
Reproducing and Prototyping Recommender
Systems in R

Ludovik Çoba, Panagiotis Symeonidis, Markus Zanker

Free University of Bozen-Bolzano, 39100, Bozen-Bolzano, Italy
{lucoba,psymeonidis,Markus.Zanker}@unibz.it

Abstract. In this paper we describe rrecsys, an open source extension
package in R for rapid prototyping and intuitive assessment of recom-
mender system algorithms. Due to its wide variety of implemented pack-
ages and functionalities, R language represents a popular choice for many
tasks in Data Analysis. This package replicates the most popular collab-
orative filtering algorithms for rating and binary data and we compare
results with the Java-based LensKit implementation for the purpose of
benchmarking the implementation. Therefore this work can also be seen
as a contribution in the context of replication of algorithm implementa-
tions and reproduction of evaluation results. Users can easily tune avail-
able implementations or develop their own algorithms and assess them
according to the standard methodology for offline evaluation. Thus this
package should represent an easily accessible environment for research
and teaching purposes in the field of recommender systems.

1 Introduction

R represents a popular choice in Data Analytics and Machine Learning. The
software has low setup cost and contains a large selection of packages and func-
tionalities to enhance and prototype algorithms with compact code and good
visualization tools. Thus R represents a suitable environment for exploring the
field of recommender systems. Therefore we present and contribute a novel R
package that reproduces several of the most popular recommender algorithms for
Likert scaled as well as binary rating values. The functionality of this framework
is mainly focused on prototyping and educational purposes due to the compact
code representation and the interactive way of invoking and visualizing results
in R. We took advantage of the large selection of packages in R to implement
the algorithms included in our package. We achieve competing performance due
to highly vectorized and mixed R/C++ implementations.

We therefore introduce rrecsys[1, 2] by presenting a general overview of the
implemented algorithms and the evaluation methodology. A few code examples
are included in an appendix. Furthermore, we proceed by comparing results of
rrecsys with those of the Lenskit library. We also include evidence on runtime
performance that document the efficient implementation of algorithms in R.

2 rrecsys Package

rrecsys has a modular structure as well as includes expansion capabilities. The
core of the package includes the implementation of several popular algorithms,
an evaluation component and a couple of auxiliary parts for data analysis and
convergence detection. Next we concisely describe the included algorithms.

2.1 Algorithms

Baseline and Popularity: The included baseline predictors are the global
mean rating (Global Average), item’s mean rating (Item Average), user’s mean
ratings (User Average) as well as an unpersonalized Most Popular method that
determines item popularity based on the total number of (positive) ratings.

Item Based K-nearest neighbors: Given a target user and her positively
rated items, the algorithm will identify the k-most similar items for each target a
and will rank them according to aggregated similarities with the different targets
as described by Sarwar et al. [14]. For similarity measures we develop the cosine
similarity and the adjusted cosine similarity.

Items a and b are considered as rating vectors a and b in the user space.
Cosine similarity measures the cosine angle between those vectors:

sim(a, b) = cos(a, b) =
a · b
|a| ∗ |b| (1)

The adjusted cosine similarity is computed by offsetting the user average on
each co-rated pair on two item vectors. If Ia and Ib is the set of users that rated
correspondingly item a and b the adjusted cosine similarity is measured as:

sim(a, b) =

∑
u∈Ia∩Ib

(Rua −Ru) ∗ (Rub −Ru)√ ∑
u∈Ia∩Ib

(Rua −Ru)2 ∗
∑

u∈Ia∩Ib

(Rub −Ru)2
(2)

Where Ru is the average rating of user u, computed as:

Ru =
∑
i∈Iu

Rui

|Iu|
(3)

Where Iu is the set of items rated by user u.
Once similarities among all items are computed a neighborhood might be

formed by choosing the items with the highest similarity value. Prediction over
a target user u and item a are calculated as the weighted sum [14].

pu,a =

∑
all similar items,k

(sa,k ∗Ru,k)∑
all similar items,k

sa,k
(4)

User Based K-nearest neighbors: Herlocker et al. [7] proposed the al-
gorithm that finds similarities among users instead among items. In our imple-
mentation we consider the cosine similarity and the Pearson correlation.

User u and v are considered as rating vectors u and v in the item space. Co-
sine similarity measures the cosine angle between those vectors using Formula 1

Instead the Pearson correlation is measured by offsetting the user average
on co-rated pairs among the user vectors:

sim(u,v) = Pearson(u,v) =

∑
i∈Iu∩Iv

(Rui −Ru) ∗ (Rvi −Rv)√ ∑
i∈Iu∩Iv

(Rui −Ru)2 ∗
∑

i∈Iu∩Iv

(Rvi −Rv)2
(5)

Where Ru and Rv are correspondingly the average ratings of user u and user v,
computed like in Formula 3.

Once similarities among all items are computed a neighborhood might be
formed by choosing the items with the highest similarity value. Prediction over
a target user u and item a are calculated as the weighted sum [14]:

pu,a = Ru +

∑
all similar items,k

(sa,k ∗Ru,k)∑
all similar items,k

sa,k
(6)

Weighted Slope One: proposed by Lemire et al [10] performs prediction
for a missing rating r̂ui for user u on item i as the following average:

r̂ui =

∑
∀ruj

(devij + ruj)cij∑
∀ruj

cij
. (7)

The average deviation rating devij between co-rated items is defined by:

devij =
∑

∀u∈users

rui − ruj
cij

. (8)

Where cij is the number of co-rated items between items i and j and rui is
an existing rating for user u on item i. The Weighted Slope One takes into
account both, information from users who rated the same item and the number
of observed ratings.

Simon Funk’s SVD: Matrix factorization methods are used in recom-
mender systems to derive a set of latent factors, from the user × item rating
matrix, to characterize both users and items by this vector of factors. The user-
item interaction are modeled as inner product of the latent factors space [4].
Accordingly each item i will be associated with a vector of factors Vi, and each
user u is associated with a vector of factors Uu. An approximation of the rating
of a user u on an item i can be derived as the inner product of their factor
vectors:

R̂ui = µ+ bi + bu + Uu ∗ V T
i (9)

Where µ is the overall average rating and bu and bi indicate the deviation due
to user u and item i from the mean rating.

The U(user) and V(item) factor matrices are cropped to k features and ini-
tialized at small values. Each feature is trained until convergence (where con-
vergence specifying the number of updates to be computed on a feature before

considering it converged, it can be either chosen by the user or calculated auto-
matically by the package). On each loop the algorithm predicts R̂ui, calculates
the error and the factors are updated as follows:

eui = Rui − R̂ui (10)

Vik ← Vik + λ ∗ (eui ∗ Uuk − γ ∗ Vik) (11)

Uuk ← Uuk + λ ∗ (eui ∗ Vik − γ ∗ Uuk) (12)

The attribute λ represents the learning rate, while γ corresponds to the regular-
ization term.

In addition, the following two algorithms address the One Class Collaborative
Filtering problem (OCCF).

Bayesian Personalized Ranking: The algorithm has been introduced by
[12]. It turns the OCCF into a ranking problem by implicitly assuming that users
prefer items they have already interacted with another time. Instead of applying
rating prediction techniques, BPR ranks candidate items for a user without
calculating a ”virtual” rating. The overall goal of the algorithm is to find a
personalized total ranking >u⊂ I2 for any user u ∈ Users and pairs of items
(i, j) ∈ I2 that meet the properties of a total order (totality, anti-symmetry,
transitivity).

Weighted Alternated Least Squares: We compute a low-rank approxi-
mation matrix R̂ = (R̂ij)m×n = U ∗ V T , where U and V are the usual feature
matrix cropped to k features as introduced by [11]. Weighted low-rank aims to
determine R̂ such that minimizes the Frobenius loss of the following objective
function:

L(R̂) = L(U, V) =
∑
ij

Wij(Rij − Ui ∗ V T
j)2 + λ ∗ (‖Ui‖2F + ‖Vi‖2F) (13)

The regularization term weighted by λ is added to prevent over-fitting. The
expression ‖.‖F denotes the Frobenius norm. The alternated least square algo-
rithms optimization process solves partial derivatives of L with respect to each

entry U and V , ∂L(U,V)
∂Ui

= 0 with fixed V and ∂L(U,V)
∂Vj

= 0 with fixed U , to com-

pute Ui and Vi. Then U and V are initialized with random Gaussian numbers
with mean zero and small standard deviation and are updated until convergence.
The matrix W = (Wij)m×n ∈ Rm×n

+ is a non-negative weight matrix that assigns
confidence values to observations (hence the name weighted ALS).

2.2 Recommendation List

The library is currently distributing two different methodologies for computing
the top-N recommendation. The first is the Highest Predicted Ratings (HPR),
which proposes a sorted list based on the highest computed rating values by an
algorithm. The second method is the Most Frequent (MF), that determines the
top-N list based on the most frequent items available in the neighborhood of an
user or item. This methodology is known to produce better performance than
HPR [9, 15].

2.3 Evaluation

The evaluation module is based on the k-fold cross-validation method. A strati-
fied random selection procedure is applied when dividing the rated items of each
user into k folds such that each user is uniformly represented in each fold, i.e. the
number of ratings of each user in any fold differs at most by one. For k-fold cross
validation each of the k disjunct fractions of the ratings are used k− 1 times for
training (i.e. ⊂ Rtrain) and once for testing (i.e. ⊂ Rtest). Practically, ratings in
Rtest are set as missing in the original dataset and predictions/recommendations
are compared to Rtest to compute the performance measures.

We included the most popular performance metrics according to the survey
in [8]. These are mean absolute error(MAE), root mean squared error(RMSE),
Precision, Recall, F1, True and False Positives, True and False Negatives, nor-
malized discounted cumulative gain (NDCG), rank score, area under the ROC
curve (AUC) and catalog coverage[5].

3 Experimental results

In this Section, we compare our rrecsys library with the popular Lenskit [3] Java
library.

In Figure 1, we compare both libraries in terms of RMSE and MAE, using
5-fold cross validation. Lenskit and rrecsys were configured both with the same
algorithms and evaluation methodology. We used the MovieLens100K dataset
[6] for these experiments as the purpose is not only the results per se, but to
demonstrate the reproducibility of the results derived from LensKit.

For the experiments in Figure 1 on the FunkSVD, we have tuned its pa-
rameters as follows, the latent space is set to 100 features, the learning rate
is set to 0.001, the regularization term is set to 0.015. In the case of the item
based k-nearest neighbor algorithm, we have set the number of nearest neighbors
to 100, and adjusted cosine similarity is the similarity measure. In the case of
the user-based k-nearest neighbor algorithm, we have set the number of nearest
neighbors to 100, and used Pearson as similarity measure.

As shown in Figure 1, all the reported results demonstrate our ability to
clearly reproduce and replicate the same results with those of Lenskit in terms of
both RMSE and MAE while other libraries failed to do so [13]. The insignificant
differences with LensKit are the result of a random distribution of items in the
k-folds. Since BPR and wALS are not implemented in LensKit it is impossible
for us to compare results.

In Table 1 we show the performance of rrecsys based on the latest imple-
mentations with R/C++ code on the MovieLens100K dataset running on the
same machine. It is noticeable that rrecsys performs similarly to LensKit. We
compared only optimized algorithms. In future we will provide optimized imple-
mentation of more state of the art algorithms.

globalM
ean

ite
mMean

user
Mean

W
SlopeO

ne

FunkSVD

User
Based

Ite
mBased

0.5

1

1.5

1
.1

3

1
.0

2

1
.0

4

0
.9

4

0
.9

2

0
.9

3

0
.9

41
.1

3

1
.0

4

1
.0

5

0
.9

4

0
.9

2

0
.9

4

0
.9

2

0
.9

5

0
.8

2

0
.8

3

0
.7

4

0
.7

2

0
.7

5

0
.7

3

0
.9

5

0
.8

4

0
.8

4

0
.7

4

0
.7

2

0
.7

3

0
.7

2

RMSE rrecsys RMSE Lenskit MAE rrecsys MAE LensKit

Fig. 1. Benachmark with LensKit.

Framew.
IBKNN (neigh.) UBKNN (neigh.) Funk SVD (feat.) WSlopeOne
10 100 500 10 100 500 10 100 500

rrecsys 14.91s 14.99s 15.67s 8.77s 8.87s 9.48s 6.23s 15.34s 54.71s 49.46s
Lenskit 14.17s 14.62s 15.28s 60.04s 61.48s 62.32s 4.32s 11.05s 46.82s 16.41s

Table 1. Evaluation times with optimized implementations using R/C++ and com-
parison with LensKit.

4 Using the library

In this Section, we introduce an executable script in R for running some of the
functionalities of rrecsys in order to demonstrate its intuitive use. Please notice
that due to space limitations in this paper we do not describe all commands in
detail. The library is distributed with a full range of vignettes and a manual
describing all available functionalities1.

The package is loaded on the Comprehensive R Archive Network (CRAN),
therefore download, installation and loading of the package requires the execu-
tion of the following two functions:

install.packages("rrecsys"); library(rrecsys)

Once the package is loaded the dataset MovieLens Latest2 will be available
within the environment. A setup of the data is required to define possible limits
and the structure of the dataset. Users can explore the dataset by checking the

1 https://cran.r-project.org/package=rrecsys
2 We redistribute the MovieLens Latest datasets for demonstration purposes only.

Please notice that these datasets change over time and are not appropriate for re-
porting experimental results.

number of ratings, its sparsity or even by modifying it to contain a specific
number of ratings for each item\user.

data("mlLatest100k")

m <- defineData(mlLatest100k, minimum = 1, maximum = 5,

halfStar = TRUE)

sparsity(m); numRatings(m); rowRatings(m); colRatings(m)

#Crop the dataset to contain at least 200 ratings on each user and

10 ratings on each item.

smallmlLatest <- m[rowRatings(m) >= 200, colRatings(m) > 10]

The following code shows how to train a model (e.g., ub10) on an algorithm
(e.g., UBKNN), which can be used for either rating prediction (e.g., p) or item
recommendation (e.g., rHPR and rMF).

ub10 <- rrecsys(smallmlLatest, "UBKNN", neigh = 10, simFunct = 1)

p <- predict(ub10)

rHPR <- recommendHPR(ub10, topN = 10)

#pt is the positive threshold for recommending an item.

rMF <- recommendMF(ub10, topN = 10, pt = 3)

The following code shows how we generate the k-folds. Same fold distribution
can be used to evaluate different algorithms.

folds <- evalModel(smallmlLatest, folds = 2)

#Recommendation evaluation.

evalRec(folds, "UBKNN", topN = 10, goodRating = 3,

simFunct = 2, recAlg = 1)

The output of the evaluation function looks like as follows:

#Prediction evaluation.

> evalPred(folds, "funksvd", k = 10)

#Output:

MAE RMSE globalMAE globalRMSE Time

1-fold 0.8565404 1.056737 0.9175207 1.161164 2.419723

2-fold 0.8473669 1.043400 0.8959667 1.131292 2.669417

Average 0.8519536 1.050069 0.9067437 1.146228 2.544570

5 Conclusions

This paper contributed a recently released package for prototyping and inter-
actively demonstrating recommendation algorithms in R. It comes with a nice
range of implemented standard algorithms for Likert scaled and binary rat-
ings. Reported results demonstrate that it reproduces results of the Java-based
Lenskit toolkit. Thus it remains to hope that this effort will be of use for the
field of recommender systems and the large R user community.

References

[1] Çoba, L., Zanker, M.: rrecsys: an r-package for prototyping recommendation algo-
rithms. In: Guy, I., Sharma, A. (eds.) Poster Track of the 10th ACM Conference
on Recommender Systems (RecSys 2016) (RecSysPosters). No. 1688 in CEUR
Workshop Proceedings, Aachen (2016), http://ceur-ws.org/Vol-1688/#paper-12

[2] Çoba, L., Zanker, M.: Replication and reproduction in recommender systems re-
search evidence from a case-study with the rrecsys library. In: 30th International
Conference on Industrial Engineering and Other Applications of Applied Intelli-
gent Systems, IEA/AIE 2017, Arras, France, June, 2017, Proceedings. Springer
International Publishing, Cham (2017)

[3] Ekstrand, M.D., Ludwig, M., Kolb, J., Riedl, J.T.: Lenskit: A modular recom-
mender framework. In: Proceedings of the Fifth ACM Conference on Recom-
mender Systems. pp. 349–350. RecSys ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2043932.2044001

[4] Funk, S.: Netflix Update: Try this at Home (2006), http://sifter.org/ si-
mon/journal/20061211.html

[5] Gunawardana, A., Shani, G.: A Survey of Accuracy Evaluation Metrics of Rec-
ommendation Tasks. The Journal of Machine Learning Research 10, 2935–2962
(2009)

[6] Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (Dec 2015)

[7] Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework
for performing collaborative filtering. In: Proceedings of the 22Nd Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval. pp. 230–237. SIGIR ’99, ACM, New York, NY, USA (1999)

[8] Jannach, D., Zanker, M., Ge, M., Gröning, M.: 13th International Conference on
E-Commerce and Web Technologies, chap. Recommender Systems in Computer
Science and Information Systems – A Landscape of Research, pp. 76–87. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

[9] Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Pro-
ceedings of the Tenth International Conference on Information and Knowledge
Management. pp. 247–254. CIKM ’01, ACM, New York, NY, USA (2001)

[10] Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collabo-
rative filtering. In: SDM. vol. 5, pp. 1–5. SIAM (2005)

[11] Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R., Scholz, M., Yang, Q.: One-class
collaborative filtering. Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on pp. 502–511 (2008)

[12] Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-thieme, L.: BPR : Bayesian
Personalized Ranking from Implicit Feedback. Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence cs.LG, 452–461 (2009),
http://dl.acm.org/citation.cfm?id=1795167

[13] Said, A., Belloǵın, A.: Comparative Recommender System Evaluation:
Benchmarking Recommendation Frameworks. RecSys pp. 129–136 (2014),
http://dx.doi.org/10.1145/2645710.2645746

[14] Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: 10th Int. Conference on the World Wide Web.
pp. 285–295 (2001)

[15] Symeonidis, P., Nanopoulos, A., Papadopoulos, A.N., Manolopoulos, Y.: Collabo-
rative recommender systems: Combining effectiveness and efficiency. Expert Syst.
Appl. 34(4), 2995–3013 (May 2008)

