment of time t ∈ [0,NT ]. The M gives the features vector of the channel comm ∈ Comm. This features can be

channel bandwidth, radio frequency, etc.

Let’s introduce a communication graph connected with the motion model. This means that should be given the function pag :

[0,NT ] × Ag → Z
2 which maps agent’s coordinates to an agent in each moment t ∈ [0,T ]. Also, it means that M(t) and ϕ(t)

depend on properties of cells in which incident agents are currently placed and on properties of cells between of them. Therefore,

connections between agents in the Γ can break and establish depending on the agents’ speed and landscape type.

Suppose that each agent ag ∈ Ag has an own signal exchange timetable. It is possibly also to define specific signals like

“enemy detecting”, “grouping”, etc. We can study various traffic models depending on the agents’ timetables, motion speed, and

the landscape type.

Finally, we can define “requirements graph” Π and state that communication graph Γ(t) should be similar with Π in some

metric each moment of time. Such graph Π can be viewed as a fuzzy set of communication graphs, as an abstract container or as

a generator of the stream of communication graphs.

Also, we developed the conflict model combined with the motion and communication model similar to described in the work

[6] and its computer simulation “Bokohod.” Agents emerge different kinds of tactics and exchange signals without any external

control.

5. Computational experiment

Previously the author had developed the algorithm of the landscape generation with the given configuration entropy. This

algorithm constructs the vector of numbers of cells in each class V = (N1, . . . ,Nl) by the given entropy S as follows:

S t e p 1. Solve the equation

S = −β(1 − βl) − (1 − β)lβl

(1 − β)(1 − βl)
ln β + ln

1 − βl

1 − β ,

S t e p 2. Use the found solution 0 ≤ β ≤ 1 and equation

N1 = N
1 − β
1 − βl

to find N1,

S t e p 3. Compose the vector V0 = (N1, βN1, . . . , β
l−1N1),

S t e p 4. Round the components of the V0 up to integers and obtain the vector V1 in this way. It is necessary to make rounding

such that the sum of all components of V1 would be equal to N.

We generate landscape such as the discrete function of the obstacles u : Z2 → Z would have local maxima strictly in Nobst =

Vl = βl−1N1 cells. The author thinks that this method gives more natural-like landscapes as it makes “generally passable” area

with some hardly passable subareas. As it known from [5] we can make very different landscapes with the same configuration

entropy. By this reason, we will use the special, CA-based way of the filling landscape with cells of different classes. This method

guarantees slow, near linear increasing of the TED at the increasing of the entropy.

Examples of obtained landscapes are shown on the fig. 2, (a,b). Sample dependencies of the configuration entropy, TED, and

Nobst are shown on the fig. 3.

We set l = 9, n = m = 48, o = 6, choose Nobst ∈ {5} ∪ {10i|i = 1, 25} ∪ {255}. Generate landscape for the each Nobst value and

perform the following experiment1. Let an agent moves from the cell ω11 to the cell ωnn 100 times according to the previously

described algorithm. Next, we compute the time which is required for the experiment completion T i
bok

and the time of the moving

from the ω11 to the ωnn by linear straight route T i
tup. Then we calculate the mean value and standard deviation of the win of time

for all of this series:

win =
1

50

50
∑

i=1

T i
tup

T i
bok

.

1The raw data and the data processing program for all experiments are stored at https://www.researchgate.net/publication/316747096_The_

experimental_data_for_group_motion_of_agents_with_memory_with_the_program_in_Wolfram_Language.
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(a) S = 1.6, Nobst = 14 (b) S = 1.8, Nobst = 33 (c) S = 1.84877

Fig. 2. Examples of Landscapes. A darker cell is more impassable.

Fig. 3. Sample dependencies of the configuration entropy, TED and Nobst .

σ =

( 50
∑

i=1

(win −
T i

tup

T i
bok

)2
)1/2

.

It was found that the mean value of the win in transit time win and the configuration entropy of the landscape S are correlated

with a correlation coefficient 0.959556 (see fig. 4). The win and the TED of the landscape are correlated with a correlation

coefficient 0.964763. The orange line in the figure corresponds to the curve y = (S (Nobst) + 1) ln 9; the brown line corresponds to

the curve

y = 0.922178 + 0.539383T ED(Nobst),

where S (Nobst) and T ED(Nobst) are the entropy and the total edge density’s mean value of the landscape with Nobst obstacles.

Vertical bars correspond to the standard deviation of the win of time.

Let’s study the dependence of the average number of agents on time moment and position on a landscape. We generate 150

random landscapes with the given entropy by the algorithm mentioned above. The group formed from u0 = 48 agents moves

from the one side of the squared landscape to the opposite one. Compute dependence of the average (through all landscapes

generated) number of agents u at the xth line of a landscape on the discrete time t, x = 1, xmax, xmax = 48. Thus, we find that

this dependence is determined, mainly, not by the particular kind of landscape, but by the landscape configuration entropy S . We

found the dependence in the form

u(x, t) =
u0

2
( erf (ξ1(S ; x, t)) − erf (ξ2(S ; x, t))), (5)

where

ξ1(S ; x, t) =
a(S ; x)
√

t
+ b1(S ; x),

ξ2(S ; x, t) =
a(S ; x)
√

t
+ sgn (48 − x)b2(S ; x),

Mathematical Modeling / A.V. Kuznetsov

3rd International conference “Information Technology and Nanotechnology 2017” 227



Fig. 4. Win of the time.

sgn (x) =















1, x > 0,

−1, x ≤ 0.

This form of ξ1 and ξ2 parameters was assumed by the analogy with the problem of heat propagation along a rod with a thermal

diffusivity a heated on its segment [l1, l2] to the temperature u0. This problem has (see, for example, [7]) solution

u(x, t) =
u0

2

(

erf

(

x − l1

2a
√

t

)

− erf

(

x − l2

2a
√

t

))

.

Let us assume that

a(S ; x) = a1(S )x + a2(S ),

b1(S ; x) = b11(S )
√

x + b12(S ) +
b13(S )

x3/2
,

b2(S ; x) = b11(S )
√

x + b22(S ).

These functions allow to approximate u = u(x, t) with the coefficient of determination r2 > 0.97, the mean absolute error MAE <

0.1251, and the median absolute error MedAE < 0.04366 with every value of the entropy S . Experimental and approximated

values of u are shown on the fig. 5. For example, when Nobst = 20 (S = 1.67909)

u(x, t) = 24

(

erf

(−2.04693x − 1.03949
√

t
+

4.66438

x3/2
+ 1.08597

√
x + 0.926477

)

−

− erf

(−2.04693x − 1.03949
√

t
+ 1.08597

√
x + sgn (48 − x)0.845118

))

.

Next, we try to find a problem for a partial differential equation which can have a solution in the form (5). Naturally, we can

assume that this equation is

∂u

∂t
= C1

∂2u

∂x2
+C2

∂u

∂x
,

the initial condition is

u(x, 0) = u0δ(x − 1),

δ(x) =















1, x = 0,

0, x , 0,

and the asymptotic condition is

lim
t→∞

(x, t) = u0θ(x − xmax),

θ(x) =















1, x ≥ 0.

0, x < 0,

Let us denote

U1(x, t) = e
−
(

a(S ;x)√
t
+b22(S )+b11(S )

√
x

)2

,

U2(x, t) = e
−
(

a(S ;x)√
t
+b11(S )

√
x+b12(S )+

b13(S )

x3/2

)2

.
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Fig. 5. The dependence of the average number of agents u on the discrete time t, Nobst = 20, x = 2, x = 12, x = 24, x = 36, and x = 48 from the left to right.

Compute from the (5) that when x ∈ (1, xmax)

∂u

∂t
(x, t) =

u0(U1(x, t) − U2(x, t))(a1(S )x + a2(S ))

2
√
πt3

, (6)

∂u

∂x
(x, t) = −

u0

(

x2(U1(x, t) − U2(x, t))

(

2a1(S )
√

x + b11(S )
√

t

)

+ 3b13(S )
√

tU2(x, t)

)

2
√
πtx5

, (7)

∂2u

∂x2
(x, t) =

u0

4
√
πt3/2x13/2

(

b13(S )
√

tU2(x, t)x3
(

4

(

4a1(S )2x2 + 6a1(S )a2(S )x + 7a1(S )b11(S )
√

tx3 + 3a2(S )b11(S )
√

tx

)

+

+ 24a1(S )b12(S )
√

tx + t

(

10b11(S )2x + 12b11(S )b12(S )
√

x + 15

))

+ 8a1(S )2
√

tx13(b22(S )U1(x, t) − b12(S )U2(x, t))−

− 6b13(S )2tU2(x, t)x

(

−a1(S )x3/2 + 3a2(S )
√

x + b11(S )
√

tx + 3b12(S )
√

tx

)

+ 8a1(S )b11(S )tx6(b22(S )U1(x, t) − b12(S )U2(x, t))+

+10a1(S )b11(S )2tU1(x, t)x13/2−10a1(S )b11(S )2tU2(x, t)x13/2+2b22(S )b11(S )2t3/2U1(x, t)x11/2−2b11(S )2b12(S )t3/2U2(x, t)x11/2−

− 18b13(S )3t3/2U2(x, t) + (U1(x, t) − U2(x, t))

(

8a1(S )3x15/2 + 8a1(S )2a2(S )x13/2 + 8a1(S )b11(S )
√

tx6(2a1(S )x + a2(S ))+

+ 2a2(S )b11(S )2tx11/2 + 2b11(S )3t3/2x6 + b11(S )t3/2x5
)

. (8)

Solve (7), (8) with respect to U1, U2. Substitute into (6) values found and obtain

C1(x, t) =
P1(
√

x,
√

t)

Q1(
√

x,
√

t)
, C2(x, t) =

P2(
√

x,
√

t)

Q2(
√

x,
√

t)
,

where

Q1(
√

x,
√

t) = −3b11(S )tx2
(

4a1(S )2x13/2(b12(S )−b22(S ))−2b13(S )x3
(

2a1(S )x(a1(S )x+a2(S ))−2a1(S )
√

tx(b22(S )−2b12(S ))+t

)

+

+ b13(S )2
(

a1(S )
√

tx5 + 3a2(S )
√

tx3 + 3b12(S )tx3/2
)

+ 3b13(S )3t

)

+ a1(S )

(

8a1(S )2
√

tx9(b22(S ) − b12(S ))+

+ b13(S )

(

4a1(S )

(

a1(S )
√

tx15 + 3a2(S )
√

tx13

)

− 12a1(S )tx13/2(b22(S ) − 2b12(S )) + 15t3/2x11/2
)

−

− 6b13(S )2tx4
(

−a1(S )x + 3a2(S ) + 3b12(S )
√

t

)

− 18b13(S )3t3/2x5/2
)

+ 3b11(S )2t3/2x4
(

b13(S )

(

3a1(S )x5/2 + a2(S )x3/2−

− (b22(S ) − 2b12(S ))
√

tx3

)

+ 2a1(S )x4(b22(S ) − b12(S )) − b13(S )2
√

t

)

+ b11(S )3t2x6
(

x3/2(b22(S ) − b12(S )) + 2b13(S )

)

,
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Q2(
√

x,
√

t) = 2
√

t

(

−3b11(S )tx2
(

4a1(S )2x13/2(b12(S ) − b22(S )) − 2b13(S )x3
(

2a1(S )x(a1(S )x + a2(S ))−

− 2a1(S )
√

tx(b22(S ) − 2b12(S )) + t

)

+ b13(S )2
(

a1(S )
√

tx5 + 3a2(S )
√

tx3 + 3b12(S )tx3/2
)

+ 3b13(S )3t

)

+

+ a1(S )

(

8a1(S )2
√

tx9(b22(S ) − b12(S )) + b13(S )

(

4a1(S )

(

a1(S )
√

tx15 + 3a2(S )
√

tx13

)

−

− 12a1(S )tx13/2(b22(S ) − 2b12(S )) + 15t3/2x11/2
)

− 6b13(S )2tx4
(

−a1(S )x + 3a2(S ) + 3b12(S )
√

t

)

− 18b13(S )3t3/2x5/2
)

+

+ 3b11(S )2t3/2x4
(

b13(S )

(

3a1(S )x5/2 + a2(S )x3/2 − (b22(S ) − 2b12(S ))
√

tx3

)

+ 2a1(S )x4(b22(S ) − b12(S )) − b13(S )2
√

t

)

+

+ b11(S )3t2x6
(

x3/2(b22(S ) − b12(S )) + 2b13(S )

))

,

P1(
√

x,
√

t) = −3b13(S )
√

tx13(a1(S )x + a2(S )),

P2(
√

x,
√

t) = x5/2(a1(S )x + a2(S ))

(

−b13(S )

(

4

(

4a1(S )2x5 + 6a1(S )a2(S )x4 + 7a1(S )b11(S )
√

tx9 + 3a2(S )b11(S )
√

tx7

)

+

+24a1(S )b12(S )
√

tx4+tx3
(

10b11(S )2x+12b11(S )b12(S )
√

x+15

))

+6b13(S )2
(

−a1(S )
√

tx5+3a2(S )
√

tx3+b11(S )tx2+3b12(S )tx3/2
)

−

− 2x11/2(b22(S ) − b12(S ))

(

2a1(S )
√

x + b11(S )
√

t

)2

+ 18b13(S )3t

)

.

The form of coefficients a1(S ), a2(S ), b11(S ), b12(S ), b13(S ), b22(S ) depends on the landscape generation way. If we generate

landscape as described before then we can approximate these parameters as follows

a(S ) = α(S )a(20),

b1(S ; x) = β1(S )b1(20; x),

b2(S ; x) = β2(S )b2(20; x),

where

α(S ) = 0.000344002
Nobst(S )

10
+ 1.00018, MAE < 0.001,

β1(S ) = β2(S ) = 1.0582 − 0.0581965

√

Nobst(S )

10
− 1, MAE < 0.005.

Results of such approximation are shown into the fig. 6, x = xmax = 48.

Fig. 6. The dependence u on the entropy S , from the left to the right Nobst = 20, Nobst = 40, Nobst = 60, Nobst = 80, Nobst = 100, Nobst = 120, Nobst = 140.

Note that we obtain different results by different landscape generation procedures. The general form of the function u will be

still described by the (5), but exact values of parameters can be entirely different. For example, it is possible to place squares of

different classes on the uniformly random way (fig. 2c). The comparison of functions u for a uniformly random landscape (right)

and for landscape generated in the previously described way (left) are depicted on the fig. 7.
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Fig. 7. Functions u for differently generated landscapes, x = 26, S = 1.84877.

6. Conclusion

We obtained dependence of the win of movement by the proposed algorithm on the landscape’s configuration entropy for some

types of landscapes. The immediately following result may be a comparison of a model of the conflict based on the proposed

cellular automaton with the result of solution of the corresponding Osipov-Lanchester equations. Also, we compare models of the

“diffusion” of agents into a given sub-area based on the cellular automaton with the solution of the corresponding reaction-diffusion

type equation. Finally, we can simulate the sharing of the subjective reality layers between agents. In this case, one agent will use

the information about the area, received from other agents and will transmit such information to other agents itself. The algorithm

described in the article can be applied to the mobile robot equipped with a transport base, navigation equipment (compass, GPS

receiver, etc.), a sensor allowing to determine the impassibility of the terrain and the deciding unit, including memory.
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