
3rd International conference “Information Technology and Nanotechnology 2017” 306

Use of graph-based and algebraic models in lifecycle of real-time flight

control software

A. Tyugashev
1

1Samara State Transport University, 18 1st Bezymyanny Per., 443067, Samara, Russia

Abstract

Software faults are the causes for repeating catastrophes in modern space missions. There are various problems in lifecycle of flight control

software including lack of adequate models of real-time control algorithms. Real-time control algorithms have the totally distinct nature in

contrast to computational algorithms. The paper presents mathematical models suitable for analysis, design and formal verification phases of

lifecycle of spacecraft’s flight control software. Two kinds of models - graph-based and algebraic, are being described. These models were

successfully introduced in computer aided software engineering toolset for design and verification of spacecraft’s real-time onboard control

software.

Keywords: real-time control algorithm; real-time flight control software; lifecycle of the flight control software; computer aided software

engineering; graph based model; algebraic model

1. Introduction

The modern spacecraft usually has various onboard systems such as Energy Supply System, Motion Control System,

Onboard Control System, Autonomous Navigation System, Telemetry System, Thermal Control System, etc. In turn, each

onboard system consists of a set of devices, aggregates, sensors. We can state that spacecraft is a system of systems or complex

of complexes. Functioning of all these devices should be coordinated both in time and logically. The real-time mode of

functioning is a very important issue entailing more complex nature of required models to be used for adequate reflecting of

features of onboard apparatuses. This aspect is also quite important when we deal with the problems connected with designing

and implementation of dependable control system for the spacecraft. In accordance with the Ashby’s Law of Requisite Variety,

variety of onboard equipment’s behavior requires variety of onboard control system. Today the control logic of onboard control

system is implemented in onboard Flight Control Software. Roughly speaking, there is a special control software module for

each onboard device or aggregate. There are also a lot of supplemental modules involved into organization of computational

process, etc. This is an illustration to a structural aspect of complexity of modern spacecraft’s onboard software. Another

essential aspect corresponds to behavioral aspect of complexity. We can compare the onboard apparatus of the spacecraft with

the orchestra with the string and wind instruments, drums, etc. But we need a conductor to get a symphony – violin should start

at the right moment, next cello should start with accurately fulfilled delay, and so on. So, we need also a special sort of real-time

software which will serve as an orchestra’s conductor.

For example, there are about 500 software modules concurrently running at real-time mode onboard the modern spacecrafts

manufactured by Samara Rocket and Space Center ‘Progress’ [1-4]. These modules have a different nature and objective –

system, service, computational, support, etc. The very important part of the onboard flight control software is real-time control

algorithms (analog of orchestra’s conductor), or so named ‘programs for complex functioning’ (it means cooperative functioning

of various onboard spacecraft’s subsystems such as Motion Control System, Telemetry System, Energy Supply System, etc.).

The purpose of this part of onboard software is to run needed ‘functional’ program modules, and execution of the needed

commands by particular onboard equipment at ‘right’ moments of time with the proper considering of current situation. It is

clear, that the overall success of space missions has a straight dependence on the correct functioning of program for complex

functioning. This is an explicit example of mission-critical software. Herewith, the cost of the errors in such algorithms made at

analysis, design and development phases of lifecycle is too high. The usual way for providing of reliability and quality of flight

control software is many-staged testing and debugging with utilization of specially built test beds. This process is very labor and

time consuming, but unfortunately it cannot guarantee the absence of the errors [3]. Unfortunately, we face with repeating

catastrophes and faults in space missions caused by software errors. First well known incident happened in 1962 with Mariner-I

space probe. Probably, the most expensive one was the explosion of Ariane-5 European Space Agency rocket during its first

flight in 1996. The amount of loss was estimated more than 500 millions euros. We can also mention relatively recent widely

discussed failures of onboard software of Mars Polar Lander, Mars Climate Orbiter and mars rovers.

What is a reason for it? Complexity of onboard equipment entails failures of devices (which can be parried by switching to

reserve equipment executed by special software module, but it requires more complex control logic). Complexity of the

spacecraft tasks entails more complex behavior (especially in abnormal situations). Complex behavior also requires complex

control logic. Complex Control Logic entails ‘broken phone effect’ between onboard devices’ specialists and programmers

during coding it in Onboard Flight Control Software. Nowadays, complex control logic requires complexity of Flight Control

Software. Complexity of Software means higher costs of software lifecycle. Moreover, complexity of software means more

errors in software itself. Is it a vicious circle?

Summarizing, we can emphasize the following modern trends and problems in spacecraft control:

1. use of onboard computers as a main control system;

Mathematical Modeling / A. Tyugashev

3rd International conference “Information Technology and Nanotechnology 2017” 307

2. transfer of ‘decision-making point’ from Earth onboard;

3. growing of size and complexity of Flight Control Software (concurrent multi-tasking, hundreds of interacting modules,

millions of lines of code);

4. software-based support of spacecraft’s fault tolerance feature;

5. dozens of people including non-programmers, involved in lifecycle of Flight Control Software;

6. costs of Flight Control Software’s lifecycle became a very significant part of space mission’s total costs, moreover -

design, development and testing of the Onboard Software often is a ‘critical path’ in network schedule of spacecraft ‘s

producing as a whole;

7. labor costs of control system software’s creation and testing is 10 times bigger than hardware related costs [3].

The very promising way in this area is application of formal verification methods [3,5]. Unfortunately, the main efforts in

area in software formal verification is oriented to computational (data transforming) algorithms and software where adequate

mathematical models and methods considering semantics of the algorithms were developed and researched. We can state the

inadequacy of these models and methods to nature of real-time control algorithms consisted of not elementary computations but

actions related to actuators and other spacecraft’s hardware. Accordingly, the development of the adequate models for this kind

of software is very important. The developed models can be utilized in methods of analysis, design and verification which

reduce real-time lifecycle labor costs and provide needed level of dependability of real-time control algorithms. In [6], the

‘basic’ algebraic based mathematical model of real-time control algorithms was presented. This is a constructive model,

allowing step-by-step building of control algorithms on the basis of ‘elementary’ actions – so called ‘functional tasks’, time

intervals, and logical conditions. This paper presents some extended models which supplements and clarifies the basic model for

further use with various purposes.

2. Real-Time Control Algorithms

The object of the study is real-time control algorithms. It should provide coordinated and well synchronized functioning of

onboard spacecraft’s systems containing various sensors, actuators, devices.

The very important features distinguishing the control algorithms from the data transformation algorithms are the following.

First, we cannot correlate the function (in mathematical understanding), and the control algorithm. Moreover, the correctness of

the control algorithm cannot be defined by the contents of the computer memory at the moment of algorithm’s end. The

correctness of the control algorithm depends on its behavior in full time interval of functioning. Moreover, the values of

conditions during execution of data transforming program are totally defined by the input data while the values of the conditions

to be considered in control algorithm, are unpredictable because they are formed by the parameters of physical processes in

controlled object (for example, velocity of the spacecraft). Actions executed by the control algorithm also can change not only

the data in memory of the onboard computer, but influence on the state of the controlled object. When we need, for example,

land the spacecraft on the Mars, we need to implement the very complex sequence of the operations with the participation of

various onboard devices and mechanisms – but all of them are under control of onboard software.

Unfortunately, the major efforts in the modeling of algorithms historically were focused on data transformers, since earliest

models like Turing and Post Machines, Church’s recursive functions and Markov’s ‘normal algoriphmes’. But if we want to

apply the promising modern methods like formal verification or automated synthesis of the control software with the guarantee

of its properness, we need the adequate semantic model for the control algorithm.

We can describe the following features of ‘traditional’ computational programs. Their main goal is transformation of input

data to output data. The main components are the data transformers. The computational program correct if it successfully

finishes (if input data is right) meanwhile output data matches specification. Structure of the traditional step-by-step sequential

computational algorithm can adequately be represented by flowchart with begin and end(s) nodes. There are no time constraints

and timer(s). Semantics could be adequately formalized by

1. axiomatic semantics [8] (Hoare, Floyd): Pre {S} Post;

2. denotational semantics describing mapping between sets [9].

Many control algorithms are being used by ‘reactive’ systems. The main features of such systems could be described as

follows. The reactive system should right process the input event flow. The main components are actions (in contrast to

computational algorithms). The following semantic models are used for reactive systems:

1. Kripke structures [10];

2. finite state machines - automata;

3. Petri Nets.

Other important features of algorithms used in reactive systems distinguishing them both from the traditional programs and

real-time control systems:

1. there are no end of algorithms, use of infinite loop of event processing instead;

2. there are no time constraints and time scale (timers) - asynchronous nature;

3. correct, if algorithm implements required model and execute right actions as reaction on pre-defined events.

We deal with Time-Driven Real-Time Control Algorithms (RTCA). This kind of algorithms has very important distinguishes

from the reactive systems. Time-Driven Real-Time Algorithm should implement required schedule(s) (the term ‘cyclogramme’

widely used in space industry). The main components of algorithm are actions.

Other essential features can be described as follows. There are begin and ends in contrast to reactive systems. There are ‘hard’

time constraints. There is time scale (timers) for quantitative description of time parameters. In other words, RTCA has a

Mathematical Modeling / A. Tyugashev

3rd International conference “Information Technology and Nanotechnology 2017” 308

synchronous nature. This kind of algorithm correct if it execute right actions at right time (more precisely, right time moments

with right considering of the current situation). Thus, the adequate semantic models should consider the stated features.

The known semantic models are

1. timed automata [11];

2. timed Petri Nets [12].

These models are based on the idea of ‘state’. Unfortunately, if we try to apply this approach to real world system, we suffer

because of ‘state explosion’ problem. This is why the author try to develop and use in CASE toolset another model based on idea

of process. In some vision, this model utilizes more high level of abstraction allowing avoiding undue detalization and using in

practice.

As it presented in [6], we can use the following set of tuples (‘quads’) for representation of semantics of real-time algorithm

built from actions executed at particular time if the values of specified logical conditions are equals to 1:

 𝑈𝐴 = {〈𝑓𝑖 , 𝑡𝑖, 𝜏𝑖 , 𝑙𝑖⃗⃗ 〉}, 𝑖 = 1, . . 𝑁

Each i-th quad in the above set describes one action executed by the real-time control algorithm; N is a number of actions

executed. Here fi is an identifier of the action, ti – starting time of the action, i - duration. Starting time and duration defined as

integers, this is adequate time model in this case because the minimal time difference recognized by the control algorithm is a

‘tick’ of onboard clock generator. The set of elementary actions F should be previously defined, fi ϵ F. Logical vector l i
specifies the combination of the conditions, allowing action fi to be executed in time interval [ti; ti + i]. For example, logical

vector can looks as follows ([1=1], [2=H],…[M=0]). The 1 and 0 values recognized as true and false, and the third value ‘H’

means that this condition does not have an impact to execution of the action at specified time. The number of conditions actual

for the control algorithm as well as the set L of the condition itself should be settled simultaneously with the set F of actions. We

can interpret the logical vector in the model as an analog of the well known ‘guard’ conditions.

Described model have a very clear and intuitive visual representation looks like Gantt diagram. This was a reason because

this model and models inherited from it were intended to use and successfully applied during development of the

GRAFKONT/GEOZ [6] integrated development suite for automated design and verification of onboard flight control ‘complex

functioning’ software.

But the ‘basic’ algebra of the control algorithms had the restricted descriptive power, for instance, there was no possibility to

specify arbitrary time intervals between the actions, so it was necessary to introduce ‘fictive’ actions to taking in account the

delays. And the time had the ‘relative’ nature only; we had no mechanism for binding the actions to the particular moment.

3. Methods

3.1. Extended algebraic model of the real-time control algorithm

There are some known models for parallel systems utilizing higher level of abstraction than state-based models. First of all,

we should mention the following approaches:

1. process Algebras (Milner’s CCS [14], Hoare’s CSP [15], Bergstra’s ACP [16], etc.);

2. temporal Logics (LTL, CTL, RTTL, etc.) [17-19];

3. Allen’s Interval Logic [20].

Unfortunately, there are serious limitations for use of named models for Flight Control Software. If we talk about process

algebras, we should underline the following. They provide just ‘common’ means for description of parallel execution of

processes without opportunity to define coordination of processes’ begins and ends. Process algebras do not support logical

inference (reasoning about algorithms needed for verification purposes). And there are no any tools for description of various

situations (conditioning for different variants of situations – regular, abnormal, emergency, etc.) of system’s functioning. But in

space missions we definitely need such instruments.

In contrast to process algebras, temporal logics natively have special means for description of concurrency of processes

extended in time. But initially, there are no means for quantitative aspects of synchronization in temporal logics. In addition, the

semantic models are not advanced enough for our practical purposes.

Allen’s Interval Logic is a very interesting and promising approach providing means for description of all possible overlay of

processes extended in time. But there are no means in Allen’s logic for description of quantitative aspects of synchronization.

Moreover, this approach also has no means for description of ‘different branches’ of Real-Time Control Algorithms.

The method we developed is free from the limitations described above. It was initially developed for description of complex

Real-Time Control Algorithms with considering internal logic, different variants (branches) and situations. There are advanced

means for description of synchronization of parallel processes. There are means for quantitative descriptions of synchronization

both for relative and absolute timing.

The proposed model uses ‘constructive’ approach. We can construct new control algorithms using the existing ones by

application of the set of operations. The basic operations introduced by Anatoly Kalentyev had only four operations – CH, СК,

→, and . The extended algebraic model contains the following operations:

Mathematical Modeling / A. Tyugashev

3rd International conference “Information Technology and Nanotechnology 2017” 309

 Table 1. Operations of the extended algebraic model of real-time control algorithms.

Name Mean Signature

СН synchronization ‘begin-begin’ (UA1, UA2) → UA

СК synchronization ‘end-end’ (UA1, UA2) → UA

→ direct following (UA1, UA2) → UA

Н Overlay (UA1, UA2, integer) → UA

ЗА parameterized following (UA1, UA2, integer) → UA

@ absolute time binding (UA, integer) → UA

 qualification by the condition (condition, UA) → UA

‘Begin-begin’ synchronization applicable to the two control algorithms (denoted in the table above as UA1 and UA2) and

forms a control algorithm which includes all quads from both UA1 and UA2, but with the correction of the start time of each

action inherited from the UA2. To make the correction, we should calculate overall starting time of the UA1 and UA2. It can be

calculated as a minimum of the starting times ti of the actions included into the UA: 𝑡𝑈𝐴 = min𝑖=1..𝑁 𝑡𝑖 . After starting times for

UA1 and UA2 will be found, we should calculate the difference = tUA2 - tUA1. And finally we must add the difference to the all ti

inherited from the UA2. As a result, we will have the control algorithm where all actions from the UA2 will be shifted and the

first action from UA1 and UA2 begins at the same time. The CH operation is transitive, associative but not communicative.

‘End-end’ synchronization operation СК has the same signature as CH, and its result also includes all quads from both

arguments. Again, the actions inherited from UA2 should be shifted by . But the rule for calculation of the  is different. The

latest action of UA2 in resulting algorithm should ends at the time when ends the latest action of UA1. So, we need calculate

overall finish time et for UA1 and UA2 as follows: etUA = maxi=1..N(ti + τi) . And in this case  = etUA1-etUA2. The CK

operation is transitive, associative, but not communicative like CH.

Direct following means that in the resulting algorithm the first action inherited from UA2 starts when the latest action

inherited from UA1 ends. For this, we need make shift like in the cases above, but the rule is different. We need set the starting

time of the earliest action of UA2, as etUA1. Difference  = etUA1-tUA2 we then need to add to all starting times of actions in

resulting algorithm, which are inherited from UA2. In contrast to basic algebra of real-time control algorithms, initially proposed

by A.A. Kalentyev, the extended algebraic model includes also the following operations.

Overlay operation H is similar to parameterized following ЗА operation. We form the control algorithm including all actions

from the arguments UA1 and UA2 like for CH and CK operations, but applying difference is defined as the additional argument

of the operation – integer number. The difference between H and ЗА is defined by the following. In the result of H the first

action inherited from the UA2 should starts before the end of the latest action inherited from UA1 – so, we deal with ‘overlay’. In

case of ЗА operation, conversely, the earliest action inherited from the second argument, should starts after the end of the latest

action inherited from UA1, and plus one.

Absolute time binding operation allows setting the particular time as the starting time of the control algorithm (starting time

of the earliest action). We should find the overall starting time for the existing UA, and then calculate the difference between tUA

and the second integer argument of the @ operation. After this, the difference  should be added to all starting times ti of the all

actions to be executed by the algorithm.

Finally, the ‘qualification’ operation has the UA and the condition as the arguments. We can write (1=0)UA1, and it will

mean that in all logical vectors in the UA, we need to update the corresponding component (initially all values for all conditions

for all actions settles as ‘H’, i.e. action is to be executed imperative).

This model can be successfully utilized for the purposes of specification and verification of the real-time control algorithms.

For example, author’s applied it at the corresponding stages of flight control software lifecycle for spacecraft [6].

3.2. Graph-based model

Anyway, if we want to solve the synthesis problem of the program, we need the adequate model with the more deep detailing.

The model in previous section specifies the control algorithm at the ‘semantic’ level. We can see parallel with the

denotational semantics of the data transformation algorithms when we nominate the function to be calculated by the program.

But the same semantics can be provided by different implementations. Moreover, it is well known fact that in case of software,

the quality and characteristics – including efficiency, of the programs with the same semantics, can be quite different.

We need the models for the next degree of detalization. The very popular and effective in practice models in theoretical

computer science are graph-based. They are applicable also at the stages of design and analysis of efficiency of implementation

of flight control software as well. However, the known models require clarification and extension.

For example, the control flow graph is a very useful and popular model. But initially it describes sequential imperative

program executed by the single CPU. Understandably, there are no any essences applicable for describing phenomena of time

interval.

But the nature of the complex technical system likes modern spacecraft urgently requires concurrent (multi-tasking) model of

computation. It is unsurprising that the onboard software of the modern spacecraft is executed by the control of multi-tasking

operating system. Such systems have an application programming interface allowing one process to be started by another (fork).

In many cases, onboard real-time operating system allows starting the process with the specified time delay or at absolute time.

This is the reason for defining the extended model – ‘timed logical scheme’ of the real-time control algorithm. First, we take

the well known program control flow graph. In case of control algorithms, nodes with the single outgoing arcs will be associated

with any actions executed by the algorithm. Nodes with the two outgoing arcs will be associated with the conditions formed not

by the CPU flags only, but related to parameters of spacecraft motion, state of the onboard systems, etc.

Mathematical Modeling / A. Tyugashev

3rd International conference “Information Technology and Nanotechnology 2017” 310

We introduce also the special ‘weighted’ arcs. The weight specified by the integer, will denote the delay before the action

associated with the following node be executed. The very important issue is that any ‘action’ node can have arbitrary number of

outgoing ‘weighted’ arcs additionally to one ‘usual’ unweighted. The example of the timed logical scheme is presented in Figure

1 in alongside with the visual representation of the corresponding semantic model of control algorithm.

Fig. 1. Example of timed logical scheme.

The depicted UA is {<f1,0,20,(1=1)>, <f2,0,100,(1=0)>, <f3,20,200,(1=1)>, <f4,180,50,(1=H)>, <f5,220,15,(1=Н)>}.

Different qualification by the logical vectors can be shown by different texture or color on visual representation of the control

algorithm’s semantics. Timed logical scheme implements the semantic by the fixation of the ‘key’ time moments – 0, 20, 180,

200 when the algorithm must perform actions. This ‘activations’ are divided by relatively time delays: 20, 160, 40, 180

associated with the weighed arcs in the graph-based model. We can see the ‘qualified’ branches of the timed logical scheme with

the corresponding (1=1) and (1=0) conditions (in this case, there is only the single condition in the logical vector). Then, at

timestamp 180, these branches join again.

4. Results and Discussion

The presented models looks be much more adequate to the nature of the onboard spacecraft’s flight control software than

approaches oriented to computational sequential algorithms. Nature of the presented models is quite corresponds to the domain

of real-time control of technical complexes consisting of many subsystems, devices, aggregates, etc. The main components of

control programs are actions which can be executed both by software modules and equipment. The conditions which influences

the process of computation, also does not formed by the input data only, but permanently changing in accordance with the state

of controlled object. The semantic model presented in the paper, initially oriented to this particularities.

These features provide possibility to potential application of these models in such area as SCADA systems, power plants,

transport, etc. [7].

If we compare presented timed logical scheme of the algorithm with the timed automaton, for example, we will discover that

despite there are possibility to describe time related issues, timed automata cannot be used to adequate and unambiguous

descriptions of control programs. Timed logical scheme, conversely, initially was developed with this purpose and good

corresponds to the factors of problem domain. Moreover, the features of real-time operating systems are taken into account.

5. Conclusion

The paper presents two extended models for representation of real-time control algorithms implemented by spacecraft’s flight

control software. One model is algebraic and another is graph-based. Algebraic model can be applied for ‘high level’ semantic

modeling of the real-time control algorithms. This is important because known models were oriented to computational

algorithms and did not take in account the nature of real-time control systems. Semantic models can be used for the accurate and

unambiguous specification of flight control software and then applied for formal verification, which is reviewed nowadays as

very promising method around the world.

Another presented model is graph-based. It allows analyze the efficiency issues and can be successfully used at the design

stage. Constructive nature of these models and their clear visual representations allow developing of GRAFKONT/GEOZ

software toolset for specifying and verification of real-time control software. The toolset was introduced at Samara Space Rocket

Center.

Mathematical Modeling / A. Tyugashev

3rd International conference “Information Technology and Nanotechnology 2017” 311

Acknowledgements

Author should say many thanks and acknowledgements to President of the Samara University Victor Soifer who granted him

a possibility to research and develop the methods and tools for Russian space industry for many years.

References

[1] Kozlov DI, Anshakov GP, Mostovoy YaA, Sollogub AV. Control of Earth’s Remote Sensoring Spacecrafts: Computer Technologies. Moscow:

Mashinostroenie, 1998; 368 p. (in Russian)

[2] Kirilin AN, Anshakov GP, Akhmetov RN, Storozh DA. Spacecrafts Building. Samara: Agni Publishing House, 2011; 280 p. (in Russian)

[3] Tyugashev A, Ermakov I, Ilyin I. Ways to get more reliable and safe software in Aerospace Industry. Proc. Program Semantics, Specification and

Verification: Theory and Applications (PSSV), Russia: Nizhni Novgorod, 2012; 121–129.

[4] Filatov AV,Tkachenko IS, Tyugashev AA, Sopchenko EV. Structure and algorithms of motion control system's software of the small spacecraft.

Proceedings of Information Technology and Nanotechnology (ITNT-2015). CEUR Workshop Proceedings, 2015; 1490: 246–251.

[5] Holzmann GJ, Havelund K, Joshi R, Xu R-G, Groce A. Establishing flight software reliability: testing, model checking, constraint-solving, monitoring and

learning. Annals of Mathematics and Artificial Intelligence 2014; 70(4): 315–349.

[6] Tyugashev АA. Integrated environment for designing real-time control algorithms. Journal of Computer and Systems Sciences International 2006; 45(2):

287–300.

[7] Tyugashev A. Language and Toolset for Visual Construction of Programs for Intelligent Autonomous Spacecraft Control. IFAC-PapersOnLine. 4th IFAC

Conference on Intelligent Control and Automation Sciences. France: Reims, 2016; 49(5): 120–125.

[8] Hoare CAR. An axiomatic basis for computer programming. Communications of the ACM CACM 1969; 12(10): 576–580.

[9] de Bakker JW. Least Fixed Points Revisited. Theoretical Computer Science 1976; 2(2): 155–181.

[10] Schneider K. Verification of reactive systems: formal methods and algorithms. Springer, 2004.

[11] Bengtsson J,Wang Yi. Timed Automata: Semantics, Algorithms and Tools. Lectures on Concurrency and Petri Nets. Lecture Notes in Computer Science;

3098: 87–124.

[12] Zuberek WM. Timed Petri nets definitions, properties, and applications. Microelectronics Reliability 1991; 31(4): 627–644.

[14] Milner R. A Calculus of Communicating Systems. Springer Verlag, 1980.

[15] Hoare CAR. Communicating sequential processes. Communications of the ACM 1978; 21(8): 666–677.

[16] Bergstra JA, Klop JW. ACPτ: A Universal Axiom System for Process Specification. CWI Quarterly 1987; 15: 3–23.

[17] Pnueli A. The temporal logic of programs. Proc. 18th Annual Symposium on Foundations of Computer Science (FOCS) 1977; 46–57.

[18] Emerson EA, Halpern JY. Decision procedures and expressiveness in the temporal logic of branching time. Journal of Computer and System Sciences

1985; 30(1): 1–24.

[19] Ostroff JS. Temporal Logic of Real-Time Systems. Advanced Software Development Series. Research Studies Press Ltd, England, 1990.

[20] Allen JF. Maintaining knowledge about temporal intervals. Communications of the ACM 1983; 26: 832–843.

