
Improving Taxonomy Maintenance: Automated
Splitting and Merging of Taxonomies

Moritz Flöter2, Pascal Reuss12, Johannes Ude2, and Klaus-Dieter Althoff12

1 German Research Center for Artificial Intelligence
Kaiserslautern, Germany
http://www.dfki.de

2 Institute of Computer Science, Intelligent Information Systems Lab
University of Hildesheim, Hildesheim, Germany

http://www.uni-hildesheim.de

Abstract. In Case-Based Reasoning (CBR), taxonomies are often used
to model similarities. For complex domains and tasks such taxonomies
tend to increase in size making them hard to model and maintain. This
especially holds true if a group of people is working on the same taxonomy
simultaneously. In this paper, we propose a solution by dividing larger
taxonomies into sub-taxonomies, which can be regarded as individual
and independent taxonomies. Through compilation, they can be merged
and put back into their original context.

1 Introduction

For structured CBR systems, taxonomies are a relatively efficient way of defining
similarities between different values of a certain attribute. This is achieved by
ordering the possible values in hierarchical form as nodes of a tree and assigning
similarity values to each node [2][3]. Beginning from the most general descriptor
for the attribute in the root node, the values on each child node get more and
more specific towards the leaf nodes of the tree. The similarity values follow
that pattern usually starting at 0.0 for the root node and ending at 1.0 for the
leaves. The value of each node serves as its unique identifier as the calculation of
similarities has to be consistent. Once the tree is complete, the similarity between
two different known values of the same attribute is calculated by choosing the
closest common predecessor in the tree-structure. In case the attribute-values are
identical or if the query contained a more general attribute-value that is a direct
predecessor to the value in a case from the case-base, the resulting similarity is
1.0. It should be noted that the same concepts for similarity-calculation remains
applicable in our approach for a compiled taxonomy.

Modeling taxonomies can be difficult and can cause a high effort, especially
when modeling hundreds of values in a single taxonomy. For example, a taxon-
omy of aircraft systems may contain several thousand values from components
(e.g. cabin) to systems (e.g. in-flight entertainment system), to system parts (e.g.
audio system) to so-called Line-Replaceable-Units (LRU, e.g. display, speaker).
Modeling each system or system part in an individual taxonomy would reduce

Copyright © 2017 by the paper’s authors. Copying permitted only for private and academic purposes.
In: M. Leyer (Ed.): Proceedings of the LWDA 2017 Workshops: KDML, FGWM, IR, and FGDB.
Rostock, Germany, 11.-13. September 2017, published at http://ceur-ws.org

http://www.dfki.de
http://www.uni-hildesheim.de

the modeling and maintenance effort, but similarity computation between values
of different taxonomies will become very difficult. Therefore, splitting a big tax-
onomy into smaller sub-taxonomies solves just a part of the effort problem. To
compute the similarities between values of different sub-taxonomies, the relevant
sub-taxonomies should be merged during retrieval. This way, the modeling and
maintenance effort is reduced, while still allowing a comparison of values from
different sub-taxonomies.

The motivation for this work has its seeds in the OMAHA research project[4].
In this project we modeled taxonomies for aircraft systems with several thousand
nodes. A taxonomy with three subsystems has 7668 nodes. Maintenance of this
taxonomies is only possible with high effort. Therefore, the idea is to split up
the big taxonomies into several smaller taxonomies with only dozens of nodes.
This way we could maintain the smaller taxonomies with less effort. To have the
same effect on similarity as the origin taxonomy, the smaller taxonomies have to
be merged for similarity measurement.

For the rest of this paper, we will regard taxonomies from their structural
point of view, namely trees. When splitting up this structure, there are some
obstacles that need to be overcome. It is important that the similarity measure
of the sub-taxonomies can be used even when the respective attribute values are
put back into their original context. Furthermore, because we are splitting up a
structure, that could mean that some parts of the structure are reused at more
than one single point. This offers the chance of eliminating redundant work on
repetitive parts of the taxonomy, but also forces us to consider means to keep
the nodes uniquely identifiable.

This paper is structured as follows, in Section 2 we describe some related
work and distinguish our approach from previous research. Section 3 describes
in more detail the approach of splitting and merging taxonomies and its imple-
mentation within the tool myCBR[1]. We then give an argumentative evaluation
and conclude with an outlook on future work.

2 Related Work

There is plenty of research on taxonomies and on combining and merging them,
that is not directly related to CBR. Several algorithms have been described to
merge different taxonomies and to unify them, such as RCC-5[10] or the Ex-
tended Integrated Taxonomy Generation algorithm[8]. These algorithms merge
taxonomies from different sources into a target taxonomy. During the merge
process duplicate values are removed, sub-taxonomies and leaves are combined,
and sometimes unused nodes are removed. The intention of these algorithms is
to unify the values of different taxonomies to put them into a common context.
Our approach tends not to unify the values of smaller taxonomies, but allows
the integration of several taxonomies via reference nodes into another taxonomy.
This way we also put the taxonomies into a common context, but with the focus
on similarity computation during retrieval.

There is also some research in the context of dynamic similarity measures.
Approaches range from dynamic similarity on databases[6] via their use in data
mining and clustering[9] to adaptive similarity measures in CBR[7]. These ap-
proaches use similarity measures to retrieve data from data sources while dy-
namically adapting these measures depending on the content of the query. Our
approach also allows a dynamic similarity measure, using the dynamic composi-
tion of taxonomies for retrieval. This can be done by the user before the retrieval
or depending on the content of the query during the retrieval. This allows us
to compose a taxonomy as similarity measure for attributes depending on the
required information from sub-taxonomies.

3 Splitting and Merging of Taxonomies

In this section we describe our approach for splitting and merging taxonomies
and the current implementation in the open source tool myCBR.

3.1 General introduction to the concept of splitting taxonomies

Before splitting up taxonomies and being able to combine them dynamically, it is
necessary to model an interface between taxonomies that defines their relation.
By assigning a unique identifier to each sub-taxonomy, it is possible to reference
them when needed. A node in one taxonomy could for example reference an
entire separate taxonomy by its name. As trees contain one single root element,
the referencing node therefore gets replaced with the root-node of the referenced
taxonomy. If a referenced sub-taxonomy can not be found, for example because
it was deleted, the referencing node will be treated as a leaf node.

Because the important part in the context of CBR is the use of taxonomies as
similarity measures, the similarity values of the sub-taxonomies have to remain
consistent. Maintaining the original values of the original single taxonomy would
be the most obvious solution but does defeat the purpose of splitting the taxon-
omy in the first place. If all similarity-values of the nodes are simply kept, the
sub-taxonomies continue to be dependent on the context from which they are
referenced from. It should be possible to model the similarity values of each sub-
taxonomy individually without that kind of dependency to use a sub-taxonomy
as an individual similarity measure. This also allows the same sub-taxonomy to
be reused in multiple contexts by multiple different taxonomies - even across
different projects - that reference it.

Considering that a typical taxonomy has the similarity value of 0.0 in its
root node and that similarity-values have to increase from the root towards the
leaves of the taxonomy, a solution to this problem has to adjust the similarity
values of the referenced sub-taxonomy when inserting it back into the project-
context. When inserting a sub-taxonomy into another taxonomy, the important
parameter to define the context is the similarity-value in the referencing node.
Therefore, it is also important that a referencing node keeps the value that was
originally in place at its position when a taxonomy is split.

Fig. 1. Taxonomy with Reference

form factor

mobile stationary

Workstation ServerLaptop
REFERENCE
other mobile

devices

other mobile
devices

Smartphone Tablet

Taxonomy: form factor

Taxonomy: other mobile devices

3.2 Merging of taxonomies

Once taxonomies are separated it should be possible to merge them together
into a single taxonomy that can directly be used in the context of CBR. For the
merging procedure we propose the compilation of a combined taxonomy, based
on a formula that adjusts the similarity-values of a sub-taxonomy when inserted
into a taxonomy that references it.

In the following formula the similarity value of the referencing node is repre-
sented by simreferencing while simreferenced.root represents the value stored for
the root node of the referenced taxonomy. Given the old similarity value of any
node of the referenced sub-taxonomy simold, it is possible to calculate a new
similarity-value simcalculated for the node in the project-context.

simcalculated = simreferencing +
simold − simreferenced.root

1− simreferenced.root
(1− simreferencing)

This formula proportionally maps the similarity values of the referenced sub-
taxonomy from the interval [simreferenced.root, 1] to the interval [simreferencing, 1].
If simreferencing or simreferenced.root is already 1.0, all nodes of the sub-taxonomy
are inserted into the project-context with the similarity-value of 1.0. The map-
ping is achieved following the pattern of the mathematical mapping from a
source-interval to a target-interval as shown later in this section with xmapped.

Depending on the conventions of a project, one might assume that simreferenced.root

always carries the value 0.0. This does however not have to be the case. Some
projects might choose to keep their existing values when they split taxonomies
because the people working on the different parts of the taxonomy are already

used to seeing specific values for their part of the taxonomy. Using the proposed
version of the formula, that remains possible while assuming simreferenced.root =
0.0 would offer the possibility to further simplify it.

Fig. 2. Calculation of Similarity-Values

form factor
sim = 0

mobile
sim = 0.2

stationary
sim = 0.5

Workstation
sim = 0.8

Server
sim = 0.6

Laptop
sim = 0.8

REFERENCE
other mobile

devices
sim = 0.4

other mobile
devices

sim = f(0)

Smartphone
sim = f(0.5)

Tablet
sim = f(0.5)

Taxonomy: form factor

Taxonomy: other mobile devices

Calculation of similarity-values with the propsed formula
For this graphical representation simplified to: f(sim_old)

Given that all nodes below the referencing node have higher or equal calcu-
lated similarity-values compared to it, the condition to have increasing similarity-
values from top to bottom is fulfilled.

In the following, we describe the merge process of taxonomies. We call the
referencing taxonomy TaxA while the referenced taxonomy is called TaxB. The
similarity-values of the nodes in TaxA remain the same as before. TaxB initially
starts with a root-node that carries the same similarity-value as the referencing
node. All other nodes are assigned the same similarity-values as before.

Because the goal is to be able to look at the taxonomies as separate and
independent constructs, the values of TaxB are now mapped proportionally from
the original interval [simreferencing, 1] to [0, 1]. TaxB now carries similarity-
values that are detached from the original project-context.

Finally and most importantly, the resulting values calculated for the project-
context are actually identical to the values of the original taxonomy. In fact it
does not matter to which interval [b, 1] we mapped the original values to as long
as b 6= 1.

Proof (Calculated similarity-values are identical to original after merge).
Assuming the original values of a sub-taxonomy were mapped from [a,1] to
[b,1], a, b 6= 1 and a given mapped similarity simmapped of an arbitrary element
from that sub-taxonomy, we have to prove for that the calculated similarity
based on simmapped is the same as the original similarity simoriginal (simcalc =
simoriginal)

Note: b=a is not excluded
Inserting into the formula, we get

simcalculated = a +
simmapped − b

1− b
(1− a)

As proportional mapping from an interval [g, h] to another interval [i, j]
follows the scheme

xmapped = i +
x− g

h− g
(j − i)

and we originally mapped from [a,1] to [b,1], we get

simmapped = b +
simoriginal − a

1− a
(1− b)

⇒ simcalculated = a +
b +

simoriginal − a

1− a
(1− b)− b

1− b
(1− a)

= a +

simoriginal − a

1− a
(1− b)

1− b
(1− a) = simoriginal

�

3.3 Compilation of taxonomies

When implementing the compilation algorithm for sub-taxonomies, the basic
structure follows the patterns used for conventional trees. Each node contains a
descriptive id which matches an attribute value of the CBR application and a
similarity value. A non-leaf node may have children nodes attached directly to
it or via a reference to another taxonomy.

In our implementation the decision between children nodes and a reference
is exclusive in order to keep the overall structure as simple to understand as
possible. This, however, is a pure design decision and does not impose a tech-
nical restriction. The decision was made in order to achieve a clear distinction
between the two different ways in which children may be included. Nodes that
reference another taxonomy are called referencing nodes while others are called
non-referencing nodes.

The compiler gets passed a set of sub-taxonomies as resources for the com-
pilation as well as the information on which sub-taxonomy defines the root of

the desired output. Because all of the sub-taxonomies are referenced by their
id/name, it makes sense to use a key-value mapping for efficient access to the
requested sub-taxonomy.

When inserting the same taxonomy multiple times into one big taxonomy
at different referencing nodes, the identification of the different instances of the
sub-taxonomy needs to remain unambiguous. For those use-cases, the compiler
offers the option to generate unique names for each of the nodes by inserting
the name of the referencing nodes parent as a prefix before the names of the
nodes in the referenced taxonomy. Using ’:’ as a separator symbol between the
names, the names for the taxonomy-nodes from ’other mobile devices’ as shown
in Figure 2 would result in ’mobile:other mobile devices’, ’mobile:Smartphone’
and ’mobile:Tablet’.

Figure 3 shows an overview of the algorithm executed in order to compile
the taxonomy. It should be noted that the algorithm treats directly attached
children and children that are inserted by reference in exactly the same way. A
referencing node gets replaced by the node that it references and the children of
that referenced node are considered its children.

Fig. 3. Overview of the Compilation-Algorithm

Creation of an empty
tree/taxonomy as target
(the root of that tree is
the first target node)

Following the context of the
target node

Transfer of adjusted values
from the original node:

- Similarity
- Name

XOR

original is
non-referencing node

original is
referencing node

Adjustment of context parameters:
- sim_referencing

- sim_reference.root
- prefix

Readjustment of node values:
-similarity of current target node
- id/name of current target node

under consideration of the new
context-parameters

for every childnode of the original node:
Addition of a new node underneath the
current node in the target taxonomy as

new target node

compileNode

compileTaxonomy

3.4 Runtime depending on input size

We define the number of nodes of the resulting taxonomy as input length n.
This definition of the input length is somewhat unconventional as it assumes
information about the resulting taxonomy. It still makes sense though when put
into the context of our concept. The alternative to this algorithm and concept
is to have large singular taxonomies with all their disadvantages. The concept
of subtaxonomies offers the possibility to represent the same taxonomies in a
simplified way - therefore taking the resulting singular taxonomy as input size
is not as far fetched as it might seem at first. The basic processing of each node
happens in O(1) as the only action performed for each node is the adjustment
of its values. Each node needs to be processed one time resulting in O(n) for the
average, worst and best case. The part where a non-linear increase of the runtime
is possible would be the process of finding the according taxonomy for a reference.
As mentioned before, an access-optimize storage model for access from a given
name/identificator of a taxonomy would make sense here. The expected effort
for finding elements by using hashing is within O(1) depending on the amount
of elements in the hashtable compared to the size of the hashtable [5, Chapter
6.4]. While the worst case can be O(n), optimized hybrid implementations like
Java 8’s HashMap offer a runtime of O(log(n)) for the worst case by using search
trees.

The algorithm is able to efficiently compile a taxonomy within an expected
runtime of O(n). In the end even the worst case runtime of the algorithm is in
O(n ∗ log(n)). It should be noted that this would assume that the largest part
of nodes are referencing nodes, which does not make sense in real life scenarios
for obvious reasons. Assuming a low (compared to the number of nodes in total)
and constant number of referencing nodes we further approach O(n) even when
hitting the worst case for the hashtable.

3.5 Implementation within myCBR

myCBR is an open source tool and library for CBR modeling and retrieval
tasks that integrates structural CBR into an easy to use interface, the myCBR
workbench and can also be accessed through an API. It is a joint effort of the
Competence Center CBR at DFKI, Germany, and the School of Computing and
Technology at UWL, UK. Various industry partners like Airbus and Lufthansa
Industry Solutions work together with those institutes to explore new possibili-
ties and approaches to CBR systems[4].

Before the integration of sub-taxonomies into myCBR, the tool already of-
fered support for traditional taxonomies that was used as the basis for the in-
tegration. As a matter of fact, the integration was achieved while keeping the
existing calculations for similarities between cases intact. Sub-taxonomies get
compiled into a construct that remains largely unchanged from the original
structure which was already used before for the calculation of similarities be-
tween cases.

While adding the functionality for sub-taxonomies along with cycle-detection3

during the compilation of sub-taxonomies to the SDK, the user interface also
had to be adjusted.

We created a separate perspective for sub-taxonomies in the workbench,
where all sub-taxonomies are collected. The tool myCBR separates attributes
and similarity functions in a way that different types of similarity functions can
be assigned to an attribute. The addition of the function-type ’Sub-taxonomy’
allows to assign a single sub-taxonomy to an attribute that is then compiled to
a complete taxonomy using all other sub-taxonomies that exist in the project.

Traditional taxonomies that existed in older myCBR projects can be im-
ported as sub-taxonomies. The export of single sub-taxonomies is also possible
to transfer them to other myCBR projects. Those taxonomies can be split ac-
cording to their logical parts (e.g. every system inside of a plane gets its own
sub-taxonomy for the plane-taxonomy). However, it serves the purpose of low-
ering the effort for maintenance to pay special attention to duplicate (sub)parts
inside of existing taxonomies.

Processing a traditional taxonomy to gain a set of sub-taxonomies that elim-
inates duplicate information is a workflow which consists of three steps. First we
check if at least one of the imported taxonomies can be simplified. A taxonomy
can be simplified if there is repetitive information across several taxonomies or
within the same taxonomy. If there are several taxonomies that can be simplified,
we use the new myCBR functions to split the repetitive part from the original
taxonomy. Then we use set reference to replace the according part in all other
taxonomies. After this process we check again if the taxonomies can be simpli-
fied even further. If no further simplification is possible, the workflow is finished.
Figure 4 shows an event-driven process chain for this workflow.

Fig. 4. Workflow to simplify taxonomies with myCBR Workbench

a new set of
taxonomies is

imported

check if the
taxonomies can

be simplified
XOR

the taxonomies
can be

simplified

the taxonomies
can not be
simplified

split taxonomy

myCBRmyCBR

taxonomy is
split

set referencesXOR

myCBR

references are
set

function

event

component

Figure 5 shows the interface of the myCBR-Workbench in the ’Sub-taxonomies’-
perspective.In order to use a sub-taxonomy for the calculation of similarities for
an attribute, the user has to switch to the ’Modeling’-perspective and add a
Sub-taxonomy-Function as a similarity function to an attribute inside of the

3 For example: TaxA references TaxB and TaxB references TaxA resulting in a circle

Fig. 5. Compilation of sub-taxonomies

current project. By assigning a Sub-taxonomy-Function as similarity function,
the user can now choose any of the taxonomies contained in the collection of
sub-taxonomies inside of the project. That taxonomy will be used as the root
taxonomy for the compilation of a single taxonomy out of all referenced sub-
taxonomies.

As a result of the selection, the taxonomy gets compiled and myCBR can
now perform the same similarity-calculations on that taxonomy that were possi-
ble before, using traditional taxonomies. In contrast to traditional taxonomies,
this compiled version of sub-taxonomies can not be modified directly. All modi-
fications have to be performed directly on the sub-taxonomies which it consists
of. After modification of one or multiple of those sub-taxonomies, the user can
choose to recompile this taxonomy at any time by clicking ”Reload from Sub-
taxonomies”.

4 Evaluation

Following the principle of separation of concerns it makes sense to split up a
taxonomy into multiple meaningful parts. Being able to regard each resulting
part separately allows for individual modeling thereby making work easier for the
ones working on the different parts. Without using the concept of sub-taxonomies

proposed in this paper, a change in a parent node needs to be reflected in all
the nodes that succeed it. In our concept, each sub-taxonomy that is integrated
under the according node through compilation does not need to be touched.
In instances where parts of a taxonomy are reused across multiple projects or
multiple taxonomies in the same project, there is also less modeling effort as the
changes do not need to be copied over through multiple taxonomies anymore
and can instead be implemented by one single sub-taxonomy.

While we already demonstrated the feasibility of using sub-taxonomies through
mathematical means earlier in this paper, we also computed multiple random
splits of taxonomies provided by airbus at 20 % of each taxonomies nodes,
mapped each resulting sub-taxonomy from [simroot, 1] to [0, 1] 4 and finally
compared the resulting compiled taxonomies to the original taxonomy checking
for deviations.

Fig. 6. Evaluation Method

Split Normalize Compile Compare with Original

=
?

This process was repeated 10 000 times for the following taxonomies of the
OMAHA research project resulting in the processing of 1 020 000 nodes in all
iterations combined:
tax engine type was split 6 times (Taxonomy size:30 nodes)
sim tax ata was split 10 times (Taxonomy size:52 nodes)
sim tax emitter was split 3 times (Taxonomy size:18 nodes)
default function was split 0 times (Taxonomy size:2 nodes)

Alongside consistency checks on the general structure of the taxonomy (nam-
ing, tree structure), we also measured the average and maximum error between
the nodes of the compiled taxonomy compared to its original counterpart. As
expected, the results showed no measurable deviation from the original taxon-
omy.

5 Summary and outlook

In this paper, we presented a concept that offers the functionality to combine
separately created and maintained sub-taxonomies into a single taxonomy. The
feasibility of this concept has been mathematically proven and demonstrated

4 Mapping → Normalization of the sub-taxonomy

with the integration into the myCBR-project. It was further shown that the
concept does not impose any noteworthy computational overhead.

During the design we aimed for a concept of taxonomies that allows for
efficient maintenance and we assume that the adaption of this concept would
bring benefits to any area where complex and hard to maintain taxonomies are
prevalent. It is possible to separate complex taxonomies with relatively low effort
and risk as similarity values can be kept identical before and after this process.
On top of that our concept makes sharing parts of a taxonomy across one or
multiple projects possible and comfortable.

For the future an evaluation of this concept with respect to the maintenance
effort after and before introduction together with industry partners would be
desirable.

References

1. Bach, K., Sauer, C.S., Althoff, K.D., Roth-Berghofer, T.: Knowledge modeling with
the open source tool mycbr. In: Proceedings of the 10th Workshop on Knowledge
Engineering and Software Engineering (2014)

2. Bergmann, R.: On the use of taxonomies for representing case features and local
similarity measures. In: Proceedings of the Sixth German Workshop on CBR. pp.
23–32 (1998)

3. Bergmann, R.: Experience Management, Foundations, Development, Methodol-
ogy and Internet-Based-Applications. Springer Verlag Berlin Heidelberg New York
(2002)

4. BMWI: Luftfahrtforschungsprogramms v (2013), http://www.bmwi.de/

BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,

property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

5. Knuth, D.: The art of computer programming. Addison-Wesley Pub. Co, Reading,
Mass (1973)

6. Köppelmann, M., Lange, D., Lehmann, C., Marszalkowski, M., Naumann, F., Ret-
zlaff, P., Stange, S., Voget, L.: Scalable similarity search with dynamic similarity
measures (2012)

7. Long, J., Stoecklin, S., Schwartz, D.G., Patel, M.K.: Adaptive similarity metrics
in case-based reasoning

8. Raunich, S., Rahm, E.: Target-driven merging of taxonomies. CoRR abs/1012.4855
(2010), http://arxiv.org/abs/1012.4855

9. Ruiz-Miró, M.J., Miró-Julià, M.: Dynamic similarity and distance measures based
on quantiles. In: Computer Aided Systems Theory – EUROCAST 2015 (2015)

10. Thau, D., Bowers, S., Ludäscher, B.: Merging taxonomies under rcc-5 algebraic
articulations. In: Proceedings of the 2Nd International Workshop on Ontologies
and Information Systems for the Semantic Web. pp. 47–54. ONISW ’08, ACM,
New York, NY, USA (2008), http://doi.acm.org/10.1145/1458484.1458492

http://www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
http://www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
http://www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
http://arxiv.org/abs/1012.4855
http://doi.acm.org/10.1145/1458484.1458492

	Automated Splitting and Merging of Taxonomies and its Useage in myCBR
	Moritz Flöter, Pascal Reuss, Klaus-Dieter Althoff
	Introduction
	Related Work
	Splitting and Merging of Taxonomies
	General introduction to the concept of splitting taxonomies
	Merging of taxonomies
	Compilation of taxonomies
	Runtime depending on input size
	Implementation within myCBR

	Evaluation
	Summary and outlook

