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Abstract

Non-Markovian dynamics of a three-level system is studied with the help of stochastic Schrödinger equation (SSE). We derive a

new form of SSE for a three-level system driven by four independent Ornstein-Uhlenbeck stochastic noises. The main advantage

of the suggested SSE is the ensuring of the complete positivity of the reduced density operator. We demonstrate significant

influence of the non-Markovian noises on the dynamics of the three-level quantum system.
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1. Introduction

Open quantum systems are usually described by the reduced density operator, which satisfies a master equation. All the

master equations can be strictly divided into two classes: Markovian and non-Markovian [1]. The Markovian ones traditionally

represent systems of the first order differential equations with the constant coefficients and they are well studied. In opposite,

non-Markovian master equations forsake many open questions and they are intensively studied during the last several years [2].

Today it is clear that the non-Markovian master equations may be of two types either integro-differential or diferential with

variable coefficients. Both types of the non-Markovian master equations are equivalent and the differential one is used more

often. Unfortunately, the general form of the non-Markovian master equation, which ensures the complete positivity of the

density operator is still unknown.

Another approach to describe dynamics of open quantum systems is to use Stochastic Schrödinger equation (SSE) for the

wave vector driven by the noise [3, 4]. The reduced density operator is recovered by mean of stochastic averaging over many

realizations of such vectors. There is an exact correspondence between Markovian master equations and SSEs. It is obvious that

the dimension of the wave vector is smaller than the dimension of the reduced density operator. This fact open a new possibilities

for investigation of high-dimensional open quantum systems, such as spin chains, photosynthetic reaction centre, etc.

As in the case of non-Markovian master equations, non-Markovian SSEs are also intensively examined. The main attempts

of researchers here are focused on the so called unravelling of the non-Markovian master equations [5], i.e. construction of a

SSE which reproduces all the results given by the master equation. Unravelling is not always possible especially for integro-

differential master equations. On the other hand, one can generalise Markovian SSEs to non-Markovian ones without direct

connection with the master equation formalism. Such an approach has many advantages and one of them is ensuring of the

complete positivity of the reduced density operator.

In this paper we consider the non-Markovian generalization of the SSE for a three-level quantum system. We present results

of the direct simulation of the non-Markovian SSE for this model and discuss the main difference between Markovian and

non-Markovian SSEs.

2. Model

Three level systems can be of three different types Λ, V and cascade. The difference between them is forbidden transitions

between the energy levels. Let us consider the three-level system of V -types for concreteness. The Hamiltonian of the V system

in the photonic thermostat is [6] (we set ~ = 1)

H = ω0H1 + Ω0H2 +

∞
∑

j=1

ω jb
†

j
b j +

∞
∑

i=1

[( fiJ+ + giL+)bi + h.c.], (1)

where b j and b
†

j
are creation and annihilation operator of the j th photon in the thermostate with frequencyω j, ω0/2 andΩ0+ω0/2

are transition frequency in the V- system, fi and gi are the constant of system-photon interaction and the matrices H1,H2, J+, L+
are define as follow [6]
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2.1. Markovian evolution

The Markovian master equation for the reduced density operator can be written as [6]

∂ρ

∂t
=
γJ

2
[(NJ + 1)(2J−ρJ+ − J+J−ρ − ρJ+J−) + NJ(2J+ρJ− − J−J+ρ − ρJ−J+)] + (J ↔ K), (3)

where γJ,K are the damping constants, NJ,K are the average numbers of the heat photons on the corresponding transition.

The standard procedure of unravelling allows to write the SSE, corresponding to (3) in the following form

d|ψ〉 = −
γJ

2
((NJ + 1)J+J− + NJ J−J+) |ψ〉dt + i

√

γJ(NJ + 1)J−|ψ〉dW1
J + i
√

γJ NJ J+|ψ〉dW2
J + (J ↔ K), (4)

where W
1,2
J,K

are independent standard Wiener processes. It is easy to verify using Ito calculus that ρ = E(|ψ〉〈ψ|) satisfies the

master equation (3).

2.2. Non-Markovian evolution

To describe non-Markovian effects Barchielli in [7] suggested to replace Markovian Wiener processes in (4) by some non-

Markovian noises. One of the simplest non-Markovian noises is the Ornstein-Uhlenbeck one, which is satisfies the stochastic

equation

dX = −kXdt + dW, (5)

where k > 0 is some constant. By substitution the Ornstein-Uhlenbeck processes (5) instead of the Wiener increments in (4) we

derived the following non-Markovian SSE

d|ψ̃〉 = −

(

γJ

2
(NJ + 1)J+J− +

γJ

2
NJ J−J+ + ik1

J X1
J

√

γJ(NJ + 1)J− + ik2
J X2

J

√

γJ NJ J+

)

|ψ̃〉dt

+i
√

γJ(NJ + 1)J−|ψ̃〉dW1
J + i
√

γJ NJ J+|ψ̃〉dW2
J + (J ↔ K). (6)

Unfortunately, the above SSE is not a mean-1 martingale and we have to somehow modify the equation to satisfy the martingale

property. It is straightforward to check that to be a mean-1 martingale Eq. (7) needs 4 more terms in the drift part, namely

d|ψ̃〉 = −

(

γJ

2
(NJ + 1)J+J− +

γJ

2
NJ J−J+ + ik1

J X1
J

√

γJ(NJ + 1)(J− + J+) + ik2
J X2

J

√

γJ NJ(J− + J+)

)

|ψ̃〉dt

+i
√

γJ(NJ + 1)J−|ψ̃〉dW1
J + i
√

γJ NJ J+|ψ̃〉dW2
J + (J ↔ K). (7)

Obviously, that Eq. (7) is transformed to Eq. (4) when all kl
m = 0.Moreover, it is easy to prove that Eq. (7) is a martingale, i.e.

E(〈ψ̃(t)|ψ̃(t)〉) = 1 and ρ̃(t) = E(|ψ̃(t)〉〈ψ̃(t)|) is a completely positive operator by construction. Note, that operator ρ̃(t) does not

satisfy the Markovian master equation (3) and, even more, we cannot construct any closed master equation for this operator due

to the presence of the noise terms in the drift part of the equation (7). All the above mentioned facts demonstrate the uniqueness

of Eq. (7).

3. Results of simulation

The Non-Markovian SSE (7) can be efficiently simulated. It is possible to do if we add to the three components of the wave

vector |ψ̃〉, four stochastic equations for the Ornstein-Uhlenbeck noises. Resulting seven equations form a closed system and

may be numerically solved by any suitable algorithm. The initial values for the Ornstein-Uhlenbeck processes are normally

distributed random numbers with zero mean and unit standard deviation.

In this paper we use the Euler stochastic algorithm [8], which for our problem can be written in the following general form

Ψn+1 = AΨn∆t +

4
∑

i=1

BiΨnδWi, (8)

where A, Bi are constant matrices, ∆t is the time step, δWi is independent normal distributed variables N(0,∆t). The vector

Ψ = (ψx, ψy, ψz, X
1
J
, X2

J
, X1

K
, X2

K
)T has seven components. Initial conditions is Ψ0 = (1, 0, 0,N(0, 1),N(0, 1),

N(0, 1),N(0, 1))T .

The results of simulation are presented in Fig. 1. The results was averaged over 104 realizations. The error bars are also

included in the graphic. In the same pictures we draw the dynamics given by the Markovian master equation (3). One can see

that the non-Markovian noise has significant effect on dynamics and cannot be neglected in general.
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Fig.1. Evolution of the upper state. Red curve is the Markovian dynamics and blue dots are the non-Markovian dynamics. Parameters: γK = 2γJ , NJ = 0.2,

NK = 0.3, k1
J
= k1

K
= 0.3, k2

J
= k2

K
= 0.5.

4. Conclusion

In this paper we have derived the non-Markovian SSE for a three-level quantum system driven by the four independent

Ornstein-Uhlenbeck processes. The SSE has unique properties which are hard to achieve in other approaches to non-Markovian

dynamics. Especially, it is the complete positivity of the density operator ρ̃(t) = E(|ψ̃(t)〉〈ψ̃(t)|) for all time. The suggested SSE

can be efficiently simulated using any appropriate algorithm and due to stochastic nature of the equation the solution can be easy

parallelized to perform calculation on a supercomputer or GPU.

It is shonw that quantum dynamics given by the non-Markovian SSE is significantly differ from Markovian one and this fact

should be taken into account in the explanation of future experiments with quantum ensembles.

The general features of SSE described in this paper for the three-level systems are valid for arbitrary quantum systems.

Moreover, the SSE has dimension much smaller than the corresponding master equation. This means that using SSE technique

one can describe high dimensional quantum systems. This may be relevant for understanding biological phenomena, such a

photosyntheses.
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