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Abstract 

The problem of stabilizing a spin satellite by means of passive dampers is considered. The application of the method of integral manifolds 

allows us to find conditions for the loss of stability in the analytical form.  
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1. Introduction 

A lot of work has been devoted to the study of dynamic models of stabilization of satellites with the help of gyroscopic forces. 

As the main apparatus, the Lyapunov function method and the stability criteria applied to first approximation systems are used. 

In addition to gyroscopic forces for stabilization, damping devices are used in a number of models to ensure the asymptotic 

stability of the required modes of satellite motion. In a number of works, passive dampers are considered as such devices. For 

the case of two co-axial bodies, on each of which one damper is installed, the stabilization problem was considered, for 

example, in [1-3]. In this paper, we confine ourselves to the study of a model of a satellite consisting of two bodies, on one of 

which a damper with a relatively small coefficient of viscous friction is installed. The damper is modeled by a particle of 

relatively small mass placed in a tube filled with a viscous liquid and attached by a spring. To analyze the system of differential 

equations, the method of integral manifolds [3, 4] is applied, which allows to significantly reduce the dimensionality of the 

model and simplify the analysis. 

2. Equations 

To study the conditions and the mechanism of loss of stability for a satellite stabilized by rotation, consider a dynamic model 

that is a system of ordinary differential equations for dimensionless variables and parameters of the form [3]: 

𝑞�̇� − 𝜀𝑥1̇ = 𝜀[2𝑥1 𝑣1 − 𝜔𝑥2𝑢1] , 

[1 − 2𝐿𝑢1]𝑥1̇ − 𝜀𝑢2�̇� = 

= −𝛬𝑥2 + 𝜀[−𝑢12𝐿𝜔𝑥2 + 𝜀𝑥1𝑥2𝑢1 + 2𝐿𝑥1 𝑣1], 

[1 − 2𝐿𝑢1]𝑥2̇ − 𝜀𝑣1̇ = 𝛬𝑥1 + 𝜀[𝜔2𝑢1 − 2𝐿𝑢1𝜔𝑥1 + 2𝐿𝑥2𝑣1 − 𝜀𝑥1
2𝑢1] 

𝑢1̇ = 𝑣1, 

 −𝜀𝑥2̇ + 𝜀(1 − 𝜀𝜌1)𝑣1̇ = 

= −𝐾1𝑢1 − 𝜀𝛽1𝑣1 + 𝜀(𝑥1
2 + 𝑥2

2)(𝑢1 − 𝐿) − 𝜀𝜔𝑥1. 

Variables 𝜔, 𝑥1, 𝑥2 play the role of projections of the absolute angular velocity of the main body on the axis of the coordinate 

system associated with it with the origin at the center of mass of this body. The variable 𝑢1 characterizes the deviation of a 

particle moving inside the damper from its nominal position. In these equations, the nonlinear terms containing the factors 𝜀2𝑢1 

are omitted. The value of ε, which characterizes the moment of inertia of the mass moving in the damper, plays the role of a 

small parameter. Some details can be found in [5]. 

3. Manifold of steady states 

The system of differential equations under consideration has a manifold of steady states: 

𝔐 = {𝜔 = 𝛺 = 𝑐𝑜𝑛𝑠𝑡, 𝑥1 = 𝑥2 = 𝑢1 = 𝑣
1

= 0}. 
Following [6], we say that this manifold is stable with respect to variables  

𝑥1, 𝑥2, 𝑢1, 𝑣1, 
If for any 𝜔 = 𝛺 and any neighborhood of zero W in the space of variables 𝑥1, 𝑥2, 𝑢1, 𝑣1 we can find a neighborhood of zero 𝑊0

  

of this space such that for any point of this neighborhood the corresponding solution belongs to𝑊 for 𝑡 ≥ 0. 
We will say that 𝔐 is asymptotically stable with respect to variables  

𝑥1, 𝑥2, 𝑢1, 𝑣1, 
if it is stable with respect to these variables and, in addition, the variables 𝑥1, 𝑥2, 𝑢1, 𝑣1   tend to zero with unlimited increase of  

𝑡. 
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We will say that 𝔐 is stabilizable if it is asymptotically stable with respect to variables 𝑥1, 𝑥2, 𝑢1, 𝑣1  under 𝑡 → ∞  the 

solution tends to some point of the manifold 𝔐. 

It follows from the results of [5, 6] that the manifold of steady states 𝔐 is stabilizable if all the roots of the characteristic 

equation, except for one zero root, have negative real parts. Any perturbed motion, sufficiently close to the unperturbed motion, 

tends to one of the possible steady motions belonging to the indicated manifold if 𝑡 → ∞. 

4. Model reduction  

The differential system under consideration is singularly perturbed one and has a three-dimensional manifold of slow 

motions: 

𝑢1 = 𝜀𝑓(𝜔, 𝑥1, 𝑥2), 𝑣1 = 𝜀𝑔(𝜔, 𝑥1, 𝑥2),   
the motion along which is described by a system of three scalar differential equations of the form: 

𝑞�̇� = 𝜀[2𝑥1 𝑔 − (𝛬 + 𝜔)𝑥2𝑓] , 

𝑥1̇ = −𝛬𝑥2 + 𝜀[𝑥2(𝑥2 − 2𝐿𝜔(𝛬 + 𝜔)) + 𝑓 + 2𝐿𝑥1 𝑔], 

𝑥2̇ = 𝛬𝑥1 + 𝜀[(−𝐾1𝑓 − 𝑥1(𝑥1 − 2𝐿𝜔(𝛬 + 𝜔)𝑥2)𝑓 + 𝑥1
2 + 𝑥2

2 − (1 + 𝜌1)𝐾1 + 𝜔2)𝑓 + 

(−𝛽1 + 2𝐿𝑥2)𝑔 + (𝛬 − 𝜔)𝑥1 − 𝐿(𝑥1
2 + 𝑥2

2)] + 

𝜀2{[𝜔2 − (1 + 𝜌1)2𝐾1]𝑓 − (1 + 𝜌1)𝛽1𝑔 + (1 + 𝜌1)𝜔𝑥1 − (1 + 𝜌1)(𝑥1
2 + 𝑥2

2)} + 𝜀3(1 + 𝜌1)2(𝛬 − 𝜔)𝑥1. 

The functions f, g are computed in the usual way [5]. Restricting ourselves linearly in  𝑥1, 𝑥2 terms to the third order and 

nonlinear - up to the second order in 𝜀 inclusive, we write the equations of motion with respect to the integral manifold in the 

form 

𝑞�̇� =
𝜀2

𝐾1
[−(𝛬 − 𝜔)(3𝛬 + 𝜔)𝑥2𝑥1 + (𝛬 + 𝜔)𝐿𝑥2(𝑥1

2 + 𝑥2
2)] , 

𝑥1̇ = −𝛬𝑥2 +
𝜀2

𝐾1

[(𝛬 − 𝜔)𝑥1
2𝑥2 − 2𝐿(𝛬 − 𝜔)(2𝛬 + 𝜔)𝑥2𝑥1 + 

2𝐿2(𝛬 + 𝜔)𝑥2(𝑥1
2 + 𝑥2

2) − 𝐿𝑥1 𝑥2𝑥1 (𝑥1
2 + 𝑥2

2)], 

𝑥2̇ = 𝛬𝑥1 + 𝜀2[−
1

𝐾1

(𝛬 + 𝜔)(𝛬 − 𝜔)2(1 −
ε𝐿2

𝐾1

)𝑥1 −
ε

𝐾1
2

 

(𝛬(𝛬 + 𝜔)(𝛬 − 𝜔)2𝑥2𝛽1) +
1

𝐾1

2𝐿(𝛬 − 𝜔)((𝛬 + 𝜔)𝑥1
2

 
− 𝛬𝑥2

2)

− 2𝐿(𝛬 + 𝜔)𝑥1 (𝑥1
2 + 𝑥2

2) + 𝐿(𝑥1
2 − 𝜔2)(𝑥1

2 + 𝑥2
2)]. 

After linearizing the equations on an integral manifold for variables 𝑥1, 𝑥2  we obtain the linear with respect to 𝑥1, 𝑥2  
subsystem 

𝑥1̇ = −𝛬𝑥2, 

𝑥2̇ = 𝛬𝑥1 + 𝜀2[−
1

𝐾1

(𝛬 + 𝜔)(𝛬 − 𝜔)2(1 −
ε𝐿2

𝐾1

)𝑥1 −
ε

𝐾1
2

 

(𝛬(𝛬 + 𝜔)(𝛬 − 𝜔)2𝑥2𝛽1) ]. 

The condition of asymptotic stability with respect to variables  𝑥1, 𝑥2 is 

−𝛬(𝛬 + 𝜔)(𝛬 − 𝜔)2
 < 0. 

For the integral manifold of slow motions, the following principle is valid: the variety of stationary states of the initial system 

is stable (unstable, asymptotically stable with respect to some of the variables, is stabilizable) if and only if it is stable (unstable, 

asymptotically stable with respect to a part of the variables, stabilizable) the variety of stationary states of a system describing 

the motion on an integral manifold. It is clear that a violation of the resulting inequality entails a loss of stability. This is 

confirmed by the results of numerical experiments. In the figures below, one can see oscillations with increasing amplitude for 

the variables 𝑥1, 𝑥2 and ω. 

 

Fig. 1. Projection of the trajectory on the plane of variables 𝑥1, 𝑥2 (the movement is made counter-clockwise). 
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Fig 2. Solution graph for variable ω. 

5. Conclusion 

In the present work, the mathematical model of a satellite stabilized by rotation has been studied by the methods of the 

geometric theory of singular perturbations. A reduction of the system was carried out, as a result of which, instead of the original 

system of five differential equations, its projection onto a three-dimensional slow integral manifold was investigated. It should 

be noted that, due to the validity of the reduction principle for a slow integral manifold, the reduction is carried out correctly, and 

the reduced system of three differential equations preserves the basic qualitative properties of the original model. An inequality 

is obtained, in violation of which the satellite loses the required orientation in space.  
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