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1 Introduction and Related Work

Many people today participate in more than one social network on a daily basis;
such networks can be seen as dynamic environments containing knowledge about
their members. From a KR perspective, these environments are complex in many
dimensions; for instance, it is not clear how to treat news being communicated
through the network, especially when it contradicts a user’s own knowledge, or
when contradicting news is received from different sources. We are interested
in reasoning about the diffusion of beliefs in social media. Given the variety of
platforms, the underlying communication structure can be seen as a complex
network—the potential to integrate many different data sources is enormous.
The complex network is represented by a graph, and users have access to a
stream of news items that are produced by others. Local revisions are performed
first, where each user responds to news items that show up in their feeds; since
each local revision is carried out in parallel, the result of this stage could violate
global integrity constraints. A global revision process is then carried out in order
to return to a consistent state. In this paper we focus solely on local revisions.

Related Work. Networks have been used to model diffusion processes in real-
world domains [4]; more ad hoc models have also been central to world events
like the US elections and the Brexit vote [7, 1]. Our research continues the work
of [6], where the authors propose a general formalism to model complex networks.
Whereas their work focuses on cascading processes, they do not contemplate
individual knowledge bases for each agent. Our end goal is to build on the first
steps—modelling local revisions—to eventually model the combination of these
processes as they give rise to cascades. This work is also part of the research line
started in [2], where we proposed a model called Social Knowledge Bases.

2 Formalizing Local Revisions

We assume a language L of ground literals over symbols in Pred . Two literals
l1, l2 are contradictory iff l1 = ¬l2. We also assume disjoint sets VP and EP
of vertex and edge predicate symbols, resp., such that VP ∩ Pred = ∅ and



EP ∩Pred = ∅. Vertex predicates have arity 1, and edge predicates have arity 2;
we use LV (resp., LE) to denote literals over VP (resp., EP).

Definition 1 ([5]). A Social network is a 4-tuple (V,E, lvert, ledge) where: V is
a finite set of vertices, E ⊆ V × V is a finite set of edges, lvert : V → 2LV is
a vertex labelling function, and ledge : E → 2T is an edge labelling function,
where T = {〈b, w〉 | b ∈ LV , w ∈ [0, 1]}.

Definition 2 ([3]). A Network KB (NKB, for short) is a 5-tuple (V,E, lvert,
ledge,K), where (V,E, lvert, ledge) is a social network, and K : V → 2L is a
mapping; K (vi) is called the KB associated with vi.

We enrich networks with a set of constraints that condition and relate the struc-
tural part and users’ KBs; satisfaction and consistency are defined as expected.

Definition 3 ([3]). A constraint C over an NKB (V,E, lvert, ledge,K) is a pair
(S,B) where, given v1, ..., vn ∈ V , and e1, ..., em ∈ E ∩ {v1, ..., vn}× {v1, ..., vn}:
S, called the structural part, contains a conjunction of conditions that can be
of either of the following forms: lvert(v) = a, a ∈ VP, v ∈ {v1, ..., vn}; or
〈b, w〉 ∈ ledge(e), 〈b, w〉 ∈ T , w ∈ [s1, s2], for some 0 ≤ s1 ≤ s2 ≤ 1. B is called
the belief part and contains a conjunction of conditions about K(v1), ...,K(vn).

The network belief dynamics problem arises when the epistemic input is com-
prised of a set of what we call news items coming from the neighbor nodes.

Definition 4 ([3]). A news item is a triple 〈o, l, d〉, where o ∈ V is the origin,
l ∈ L is a literal, and d is an indication of its new status in o’s KB: a, r,
or f , which represent added, removed, or flipped, resp. A set of news items is
consistent if it does not contain items with the same origin and literal, but a
different decision or the same origin and conflicting literals.

We assume that all sets of news items are consistent; function χ changes news
items into canonical form without flips—each flip is changed to add. We denote
with NKB the universe of NKBs, and P the universe of news items. Given
NKB = (V,E, lvert, ledge,K), set of news items P = {p1, ..., pn}, v ∈ V , we use
Pv = {p = 〈o, l, d〉 ∈ P | (o, v) ∈ E} to refer to the set of news items seen by
v. Given p = 〈o, l, d〉 ∈ P, let src(p) = o, lit(p) = l, and dec(p) = d. Posts made
by users are seen by all their connections; when this occurs, each user adopts
a position regarding the information that they receive from their friends. Users
generally have many possible sources of information that can make mutually
inconsistent posts, or posts that contradict their own local belief base.

Postulates for Local NKB Belief Revision

Definition 5. Local BR operators are functions ~ : NKB × V × 2P → NKB.

Let v ∈ V , ~ be a local NKB revision operator, and nkb′ = ~(nkb, v, P ) =
(V ′, E′, l′vert, l

′
edge,K

′). We propose a set of postulates as reasonable properties
for local NKB revision; note that not all postulates are meant to hold for all
operators—we will discuss this further below.



Inclusion:K′(v) ⊆ K(v)∪lit(Pv). Success: lit(Pv) ⊆ K′(v).

Weak Success: lit(Pv) ⊆ K′(v) when lit(Pv) is consistent. Consistency: K′(v) 0⊥.

Vacuity 1: If l /∈ K(v), lit(p) = l implies dec(p) = r, for all p ∈ Pv, then l /∈ K′(v).

Vacuity 2: If l ∈ K(v), lit(p) = ¬l implies dec(p) = r, for all p ∈ Pv, then l ∈ K′(v).

Weak Vacuity 1: If l /∈ K(v) and lit(p) 6= l for all p ∈ Pv, then l /∈ K′(v).

Weak Vacuity 2: If l ∈ K(v) and lit(p) 6= ¬l for all p ∈ Pv, then l ∈ K′(v).

Strong Congruence: Let P ∗v be a set of news item and nkb∗ = ~(nkb, v, P ∗v ) =
(V ∗, E∗, l∗vert , l

∗
edge ,K

∗), if χ(Pv) = χ(P ∗v ) then K′(v) = K∗(v).

Weak Congruence: Let P+ = {p ∈ χ(P ) | dec(p) = a} be a set of all positive/added
news items of χ(P ), P− = {p ∈ P | dec(p) = r} be a set of all negative/removed
news items of P and let P ∗v be a set of news item and nkb∗ = ~(nkb, v, P ∗v ) =
(V ∗, E∗, l∗vert , l

∗
edge ,K

∗). If P+
v = P ∗+v , and P−v ⊆ P ∗−v then K∗(v) ⊆ K′(v).

Majority: Let Pro = {p ∈ P | lit(p) = l, dec(p) 6= r} ⊆ Pv and Con = {p ∈
Pv | lit(p) = ¬l, dec(p) 6= r} ⊆ Pv. Given l ∈ L s.t. l /∈ K(v) and ¬l /∈ K(v), if

|Pro| > |Con| then ¬l /∈ K′(v), and if |Pro| < |Con| then l /∈ K′(v).

Local Effect: ∀w ∈ V s.t. w 6= v,K′(w) = K(w).

Structural Preservation: V = V ′, E = E′, lvert = l′vert , and ledge = l′edge .

Weighted Majority: For NKBs that have one label per edge, given l /∈ K(v) and
¬l /∈ K(v), let sumWPos and sumWNeg be two values calculated as follows:
sumWPos =

∑
e∈I weight(e); where I = {e ∈ E | e = (v, src(p)), lit(p) = l, p ∈ P}.

sumWNeg =
∑

e∈J weight(e); where J = {e ∈ E | e = (v, src(p)), lit(p) = ¬l, p ∈ P}.
If sumWPos > sumWNeg then ¬l /∈ K′(v); if sumWPos < sumWNeg then l /∈ K′(v).

The following definition characterizes different types of local revisions.

Definition 6. A local NKB revision operator is basic if it satisfies Structural
Preservation, Local Effect, Consistency, Uniformity, and Inclusion. Let ~ be a
basic local NKB revision operator:
~ is restrained if it satisfies Strong Congruence, Vacuity 1, and Vacuity 2.
~ is weakly restrained if it satisfies W. Congruence, and W. Vacuity 1 and 2.
~ is social if it satisfies Weak Success, and either Majority or Weighted Majority.

Towards Constructions based on User Types. We now briefly discuss how
the operator types presented above could be used, along with characterizations of
different user types, to construct concrete operators. Though the actual construc-
tions are not discussed here, we take an important first step in the next section
by showing how different user types can be detected in real-world datasets.

Credulous users adopt all new knowledge that they see in their feeds, even if it
contradicts their previously-held beliefs.

Incredulous users are reluctant to incorporate new knowledge appearing in their
feeds, regardless of whether it has any relation with their previously-held beliefs.

Users with herd behavior accept new information as long as there are enough
other users adopting it.

Blind followers accept new knowledge being shared by their contacts, as long as
such contacts have a close enough relation to them.



User Avg. Tweet Reaction

u1

3% (61% / 36%)
2% (73% / 25%)
38% (8% / 54%)

u2

0% (39% / 69%)
0% (53% / 47%)
20% (0% / 80%)

u3

2% (54% / 44%)
0% (67% / 33%)
34% (4% / 62%)

u4

23% (13% / 64%)
1% (60% / 39%)
7% (25% / 68%)

User Avg. Tweet Reaction

u5

0% (0% / 100%)
0% (0% / 100%)
0% (0% / 100%)

u6

9% (2% / 89%)
0% (31% / 69%)
1% (9% / 90%)

u7

24% (2% / 74%)
1% (55% / 44%)
1% (23% / 76%)

u8

1% (43% / 56%)
22% (12% / 66%)
2% (23% / 75%)

User Avg. Tweet Reaction

u9

67% (0% / 33%)
0% (92% / 8%)
0% (62% / 38%)

u10

1% (51% / 48%)
1% (64% / 35%)
32% (2% / 66%)

u11

11% (0% / 89%)
0% (33% / 67%)
0% (10% / 90%)

u12

9% (2% / 89%)
0% (31% / 69%)
1% (9% / 90%)

Fig. 1. Summary of user reactions to news items. The first line contains the % of
positive; in parentheses we show the % of changes in sentiment and the % of times the
hashtag was not used again; the other two lines are analogous for negative and neutral.

Cautious users do not adopt new knowledge unless a selected group of their
connections do.

Self-confident users assign more value to their previously-held beliefs, making it
difficult for them to incorporate new information that contradicts them.

Combining operator and user types, we can in theory arrive at 18 different kinds
of operators. In future work, we will formally characterize their construction.

3 Experimental Evaluation

The dataset is a subset of the Twitter network, with 184,654 users connected
by 66,827,454 follow relationships, and 18,292,721 tweets. Hashtags are present
in 5,107,986 tweets, and there are 136,809 distinct hashtags. Our objective is to
show that by analyzing information flow in a social network, one can build a map
of users based on how they behave—the goal is to inform the construction of local
NKB revision operators as discussed above. We used hashtags as proxies for news
items; to obtain the sentiment associated with the use of each hashtag, we used
PHPInsight. We identified the 100 most prevalent hashtags and selected 12 users.
For each one, we analyzed the sentiment of the tweet via which each hashtag
reached their feed (either positive, negative, or neutral), and then analyzed how
they reacted—either tweet using the hashtag (again, with positive, negative, or
neutral sentiment) or to not use that hashtag in any of their subsequent tweets.

Results are shown in Figure 1; we averaged the sentiment distribution of the
tweets seen by each user, yielding 29% positive, 19% negative, and 52% neutral.
We summarize users’ reactions as an average over all hashtags seen. Users u1–u3,
and u10 can be seen as self-confident, as they almost never reuse hashtags with
the same sentiment when receiving them with positive or negative. Users u4, u7,
u9 behave similarly, but more for positive tweets, either reusing positive tweets
or changing the sentiment of negative ones; u8 is a dual case. User u10 tends to
change the sentiment of what they receive when its positive or negative. This
analysis also detects “dead end” users such as u5, u6, u11, u12.
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