
The Importance of Song Context in Music Playlists
Enabling Recommendations in the Long Tail

Andreu Vall, Markus Schedl, Gerhard Widmer
Department of Computational Perception
Johannes Kepler University Linz, Austria

andreu.vall@jku.at

Massimo �adrana, Paolo Cremonesi
Politecnico di Milano, Italy

massimo.quadrana@polimi.it

ABSTRACT
Music recommender systems o�en operate in sequential mode by
suggesting a collection of songs that constitute a listening session.
�is task is usually called automated music playlist generation and it
has been previously studied in the literature with di�erent success-
ful approaches based on, e.g., variations of collaborative �ltering or
content-based similarity. Some of the proposed playlist models take
into consideration the current song and a number of previous songs,
i.e., the song context, in order to predict the next song. However, it
is not yet clear to what extent knowing this song context improves
next-song predictions. To shed light on this question, we conduct
a numerical experiment on two datasets of hand-curated music
playlists, where we compare playlist models that account for dif-
ferent song context lengths. Our results indicate that knowing the
song context seems, at �rst, uninformative. However, we explain
this e�ect by a strong bias in the data towards very popular songs
and observe that, in fact, songs in the long tail are more accurately
predicted when the song context is considered.

CCS CONCEPTS
•Information systems→Datamining; Recommender systems;

KEYWORDS
music playlist generation, music recommender systems, recurrent
neural networks

ACM Reference format:
Andreu Vall, Markus Schedl, Gerhard Widmer and Massimo �adrana,
Paolo Cremonesi. 2017. �e Importance of Song Context in Music Playlists.
In RecSys 2017 Poster Proceedings, Como, Italy, August 27–31.

1 MODELING MUSIC PLAYLISTS
We describe the playlist models considered in our experiment. We
generally assume that: two sets of playlists are available, one for
training and one for test; given the current song and a number
of previous songs from a test playlist, a playlist model has to be
able to rank all next-song candidates according to how likely they
are to be the next song in that playlist. Note that we refer to the
current and the previous songs in the playlist as the song context
as it is commonly done in language models, but this should not be
confused with the incorporation of general contextual information
into recommendation systems.

RecSys 2017 Poster Proceedings, Como, Italy
© 2017 Copyright held by the author(s).

1.1 Song Popularity
�is is a unigram model that computes the popularity of a song
according to its relative frequency in the training playlists. At
test time, the next-song candidates are ranked by their popularity,
regardless of the current and previous songs in the playlist.

1.2 Song-based Collaborative Filtering
�is is an item-based Collaborative Filtering (CF) model. A song s is
represented by the binary vector ps indicating the playlists to which
it belongs. �e similarity of each pair of songs si , sj in the training
set is computed as the cosine between psi and psj . At test time, the
next-song candidates are ranked according to their similarity to the
current song, but previous songs in the playlist are ignored.

1.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a class of neural network
models particularly suited to processing sequential data. �ey have
a hidden state that accounts for the input at each time step while
recurrently incorporating information from previous hidden states.

We adopt the approach proposed in [2], where an RNN model
with one layer of gated recurrent units is combined with a loss
function designed to optimize the ranking of next-item recommen-
dations. At test time, given the current and all the previous songs
in the playlist, the RNN outputs a vector of song scores that is used
to rank the next-song candidates.

2 DATASETS
�e “AotM-2011” dataset [3] is a playlists collection derived from
the Art of the Mix1 database. �e “8tracks” dataset is a private
playlists collection compiled from 8tracks,2 an on-line platform
where users can share playlists and listen to other users’ playlists.

We keep only the playlists with at least 3 unique artists and
with a maximum of 2 songs per artist. �is is to discard artist- or
album-themed playlists, which may correspond to a less careful
compilation process. We also keep only the playlists with at least
5 songs. Songs occurring in less than 10 playlists are removed to
ensure that the models have su�cient observations for each song.

We randomly assign 80% of the playlists to the training set and
the remaining 20% to the test set. As in any recommendation task
blind to item content, the songs that occur only in test playlists
need to be removed because they can not be modeled at training
time. �is a�ects the �nal playlist length and song frequency.

�e �ltered AotM-2011 dataset has 17,178 playlists with 7,032
songs by 2,208 artists. �e �ltered 8tracks dataset has 76,759 playlists

1www.arto�hemix.org
2h�ps://8tracks.com

www.artofthemix.org


RecSys 2017 Poster Proceedings, August 27–31, Como, Italy A. Vall et al.

Table 1: Descriptive statistics for the AotM-2011 and the 8tracks
datasets. “Song popularity” corresponds to the song frequency in
the dataset, i.e., the number of playlists in which each song occurs.

dataset statistic min 1q med 3q max
AotM-2011 Songs per playlist 5 6 7 8 34

Artists per playlist 3 5 7 8 34
Song popularity 1 8 12 20 249

8tracks Songs per playlist 5 5 6 7 46
Artists per playlist 3 5 6 7 41
Song popularity 1 9 15 30 2,320

with 15,649 songs by 4,290 artists. Table 1 reports the distribution
of unique songs per playlist, unique artists per playlist and song
popularity in the datasets.

3 EVALUATION
�e evaluation is based on the prediction of next songs, considering
all the songs in the dataset as next-song candidates. Given a trained
model, the following procedure is repeated over all the test playlists.
We show the model the �rst song in a playlist. �e model then has
to rank all the next-song candidates according to their likelihood
to be the second song in that playlist. We only keep track of the
rank assigned to the actual second song. We then show the model
the �rst and the second actual songs. �e model has to rank all the
next-song candidates for the third position, having now a longer
song context. In this way, we progress until the end of the playlist,
always keeping track of the rank assigned to the actual next song.
Finally, the performance of a playlist model is characterized by the
distribution of its predicted ranks for the actual next songs.

Hyperparameter tuning is performed on a validation split. Along
with the described models, we also consider a random model that as-
signs scores to songs uniformly at random, yielding random ranks.

4 RESULTS
Considering the ranks achieved for all next-song predictions (le�
panels in Figure 1), the RNN and the popularity-based model per-
form comparably well, and signi�cantly be�er than the song-based
CF model. �is is a surprising result given the simplicity and null
song context of the popularity-based model, but might be explained
by the impact of a small number of very popular songs in both
datasets (Table 1). To investigate this e�ect, we consider the ranks
achieved when the actual next songs belong to the 10% most pop-
ular songs in the dataset (central panels in Figure 1), and when
the actual next songs belong to the long tail of 90% least popular
songs in the dataset (right panels in Figure 1). As expected, the
popularity-based model performs well on the most popular songs,
but is close to the random model for songs in the long tail. �us,
the overall performance of the popularity-based model is similar to
that of the RNN model only because the datasets are biased towards
popular songs. �e song-based CF model is not competitive in this
experiment and, especially in the 8tracks dataset, is also a�ected
by the bias towards popular songs. In contrast, the performance
of the RNN model, which keeps track of the full song context, is
robust to the popularity of the actual next song.

All songs Popular songs Long tail songs

R
N
N

Pop
.

C
F

R
an

d.

R
N
N

Pop
.

C
F

R
an

d.

R
N
N

Pop
.

C
F

R
an

d.
1

1500

3000

4500

p
re

d
ic

te
d
 r

a
n
k

(a) AotM-2011 dataset

All songs Popular songs Long tail songs

R
N
N

Pop
.

C
F

R
an

d.

R
N
N

Pop
.

C
F

R
an

d.

R
N
N

Pop
.

C
F

R
an

d.
1

1500

5000

8000

11000

p
re

d
ic

te
d
 r

a
n
k

(b) 8tracks dataset

Figure 1: Distribution of predicted ranks for the actual next songs
(lower is better). �e boxplots indicate the �rst quartile, median
and third quartile ranks. Le�: All songs are considered. Center:
Only the 10% most popular songs in the dataset are considered.
Right: Only the 90% least popular (long tail) songs in the dataset are
considered. “Pop.” “CF” and “Rand.” correspond to the popularity-
based, the song-based CF and the randommodels, respectively. �e
scale of the y-axis relates to the number of songs in each dataset.

In our view, this is a remarkable �nding given that the bias
towards popular songs is a characteristic feature of playlist datasets
in the music recommendation domain [1]. Playlist models that
account for a longer song context are therefore be�er suited to
next-song prediction for songs in the long tail.

5 CONCLUSION
In this work we investigated the importance of the song context for
next-song recommendations in music playlists. Our results indicate
that the bias towards very popular songs masks the importance
of the song context. However, we observe that a playlist model
based on an RNN, which considers the full song context of a playlist,
clearly outperforms simpler models when recommending songs
belonging to the long tail of non popular songs.

6 ACKNOWLEDGMENTS
We thank Ma�hias Dorfer, Bruce Ferwerda, Rainer Kelz, Filip Ko-
rzeniowski, Rocı́o del Rı́o and David Sears for helpful discussions.

REFERENCES
[1] Òscar Celma. 2010. Music recommendation and discovery. Springer.
[2] Balázs Hidasi et al. 2016. Session-based recommendations with recurrent neural

networks. In Proc. ICLR.
[3] Brian McFee and Gert Lanckriet. 2012. Hypergraph models of playlist dialects.

In Proc. ISMIR. 343–348.


	Abstract
	1 Modeling Music Playlists
	1.1 Song Popularity
	1.2 Song-based Collaborative Filtering
	1.3 Recurrent Neural Networks

	2 Datasets
	3 Evaluation
	4 Results
	5 Conclusion
	6 Acknowledgments
	References

