
Function Symbols in
Tuple-Generating Dependencies:

Expressive Power and Computability?

Georg Gottlob1,2, Reinhard Pichler1, and Emanuel Sallinger2

1TU Wien and 2University of Oxford

Tuple-generating dependencies (tgds, for short) have been a staple of database
research throughout most of its history. Initially, they provided a unifying no-
tion for database constraints such as inclusion dependencies. Meanwhile, tgds
can be found – under various names – as fundamental concepts in several areas
of computer science. For instance, in artificial intelligence, tgds occur as existen-
tial rules; in logic programming, tgds are the rules that make up the family of
languages often called Datalog±; in logic, tgds can be described as a particular
fragment of Horn first-order logic; etc.

Yet one of the central aspects of tgds, namely the role of existential quan-
tifiers, has not seen much investigation so far. When studying dependencies,
existential quantifiers and – in their Skolemized form – function symbols are
often seen as two ways to express the same concept. But in fact, tgds are quite
restrictive in the way that functional terms can occur. Consider the following
tgd based on employees, their departments and the department managers:

∀e, d Emp(e, d) → ∃dmMgr(e, dm)

It expresses that for every employee e in department d, there exists a department
manager dm. To understand the exact form of existential quantification, let us
look at its Skolemized form, where the implicit dependence of the existential
quantifier is made explicit using function symbols. That is, the variable dm is
replaced by a term based on a function symbol fdm.

∃fdm ∀e, d Emp(e, d) → Mgr(e, fdm(e, d))

Observe that any functional term contains the full set of universally quantified
variables from the antecedent. More concretely, the function fdm representing
the department manager depends on both the department and the employee.

In contrast, what we would probably like to express is that the department
manager only depends on the department. That is, the dependency

∃fdm ∀e, d Emp(e, d) → Mgr(e, fdm(d))

We can show that this dependency cannot be expressed by a logically equivalent
set of tgds. However, there are more powerful dependency languages than tgds,
most importantly SO tgds [2]. Note that, as originally defined, SO tgds are

? This is an extended abstract of a paper presented at PODS 2015 [4].



required to be so-called source-to-target (s-t) dependencies. In the context of
this work, we do not restrict any dependency formalism to s-t unless explicitly
mentioned. The key feature of SO tgds is the use of function symbols, and
indeed, the above formula is an SO tgd. SO tgds were introduced to capture
the composition of tgds. However, the power of SO tgds comes at a cost: many
reasoning tasks (such as, e.g., logical equivalence) become undecidable.

Yet, there is a middle ground between tgds and SO tgds: nested tgds [3].
They were introduced as part of IBM’s Clio system, which is now part of the
InfoSphere BigInsights suite. It has recently been shown that nested tgds have a
number of advantages in terms of decidability of reasoning tasks (such as, e.g.,
the equivalence of s-t nested tgds). Let us now return to our running example. If
our schema in addition contains a relation Dep representing departments, then
we can express our dependency as the following nested tgd:

∀d Dep(d) → ∃dm [∀eEmp(e, d) → Mgr(e, dm)]

Nested tgds in Skolemized form can always be “normalized” to a set of unnested
implications – each corresponding to an SO-tgd. In our example, this normal-
ization yields the following single implication:

∃fdm ∀e, d Dep(d) ∧ Emp(e, d) → Mgr(e, fdm(d))

We have seen that nested tgds are one way to avoid the complexity of SO tgds,
while still being able to model interesting domains. They have however one ma-
jor restriction: they can only model hierarchical relationships (i.e., the argument
lists of Skolem functions must form a tree). Nevertheless, there are natural rela-
tionships that cannot be captured by nested tgds. Let us extend our example as
follows: for every employee, we want to create an employee ID. We can express
this as an SO tgd:

∃feid, fdm ∀e, d Emp(e, d) → Mgr(feid(e), fdm(d))

It can be shown that nested tgds are unable to express this dependency. So how
can we gain a more fine-grained understanding of, in general, not hierarchical
relationships without resorting to SO tgds? To answer this question, let us look
at a well-known formalism from logic which can help us in that regard. In logic,
Henkin quantifiers [1] are a tool to gain a fine-grained control over the way
function symbols can occur in the Skolemized form of formulas. Let us write our
dependency using a Henkin quantifier:(

∀d∃dm
∀e∃eid

)
Emp(e, d) → Mgr(eid , dm)

where the quantifier prefix means that the existential variable dm only depends
on the department d, and the existential variable eid only depends on the em-
ployee e. We shall call such Henkin-quantified rules “Henkin tgds”. The above
tgd contains a particularly simple form of a Henkin quantifier, called a stan-
dard Henkin quantifier, where the variables in different rows are disjoint and the



tgds

standard
Henkin tgds

Henkin tgds

SO tgds

normalized
nested tgds

Fig. 1. Hasse diagram of syntactical in-
clusions.

tgds

standard
Henkin tgds

Henkin tgds

SO tgds

(normalized)
nested tgds

Fig. 2. Hasse diagram of semantical in-
clusions.2

quantification in each row consists of universal quantifiers followed by existential
ones. We shall refer to such tgds as “standard Henkin tgds”.

Altogether, we have described five classes of tgds so far with tgds as the least
expressive and SO tgds as the most expressive. In Figure 1, we summarize these
classes of tgds in a Hasse diagram which shows the syntactical inclusion between
dependency classes in their Skolemized form. An edge denotes that every set of
dependencies of the lower class is also a set of dependencies of the upper class.
The first goal pursued in this work is to study the relative expressive power
of these classes of tgds. That is, can we represent sets of tgds from one class as
equivalent sets of tgds in another class?

A central task for database systems is query answering . Given a database,
a set of dependencies, and typically a conjunctive query, the task of query an-
swering is to compute the set of certain answers to that conjunctive query (i.e.,
the answers common to all databases that contain the original database and
satisfy the dependencies). However, query answering for tgds is in general unde-
cidable. Hence, numerous criteria for ensuring decidability have been introduced
throughout the last few years. Due to lack of space, we cannot recall all of them
here. We just mention that there are essentially three families of criteria to en-
sure decidable query answering in the presence of tgds, namely: acyclic tgds,
guarded tgds, with linear tgds as an important special case, and sticky tgds. All
these classes naturally generalize to SO tgds (and thus also to nested tgds and
Henkin tgds), but of course there is no immediate guarantee that query answer-

2 A solid edge denotes that every set of dependencies from the lower class can be
expressed as a logically equivalent set of dependencies from the upper class. The
bold (blue) edge highlights the one containment that is not syntactical (i.e., that
normalized nested tgds are not a syntactical subset of Henkin tgds). The dotted
(red) edges in the Hasse diagram indicate that for a given set of dependencies, not
even a CQ-equivalent set of dependencies exists.



ing for these classes is also decidable. Hence, the second goal of our work is to
pinpoint the decidability/undecidability border for nested, (standard) Henkin,
and SO tgds under the three “families” of criteria: acyclic, guarded, and sticky.

Apart from query answering, another central problem with any logical for-
malism is model checking , i.e.: given a database and a set of dependencies, the
task of model checking is to decide whether or not the database satisfies all
dependencies. For tgds, query and combined complexity are known to be Π2P-
complete while – as tgds are first-order formulas – data complexity is in AC0. For
SO tgds, data complexity is NP-complete and query and combined complexity
is NEXPTIME-complete. From these results, we can already derive some bounds
for other formalisms, since lower bounds propagate along generalizations and up-
per bounds propagate along specialization. So the third goal of our work was
to identify the precise (data/query/combined) complexity of model checking for
nested tgds and Henkin tgds.

Main Results of This Work

Expressive Power. A complete picture of the relative expressive power of the
various classes of tgds is depicted in Figure 2. Interestingly, we obtain that
nested tgds can always be transformed into a logically equivalent set of Henkin
tgds. In contrast, we show that a number of inclusions are proper for other
classes and that two classes (namely standard Henkin tgds and nested tgds) are
incomparable.

Query Answering. Our results for query answering are mainly negative. In par-
ticular, we show that even when assuming our dependencies to be both guarded
and sticky, atomic query answering is undecidable for standard Henkin tgds
and nested tgds, the two lowest extensions of tgds given in Figure 1. For stan-
dard Henkin tgds, undecidability holds even for linear dependencies. In contrast,
acyclicity (actually, already the relaxed notion of weak acyclicity) guarantees
decidability of query answering even for SO tgds. Likewise, imposing a further
restriction on linear Henkin tgds leads to decidability.

Model Checking. We show that Henkin tgds are NEXPTIME-complete in query
and combined complexity and NP-complete in data complexity. Hardness holds
even for standard Henkin tgds. We also show that nested tgds are PSPACE-
complete in query and combined complexity, while data complexity clearly is in
AC0. We thus complete the picture of the complexity of model checking for all
the dependency classes considered here.

Future work. For future work, the most burning question is how to narrow
the gaps between the islands of decidability of query answering under Henkin,
nested, and SO tgds. We thus want to analyze known decidable fragments of
various logics (such as, e.g., the two-variable fragment) and investigate their
applicability to our setting of query answering under tgds. Moreover, we also
have to explore new paradigms that are tailor-made for Henkin, nested, and SO
tgds and that go beyond known decidability criteria for other logics. Moreover,
it would be interesting to see whether frameworks such as independence-friendy
logic and dependence logic yield additional suitable subclasses of SO tgds.



Acknowledgements. This work was supported by the Engineering and Physi-
cal Sciences Research Council (EPSRC), Programme Grant EP/M025268/ “VADA:
Value Added Data Systems – Principles and Architecture” as well as by the Aus-
trian Science Fund (FWF):P25207-N23 and (FWF):P25518-N23.

References

1. A. Blass and Y. Gurevich. Henkin quantifiers and complete problems. Ann. Pure
Appl. Logic, 32:1–16, 1986.

2. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing schema mappings:
Second-order dependencies to the rescue. ACM Trans. Database Syst., 30(4):994–
1055, 2005.

3. A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller, P. Papotti, and L. Popa.
Nested mappings: Schema mapping reloaded. In U. Dayal, K. Whang, D. B. Lomet,
G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y. Kim, editors, Proceed-
ings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, pages 67–78. ACM, 2006.

4. G. Gottlob, R. Pichler, and E. Sallinger. Function symbols in tuple-generating
dependencies: Expressive power and computability. In T. Milo and D. Calvanese,
editors, Proceedings of the 34th ACM Symposium on Principles of Database Systems,
PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 65–77.
ACM, 2015.


