
Practical Fixed-Domain Reasoning
for Description Logics – Extended Abstract

Sarah Alice Gaggl, Sebastian Rudolph, and Lukas Schweizer

Technische Universität Dresden, Computational Logic Group
firstname.lastname@tu-dresden.de

In this extended abstract, we report on our work on fixed-domain reasoning
published at the 22nd European Conference on Artificial Intelligence [6].

Introduction. The Web Ontology Language OWL [13] comes with comprehen-
sive modeling tool support. This sometimes leads to situations where OWL is
the modeling paradigm chosen over other formalisms, even if the application
scenario does not match the typical usage of this language. For example, prob-
lems of a constraint-satisfaction nature do not go well with OWL’s standard
semantics which allows for models of arbitrary size.

Example 1 Assume we want to find out if, in a given graph (V,E), a Hamil-
tonian path from vertex vα to vertex vω exists. Using one individual name v for
every vertex v ∈ V , one might come up with the axioms (in description logic no-
tation) noedge(v, v′) whenever (v, v′) /∈ E, as well as > v ≤1edgeonpath.> u
≤1.edgeonpath−.> and ¬{vα}v∃edgeonpath−.> and ¬{vω}v∃edgeonpath.>,
requiring that all nodes have exactly one incoming and one outgoing edge that is
on the Hamiltonian path, except for vα which just has an outgoing and vω which
just has an incoming such edge. The axiom {vα} v (∃edgeonpath.)|V |−1{vω}
expresses that there is an edgeonpath-path of length |V | − 1 from vα to vω.
The axiom Dis(edgeonpath, noedge) ensures that the path can never go along
“no-edges”. Under the usual semantics, however, this set of axioms is always sat-
isfiable since models may contain “anonymous” elements that do not correspond
to any of the node individual names. The given formalisation is only appropriate
if we restrict to models with domain V .

To overcome these shortcomings, we propose fixed-domain reasoning for de-
scription logics (DLs), imposing a non-standard model-theoretic semantics that
restricts the domain to an explicitly given, fixed finite set.

Models over Fixed Domains. In DLs, models can be of arbitrary cardinality.
In many applications, however, the domain of interest is known to be finite. In
fact, restricting reasoning to models of finite domain size (called finite model
reasoning, a natural assumption in database theory), has already become the
focus of intense studies in DLs [4, 11]. As opposed to assuming the domain to be
merely finite (but of arbitrary, unknown size), we consider the case where the
domain has an a priori known cardinality and use the term fixed domain.

Definition 1 (Fixed-Domain Semantics). Given a non-empty finite set ∆
of individual names, called fixed domain, an interpretation I=(∆I , ·I) is said to

be ∆-fixed (or just fixed, if ∆ is clear from the context), if ∆I = ∆ and aI = a
for all a ∈ ∆. Accordingly, for a DL knowledge base K, we call an interpretation
I a ∆-model of K, if I is a ∆-fixed interpretation and I |= K. A knowledge base
K is called ∆-satisfiable if it has a ∆-model.

Enumeration of ∆-Models. As mentioned before, our approach aims at sce-
narios like constraint satisfaction problems where a knowledge base is a formal
problem description for which each model represents one solution; in particular
the domain is part of the problem description and hence fixed a-priori. Then,
retrieval of one, several, or all models is a natural task, as opposed to merely
checking model existence. We let model enumeration denote the task of making
the ∆-models of a knowledge base explicit.

Axiomatization of ∆-Models. When introducing a new semantics for some
logic, it is worthwhile to ask if existing reasoners can be used. Obviously, as-
suming ∆ = {a1, . . . , an}, adding the DL axiom > v {a1, . . . , an} as well as
the set of inequality axioms containing ai 6= aj with i < j to K will (up to
isomorphism) rule out all models of K, not having ∆ as their domain. Denoting
these additional axioms with FD∆, we find that K is ∆-satisfiable iff K ∪FD∆
is satisfiable under the classical DL semantics. Consequently, any off-the-shelf
SROIQ reasoner can be used for fixed-domain reasoning, at least when it comes
to the classical reasoning tasks.

Complexity Analysis. We report on complexities of classical reasoning tasks
under the fixed-domain semantics. Note that, next to the size of the considered
knowledge base the size of the domain |∆| contributes to the input size of the
reasoning problems considered.

The combined complexity of standard reasoning in SROIQ is known to be
N2ExpTime-complete, both for arbitrary models and finite models [9]. Restrict-
ing to fixed domains leads to a drastic drop in complexity. Contrarily, imposing
fixed domains on (allegedly) inexpressive fragments such as DL-Litecore, turns
reasoning into a harder problem.

Let DLmin be a minimalistic description logic that merely allows TBox axioms
of the form A v ¬B, with A,B ∈ NC . Moreover, only atomic assertions of the
form A(a) and r(a, b) are admitted.

Theorem 1. Fixed-domain satisfiability checking in any language between DLmin

and SROIQ is NP-complete.

We next consider the complexity of query entailment for DLs. Again, we will
notice a very uniform behavior over a wide range of DLs and query types.

Bounded-arity Datalog queries over DLs are rather expressive, they subsume
many of the prominent query classes in knowledge representation and databases,
including (unions of) conjunctive queries, positive queries, (unions of) conjunc-
tive 2-way regular path queries [5], positive 2-way regular path queries, (unions
of) conjunctive nested 2-way regular path queries [1], and regular queries as
defined in [10]. We obtain the following theorem.

Theorem 2. For any class of queries subsuming conjunctive queries and sub-
sumed by bounded-arity Datalog queries and any DL subsuming DLmin and sub-
sumed by SROIQ, the combined complexity of fixed-domain query entailment is
ΠP

2 -complete.

Practical Fixed-Domain Reasoning. When axiomatizing the fixed-domain
semantics, available OWL reasoners struggle with standard reasoning, and we
supported this statement with an evaluation. Thus, a more viable approach is re-
quired for realizing fixed-domain reasoning. To this end, we propose an encoding
of arbitrary SROIQ knowledge bases into answer set programming (ASP) [2].
This allows us to use existing ASP machinery to perform both standard reason-
ing as well as the non-standard tasks model enumeration and query entailment
quite elegantly.

We now briefly sketch how reasoning tasks w.r.t. the fixed-domain seman-
tics can be encoded by ASP. Intuitively, the set of all ∆-interpretations defines
a search space, which can be traversed searching for ∆-models, guided by ap-
propriate constraints. We thus propose a translation Π(K, ∆) for any SROIQ
knowledge base K; i.e. Π(K, ∆) = Πgen(∆) ∪ Πchk(K), consisting of a generating
part Πgen(∆) that defines all potential candidate interpretations using so-called
guessing rules, and a constraining part Πchk(K) containing only integrity con-
straints (i.e., rules with empty heads) that rules out interpretations violating
axioms in K.

We implemented our translation based approach as an open-source tool –
named Wolpertinger.1 The obtained logic programs can be evaluated with most
modern ASP solvers. However, the evaluation was conducted using Clingo [7]
for grounding and solving, since it is currently the most prominent solver leading
the latest competitions [3].

For satisfiability checking, we conducted some preliminary tests, comparing
our tool to the popular HermiT and Konclude reasoners [8, 12]. Both are full
OWL 2 DL reasoners and are leading the latest competitions. We are aware that
these reasoners are designed for and optimized toward open-world scenarios, the
conducted tests shall merely show the feasibility of our approach in comparison
to standard DL reasoners using the previously discussed axiomatization.

Among other experiments, we created a knowledge base modeling fully and
correctly filled Sudokus, beginning with a 6×6 field, consisting of 64 individuals,
13 concept names and 1 role name, then extending the size to a 9× 9 field
featuring 108 named individuals. While HermiT & Konclude were still able to
detect satisfiability for the 6×6 case, invoking a satisfiability test on the 9×9
case did not yield any answer within 30 minutes. In both cases Wolpertinger

detected satisfiability with reasonable runtimes of below 10 seconds.

For model enumeration, we used the knowledge base for the 9×9 Sudoku and
turned the task into generating new Sudoku instances. We observed that, besides

1 https://github.com/wolpertinger-reasoner/Wolpertinger

a constant time of around 6 seconds required for grounding, even requesting 106

models is reasonably efficient, i.e., it requires less than 5 minutes.

Conclusion and Future Work. The fixed-domain semantics allows to confine
modelhood of interpretations to models of the right form, for OWL ontologies
which represent constraint-type problems. Although OWL still imposes some
restrictions regarding expressivity (e.g., by restricting the arity of the used pred-
icates to 1 and 2), we argue that quite large and involved problem scenarios can
be modeled by OWL ontologies. Clearly, more comprehensive evaluations of our
system with respect to such ontologies remain as imperative issue. Moreover,
translations of fixed-domain reasoning problems into other formalisms are con-
ceivable, including pure CSP languages or even SAT, which would have to be
implemented and compared against the ASP approach.

Another interesting strand of research would be to consider extensions of
the source formalism, e.g. by non-monotonic features. As ASP itself is a non-
monotonic logic programming formalism, rule-based extensions of OWL – mono-
tonic or non-monotonic – should be straightforward to accommodate.

Finally, we plan to incorporate typical ontology engineering tasks such as
explanation and axiom pinpointing into our ASP-based framework.

References

1. M. Bienvenu, D. Calvanese, M. Ortiz, and M. Simkus, ‘Nested regular path queries
in description logics’, in Proc. KR (2014).

2. Gerhard Brewka, Thomas Eiter, and Miros law Truszczyński, ‘Answer set program-
ming at a glance’, Commun. ACM, 54(12), 92–103, (2011).

3. F. Calimeri, M. Gebser, M. Maratea, and F. Ricca, ‘Design and results of the 5th
answer set programming competition’, Artif. Intell., 231, 151–181, (2016).

4. D. Calvanese, ‘Finite model reasoning in description logics’, in Proc. DL (1996).
5. D. Calvanese, T. Eiter, and M. Ortiz, ‘Regular path queries in expressive descrip-

tion logics with nominals’, in Proc. IJCAI (2009).
6. S. A. Gaggl, S. Rudolph, and L. Schweizer, ‘Fixed-domain reasoning for description

logics’, in Proc. ECAI (2016).
7. M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. T.

Schneider, ‘Potassco: The Potsdam Answer Set Solving Collection’, AI Communi-
cations, 24(2), 107–124, (2011).

8. B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, ‘HermiT: an OWL 2
reasoner’, Journal of Automated Reasoning, 53(3), 245–269, (2014).

9. Y. Kazakov, ‘RIQ and SROIQ are harder than SHOIQ’, in Proc. KR (2008).
10. J. L. Reutter, M. Romero, and M. Y. Vardi, ‘Regular Queries on Graph Databases’,

in Proc. ICDT (2015).
11. S. Rudolph, ‘Undecidability results for database-inspired reasoning problems in

very expressive description logics’, in Proc. KR (2016).
12. A. Steigmiller, T. Liebig, and B. Glimm, ‘Konclude: System description’, Journal

of Web Semantics, 27, 78–85, (2014).
13. W3C OWL Working Group, OWL 2 Web Ontology Language: Document Overview,

W3C Recommendation, 2009.

