
Evaluating a Solver-Aided Puzzle
Design Tool

Joseph C. Osborn
Michael Mateas
Expressive Intelligence Studio
University of California at Santa
Cruz
Santa Cruz, USA
jcosborn@soe.ucsc.edu
michaelm@soe.ucsc.edu

Copyright © 2017 for this paper is held by the author(s).
Proceedings of MICI 2017: CHI Workshop on Mixed-Initiative Creative Interfaces.

Abstract
Puzzle game levels generally each admit a particular set
of intended solutions so that the game designer can con-
trol difficulty and the introduction of novel concepts. Catch-
ing unintended solutions can be difficult for humans, but
promising connections with software model checking have
been explored by previous work in educational puzzle games.

With this in mind, we prototyped a design support tool for
the PuzzleScript game engine based on finding and visual-
izing shortest solution paths. We evaluated the tool with a
larger population of novice designers on a fixed level design
task aimed at removing shortcuts. Surprisingly, we found
no difference in task performance given an oracle for short-
est solutions; this paper explores these results and possible
explanations for this phenomenon.

A video recording of the tool in use is available at https://
archive.org/details/PuzzlescriptAssistantDemonstration.

Author Keywords
Design support; game design; puzzle games

ACM Classification Keywords
H.5.2. [Information Interfaces and Presentation (e.g. HCI)]:
User Interfaces; D.2.5 [Software Engineering]: Testing and
Debugging

https://archive.org/details/PuzzlescriptAssistantDemonstration
https://archive.org/details/PuzzlescriptAssistantDemonstration


Figure 1: PuzzleScript and the PuzzleScript Analyzer.

Introduction

Figure 2: A (shortcut) solution to
the first level displayed in the tool.
Note the position of the mouse
cursor, currently scrubbing through
the steps.

Figure 3: The same solution
display updated after a level design
repair. The old solution is marked
as unavailable with a red border.

Designing games is difficult for many of the same reasons
that computer programming is difficult: game designers, like
programmers, define an initial state and operations on that
state given user input, and these operations can interact in
unexpected ways or the initial state may be misconfigured.
Existing tools for analyzing and testing programs mainly
focus on functional requirements, i.e. input/output behavior.
In games, however, nonfunctional requirements such as
teaching a progression of skills play a comparatively greater
role, necessitating new design-focused analysis tools.

Accordingly, several researchers have proposed tools and
techniques to assist game designers. Some tools generate
elaborated alternatives for the designer’s consideration (e.g.
candidate game levels [10, 5]), while others show the con-
sequences of design decisions (e.g. solution or reachable
space visualizations [8, 1]). We follow the latter class of
tools, providing design-time analysis of PuzzleScript levels.

The literature makes the reasonable assumption that such

tools will aid the game design process and help designers
create higher-quality designs. While many game design
tools have had some form of user evaluation, we are aware
of no controlled studies that compare design outcomes be-
tween two groups of users, one group using a tool and one
not (the closest might be [2], which measured no difference
in engagement time between fully- and partially-human-
authored game level progressions). This means there is lit-
tle evidence supporting the fundamental assumption behind
game design support tools. We present the negative result
of our attempt to gather such evidence to prompt discus-
sion on measuring the leverage such tools provide. In the
remainder of this paper we present our tool, the experiment,
and a discussion of our results.

PuzzleScript Analyzer
The PuzzleScript Analyzer (PSA) can find solutions to lev-
els for any game written in the programming language Puz-
zleScript [4], a domain-specific language for puzzle games.
Solution search is done via A*; it is similar to [6], but with a
different heuristic and more attention to performance. PSA
is integrated into PuzzleScript’s web-based editor and is au-
tomatically run when the rules or levels change (see Fig. 1).
Designers can scrub back and forth through a solution’s
steps using the mouse (see Fig. 2) and load up the cur-
rently displayed state for interactive play by clicking on it.
PSA alerts the designer if the shortest solution changes in
length or becomes invalid as the game level and rules are
changed (see Fig. 3).

From a requirements standpoint, our work is most similar
to two design tools for the game Refraction, which teaches
fractional arithmetic. The first tool evaluates puzzles to en-
sure that every solution satisfies designer-provided proper-
ties [9], while the second generates progressions of levels
to teach designer-provided concept sequences [2].



Following the Refraction tools and e-mail interviews we con-
ducted with five PuzzleScript users, we believed visualizing
the shortest solution would help designers. Three of our in-
terviewees asserted that shortcuts—solutions which did not
require learning or using desired concepts—were a prob-
lem, especially when levels were meant to teach concepts
in order. More formally, shortcuts (or workarounds) are a
class of design bug where the designer’s intended solution
is either not optimal or is not the only solution. PSA helps
find true shortcuts, i.e. those which both circumvent and are
shorter than the intended solution.

We could not simply visualize solutions by superposing the
player’s path on the level: puzzles are often transformed
during play, and players might control multiple characters.
Instead, we provide an interface for scrubbing through solu-
tion steps to see intermediate puzzle states. Moreover, puz-
zle game rules and levels both undergo iteration; following
Inform 7’s Skein [7], we inform the user when previously-
seen shortest solutions are no longer optimal or valid.

Figure 4: The first level used in the
experiment.

Figure 5: The second level used in
the experiment.

Our experimental approach differs from previous evalua-
tions of mixed-initiative co-creative interfaces in e.g. [11].
First, PSA certainly meets that work’s requirements of co-
creativity: unanticipated proposed solutions can prompt
lateral thinking, and scrubbing through solutions aids dia-
grammatic reasoning, potentially replacing (some) manual
playtesting as part of the iterative design cycle. This indeed
was the case: reduced manual playtesting and increased
level edit counts were the biggest differences between our
experimental and control groups.

Unlike [11], we are more interested in evaluating the final
artifacts than the creative process itself. Moreover, our goal
is not to support unconstrained creativity, but creative solu-
tions to the challenge of avoiding shortcuts or workarounds
in puzzles. This may be more relevant to junior designers or

in games where levels have specific learning objectives that
must be satisfied, e.g. in educational games or to ensure
players learn necessary skills before proceeding.

Experiment
We evaluated PSA on a population of 195 novice puzzle
designers (game design undergraduates) on a fixed level
design task split into two conditions: one without and one
with the tool. The control group used PuzzleScript’s stan-
dard editor, while the experimental group also had the level
highlighting and solution viewer interfaces highlighted in
Fig. 1. Novice designers in an artificial environment are not
an ideal population, since they might not be comfortable
with or interested in the design task. On the other hand,
we hoped that our tool could help even novice designers
work more effectively. To account for differences in Puzzle-
Script experience, every user received a 1-hour lecture on
PuzzleScript in the week prior to performing the task. The
day each group performed the task, we gave an additional
1-hour introductory workshop on PuzzleScript.

For our purposes, the task of puzzle design is the arrange-
ment of elements from a fixed set. We devised a small puz-
zle with four rules:

1. Push boxes by walking into them.
2. Flip switches to toggle which of the red and blue col-

ored bridges are up or down.
3. Some switches have adjacent black targets, which

must be filled with a box in order to use the switch.
4. If a box is on a bridge and the bridge is toggled down,

the player may walk over the lowered box.

For the experiment, we defined two levels (Figs. 4, 5). The
first was intended to teach rules 1-3 and the second rule 4.
Two bugs were intentionally inserted into each level: one



which allowed skipping a large part of the level, and another
which violated the provided description of the intended
solution. Users were given the game rules, levels, and in-
tended solution for each level; the experimental group was
also given PSA and instructions for its use. Halfway through
the task (at 20 out of 40 minutes), a hint was given describ-
ing the bugs in each level so that we could discover the ef-
fectiveness of the tool in solving design problems even for
users who didn’t find the bugs themselves. For each level,
the user was asked to describe their belief that they fixed
the design problems on a 3-point scale.

0

5

10

15

20

0

5

10

15

20

c1
c2

0 1 2 3
l1−quality

co
un

t

0

5

10

15

0

5

10

15

c1
c2

0 1 2 3
l2−quality

co
un

t

Figure 6: Solution quality by
condition and level. The median
solution for level 1 was worse than
that for level 2, with no substantial
differences between the two
groups.

Scoring:
Level 1: 3 points if all boxes on
targets; 2 if one box on a blue
bridge; 1 if one box on a red
bridge; otherwise, 0.
Level 2: 3 points if four boxes
on targets and one on a blue
bridge; 2 if two boxes on targets
and one on a red bridge; 1 if at
least one box on a red bridge; 0
otherwise.

Both groups were using a version of PuzzleScript’s edi-
tor instrumented to anonymously record level changes,
game play, and other actions. Of our 195 users, 107 made
a good-faith effort to complete the task (i.e., they edited the
level text at all and marked the task as completed). Solu-
tions were scored on a 0-3 scale based on how many de-
sign flaws were fixed and how completely they were fixed
(participants were unaware of the criteria). We asked users
to make minimal repairs and not to add or remove crates,
targets, or bridges so as not to end up with levels that were
unrecognizable to our solution metric.

Unfortunately, from our original 195 participants, we had
to throw out data for 127 of them for the following reasons:
a bug in our telemetry code that failed to collect telemetry
for some participants; cases where we could not recon-
struct the final game definition from the recorded sequence
of edit operations; and cases where the levels were left in
unsolvable states (we had no sound way of evaluating the
solution quality of unsolvable levels). Ultimately, we were
able to analyze 68 of the resulting activity records, of which
34 came from each group. All 68 completed both tasks,
and our figures and tables refer to those 68 users. We also
asked survey questions assessing proficiency at solving

and designing puzzles, using PuzzleScript, and computer
programming; responses were similar across the groups.

Evaluation
Our central hypothesis was that the use of PSA would lead
to better solutions faster. Surprisingly, we found no signif-
icant effect on solution quality across the two conditions
(see Fig. 6). The mean quality scores were basically the
same, and a Mann-Whitney U-test across the groups veri-
fied that even the small observed differences were insignifi-
cant (p = 1.0 for level 1 and p = 0.92 for level 2).

We also derived an error measure for each user by normal-
izing the reported confidence value for each level to the 0-3
range used for level score, then taking the difference be-
tween that confidence value and the actual quality score.
Our second hypothesis was that the experimental group
would show more consistent self-assessment of solution
quality. This measure also showed essentially no difference
between the two groups either in confidence or in error.

Did the PSA group use the tool at all? The telemetry shows
that they did. The experimental group spent less time man-
ually playtesting the level and more time modifying it, per-
forming on average 500 fewer game moves than the control
group (about a 30% reduction), with a two sample t-test
yielding a strongly significant p-value < 0.005. Everyone in
the experimental group scrubbed through solutions, though
very few clicked to load a solution step in the editor (those
who did load steps did so very frequently, suggesting that
the feature is simply non-obvious).

We also saw a near doubling in level edit operations among
the experimental group, and a two sample t-test gave a sig-
nificant p-value < 0.05. This suggests that the experimental
group performed much more iteration on their puzzle lev-
els, which conventional wisdom suggests would yield better



solutions. We then looked for a significant correlation be-
tween level edit counts and level quality. There was a sig-
nificant moderate increase in the first level’s solution quality
with increased edit counts in the experimental group (in-
creased scores by about 0.5, p < 0.005), but nothing that
held across both levels or across the two groups (all small
and insignificant effects with p > 0.3).

Discussion

●

Control Experiment

10
00

20
00

30
00

Figure 7: Time taken to complete
the task in seconds for each
condition. The experimental group
took about 8 minutes longer on
average to complete the tasks.

It was clear that the PSA group used the tool, yet we saw
no difference in performance. PSA encouraged increased
iteration on levels, but this did not lead to superior solutions!
This invalidates our hypotheses and some assumptions
behind previous work, so we looked for other explanations.

Was the population ill-suited to the task? We only evaluated
PSA on novice designers. We did ask for self-assessments
of puzzle solving and design proficiency, but found no cor-
relation between these measures and solution quality. This
suggests either that the task does not measure these skills
or that the students’ self-assessments were inaccurate. The
self-assessments were not informative, since puzzle famil-
iarity did not correlate strongly with either confidence or so-
lution quality. If our population truly consists of only novices,
then PSA does not help novice designers on the level repair
task; if the users were a mix of novices and experts, PSA
does not help anyone on the level repair task and the task
is equally hard for novices and experts. The former possibil-
ity seems more likely, though it remains surprising. Future
work with expert users could help answer this question.

Was the study designed poorly? While we tried to pick a
natural task—removing unwanted solutions from a puzzle
level—some artificiality was unavoidable if we wanted to
compare results across two groups. This may point to an in-
nate challenge in evaluating creativity support tools, but our

study did have some specific avoidable issues. For exam-
ple, we provided a hint that described the level design bugs;
this meant that if PSA played a role in finding (as opposed
to resolving) the bugs, that effect may have been reduced.
On the other hand, most users finished in under 30 min-
utes, so this is possible but seems unlikely (see Fig. 7). In
fact, the experimental group took on average 17% longer to
complete the task (a two-sample t-test yielded p < 0.05).

Is the tool UI unhelpful? It could be that having solutions
provided automatically leads users, perhaps especially
novices, to pay less attention and think less about their
decisions. This could account for the increased edit count
among the experimental group to no apparent benefit, as
initial wrong guesses regarding the true design issue re-
quired corrections. Given that PSA’s interface does show
specific steps to produce problematic solutions, this seems
unlikely to us. Another issue with PSA is that it does not
foreground the specific instant of departure from the in-
tended solution, or indeed validate the intended solution at
all. While specifying intended solutions formally is a lot of
work, it stands to reason that a tool which accepted and en-
forced those specifications would be more useful than a tool
which merely shows solutions and asks users to check that
they are acceptable. Still, one might expect that something
is better than nothing, which is not borne out by our study.
This leaves us with two questions:

• Does increased iteration on puzzle levels make them
safer with respect to intended solutions?

• Does puzzle design benefit with respect to solution-
safety from the use of automatic solution finding?

If the answers to these questions are negative, we must ask
about the role of design support tools, especially design
validation tools, in the game design process. The second
question in particular seems to be a central assumption



of many computational game design aides, and either it
is false in general—a claim for which this paper is weak
evidence, but evidence nonetheless—or it does not hold in
our evaluation scheme. This may be because the task is
too easy or because solvers do not adequately support the
specific subtasks explored in this evaluation.

We intend to perform more targeted evaluations of the PSA
to explore these possibilities. For immediate future work,
this evaluation should be conducted with populations of ex-
pert and novice users, perhaps using other puzzle games,
other level design bugs, or all of the above. After all, it has
been shown for some creative tasks that novices benefit
from tool support [3] — perhaps the support that PSA pro-
vides does not help novices effectively. It may also be the
case that PSA best supports puzzle rule design iteration as
opposed to puzzle level design iteration, or that it helps pre-
vent bugs from being added rather than helping to remove
bugs. PSA’s utility as an automated regression testing tool
was not evaluated in this study. Integrating specific support
for enforcing intended solutions into PSA could help answer
some of the study design questions above, as could improv-
ing the user interface based on small-scale user studies.

References
[1] Aaron William Bauer and Zoran Popović. 2012. RRT-

Based Game Level Analysis, Visualization, and Visual
Refinement. In Eighth Artificial Intelligence and Inter-
active Digital Entertainment Conference.

[2] Eric Butler, Adam M Smith, Yun-En Liu, and Zoran
Popovic. 2013. A mixed-initiative tool for designing
level progressions in games. In Proceedings of the
26th annual ACM symposium on User interface soft-
ware and technology. ACM, 377–386.

[3] Nicholas Davis, Alexander Zook, Brian O’Neill, Bran-
don Headrick, Mark Riedl, Ashton Grosz, and Michael

Nitsche. 2013. Creativity support for novice digital film-
making. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 651–
660.

[4] Stephen Lavelle. 2013. PuzzleScript. http://puzzlescript.
net. (2013).

[5] Antonios Liapis, Georgios N Yannakakis, and Julian
Togelius. 2013. Sentient Sketchbook: Computer-aided
game level authoring. In Proceedings of the Eighth
International Conference on the Foundations of Digital
Games. 213–220.

[6] Chong-U Lim and D Fox Harrell. 2014. An approach to
general videogame evaluation and automatic genera-
tion using a description language. In 2014 IEEE Con-
ference on Computational Intelligence and Games.
IEEE, 1–8.

[7] Aaron Reed. 2010. Creating interactive fiction with
Inform 7. Cengage Learning.

[8] Mohammad Shaker, Noor Shaker, and Julian Togelius.
2013. Ropossum: An Authoring Tool for Designing,
Optimizing and Solving Cut the Rope Levels. In Pro-
ceedings of the Ninth Aaai Conference on Artificial
Intelligence and Interactive Digital Entertainment. AAAI
Press.

[9] Adam M Smith, Eric Butler, and Zoran Popovic. 2013.
Quantifying over play: Constraining undesirable solu-
tions in puzzle design.. In FDG. 221–228.

[10] Gillian Smith, Jim Whitehead, and Michael Mateas.
2010. Tanagra: A mixed-initiative level design tool. In
Proceedings of the Fifth International Conference on
the Foundations of Digital Games. ACM, 209–216.

[11] Georgios N Yannakakis, Antonios Liapis, and Constan-
tine Alexopoulos. 2014. Mixed-initiative co-creativity..
In Proceedings of the Ninth International Conference
on the Foundations of Digital Games.

http://puzzlescript.net
http://puzzlescript.net

	Introduction
	PuzzleScript Analyzer
	Experiment
	Evaluation
	Discussion
	References

