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Abstract. In order to select an optimal set of pivots for dimension reduction, 

such as Simple-Map and sketches based on ball partitioning, we propose a 

method named Annealing by Increasing Resampling (AIR, for short).  AIR as-

sumes that every state is evaluated by using a sample set.  Starting from an arbi-

trary initial state, AIR repeats to transit states by hill climbing, with evaluating 

the resampled sets whose size initially is small and gradually increases.  Exper-

iments verify that AIR can find better sets of pivots than the conventional 

method and in shorter time than simulated annealing.   

Keywords: Similarity Search, Dimension Reduction, Pivot Selection, Simulat-

ed Annealing, Annealing by Increasing Resampling.  

1 Introduction 

Similarity search is one of the most important tasks for information retrieval of multi-

dimensional data.  In this paper, we deal with similarity search in metric spaces, 

where objects within smaller distance are considered similar.  Thus, similarity search 

is a task to find objects near to a given query object.   

When the dimensionality of objects is m, the computational cost to measure dis-

tance between two objects is O(m), and when the number of database objects is n, a 

naïve similarity search by sequential manner needs O(mn) cost, which is unrealistic 

for larger m and n.  In order to weaken the effect of n, hierarchical index structures 

such as R-Tree [1] and M-Tree [2, 3] have been developed.  On the other hand, the 

dimension reduction is a method to avoid influence of m.   

Dimension reductions for Euclidean spaces include K-L transformation (or princi-

pal component analysis, PCA) [4] and FastMap [5].  On the other hand, dimension 

reductions such as H-Map [6] and Simple-Map (S-Map) [7] are applicable to any 

metric spaces metricized by L1 distance, Hamming distance,  string edit distance and 

so on [8].   
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Sketches [9–13] are representations of objects in multidimensional data by com-

pact bit strings to reduce search spaces.  In conventional search with sketches, Ham-

ming distance between sketches is adopted.  However, the mapping to sketches on 

Hamming distance can never imply a dimension reduction.  On the other hand, since 

quantization of S-Map based on Lp distance [14] is regarded as a kind of sketches and 

provides a method to compute the distance lower bound between queries and sketch-

es, it can provide the sketch mapping implying a dimension reduction. 

The dimension reduction not only reduces distance computation cost but also 

avoids so-called “the curse of dimensionality”.  For example, it is known that the 

efficiency of R-Tree is decreasing when the dimension is increasing, but the perfor-

mance can be improved if R-Tree is constructed on projected objects into lower di-

mensional space by S-Map.   

In the dimension reduction, the object is projected to a low dimensional data or a 

compact bit string so that the projected distance does not extend with respect to the 

original distance.  Although the projected objects of low dimensions cannot complete-

ly maintain the original distance relationship, it is important to reduce the information 

loss.  Because the projection distance does not extend the original distance, it is guar-

anteed that distant objects in the projection space are far from the original space, so 

“safely pruning” can be done by searching in the projection space.  However, if the 

shrinkage of the distance is large, the object outside the retrieval range actually be-

comes closer in the projection space, resulting in deterioration in retrieval efficiency. 

For PCA, analytically optimal projection can be obtained.  On the other hand, for H-

Map, S-Map and sketches, it has been known no analytically optimal solution, and 

therefore, it is necessary to use random selection with evaluation function as a clue or 

heuristic method such as annealing method.   

In S-Map, the reference object is selected as a pivot [15–17], and the distance be-

tween each object and the pivot is set as a coordinate value, thereby the number of 

coordinates is given as the number of pivots.  Then, the number of pivots at this time 

is the dimensionality of the projection space and the distance between objects in the 

projection space is given as the L∞ distance.  Here, a ball partitioning (BP) is to assign 

0 and 1 to the inside and the outside of a ball of radius r centered on the reference 

object p, respectively.  Then, the sketch using BP can be regarded as the quantization 

of S-Map image to 0 or 1 depending on whether the distance from the pivot p of the 

S-Map is not less than the radius r [14].   

Note that conventional search methods such as random selection, local search and 

simulated annealing and binary quantization method using distribution characteristics 

of data [18] have been adopted to search a set of pivots for S-Map and BP sketches. 

All of them are optimized by evaluating values concerned with samples.  In the S-

Map, the distance preservation ratio is adopted as an evaluation value to maximize it. 

In BP, the collision probability is adopted as the evaluation value to minimize it.  In 

this paper, we propose a new method named annealing by increasing resampling 

(AIR) as an optimization method and verify the effectiveness in pivot selection.   

The simulated annealing (SA) is a search method to transit stochastically accord-

ing to temperature with evaluating values from the current provisional solution to its 

neighbor.  At the beginning, it starts from a state of high temperature and gradually 



lowers the temperature.  At high temperature, the probability of transition to low 

evaluation value is high.  When it has low temperature, it transits only according to 

the evaluation value, that is, it behaves as a local search.  On the other hand, this pa-

per proposes a method named Annealing by Increasing Resampling (AIR, for short), 

where a hill climbing is carried out by using subsample resampled from the sample 

used for evaluation, and the resampling number is gradually increased.  While the 

number of resampling is small, the evaluation error for the entire sample is large, so 

the probability of making a transition to a low evaluation is high.  That is, the transi-

tion using a small number of samples is similar to the random transition at high tem-

perature in SA.  As the number of resampling increases, the error of evaluation gradu-

ally decreases and approaches the local search.  In this way, the behavior of AIR is 

very similar to SA.   

Empirically, in order to obtain a good solution in a wide area by SA, it is necessary 

to increase the number of transitions at high temperature, so it takes much time to 

process at high temperature.  On the other hand, in AIR, process to high temperature 

in SA corresponds to transition using a small number of resamples, and evaluation 

with a small number of samples is low in cost.  Therefore, AIR is possible to realize 

processing at high temperature in low cost, which needs high cost in conventional SA. 

2 Preliminaries 

In this section, we briefly introduce dimension reduction, Simple-Map, and ball parti-

tioning (BP) sketch to which the optimization method proposed in this paper is ap-

plied.   

Let (U, D) and (U′, D′) be two metric spaces, where D and D′ are distance func-

tions satisfying the triangle inequality.  The dimensionality of data x is denoted 

dim(x).  A mapping φ:U→U′ is called a dimension reduction, if the following condi-

tions are satisfied for any x, y  U.   
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Condition (1) means that it reduces the dimensionality, and condition (2) means that 

D′ gives a lower bound of D, respectively.   

A Simple-Map (S-Map) is based on the projection p , using a point p called a piv-

ot, defined as follows.  
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From the triangle inequality, the following formula holds for x, y  U. 
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Using a set },,{ 1 mppP   of pivots, we define an S-Map P  and a distance D′ as 

follows.  
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Thus, when m is smaller than the original dimension, P  becomes a dimension re-

duction. 

Projecting objects with S-Map, the distance between them may shrink.  This 

shrinkage, that is, the distance deficiency, is desired to be small for similarity search. 

Increasing the projective dimension reduces the shrinkage of the distance, but it is 

strongly influenced by “the curse of dimensionality.”  Thus, it is important to mini-

mize the shrinkage of the distance in a lower dimension. The distance preservation 

ratio for a set S of pairs ),( ii yx  of points is the following ratio of sums of distances. 
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Sketches [9–13] are compact bit sequences representing multidimensional data.  In 

this paper, we consider sketches based on ball partitioning (BP).  A pivot for BP is a 

pair (p, r) of a point p and a radius r.  A BP projection ),( rp  using a pivot (p, r) is 

defined as follows. 
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A sketch mapping P  of width w bits is defined by a set of pivots  ,),,( 11 rpP 

),( ww rp  as follows.  
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For example, let consider 4 points A, B, C and D in a Euclidian plane as in Figure 

1. Then, sketches using pivots )},(),,{( 2211 rprpP   are 01)( AP , 00)( BP , 

10)( CP  and 11)( AP .  

The conventional similarity search using sketches consists of two stages.  First, 

candidates are selected based on Hamming distances between sketches.  Then, the 
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Fig. 1. Sketches using two balls 



answer is selected from candidates using actual distance.  As long as Hamming dis-

tance is used, sketch mapping can never imply a dimension reduction.  Ohno et.al. 

[14] proposed a method to compute lower bound of distance using sketches.  There-

fore, such a sketch mapping can imply a kind of dimension reduction.  We use the 

collision probability of a sketch mapping using a set P of pivots as the evaluation 

function in optimization.  We say a collision occurs when two distinct points share the 

same sketch.   

3 Annealing by Increasing Resampling 

First we give several assumptions for optimization problem.  Let  be the search 

space of possible solutions.  We call an element of  a state.  A cost function f gives 

the evaluation value of a state x with respect to a sample set S.  Roughly speaking, an 

optimization problem is to find a solution x from  whose evaluation value is the 

smallest.  The cost function f is desirable to satisfy the following formula for any 

sample sets SSS 21,  and any state x  . 

   ),(),,(max),(),(),,(min 212121 xSfxSfxSSfxSfxSf  (3) 

For example, if f is defined by the average of evaluation values for individual samples 

such as the distance preservation ratio of S-Map, f satisfies the formula (3).  The colli-

sion probability of sketch approximately satisfies the formula (3) except smaller sam-

ple sets.  Further, we assume that the neighbor N(x) of a state x always satisfies the 

following statement.   

)(,, * xNyΦyx 

Here, N* is a reflexive and transitive closure of N. Then, the above statement claims 

that we can get any state y from any x by finitely many applications of N.   

We present the algorithm of Annealing by Increasing Resampling (AIR, for short) 

in Figure 2. Here, the iteration number i of the loop is considered as time, t: ℕ→(0, 1] 

is a monotonic increasing function to give the ratio of resampling number with respect 

to total samples S and T is the total number of state transitions.  Note that resampling 

function AIR(S:samples):state; 

begin 

x := any state; 

for i := 1 to T 

begin 

R := randomly selected samples of size t(i)×|S| from S; 

if f(x, R) > f(y, R) for some yN(x) then 

x := y; 

end 

return x; 

end 

Fig. 2. Algorithm AIR 



at the i-th iteration should be done independently to the preceding resampling.  Be-

cause it is not appropriate for AIR to make the larger set by adding samples to the 

previous smaller set in incremental manner.   

Note that, when t(i) = 1 for any i, AIR always uses total samples for state evalua-

tion, thus, it behaves like so called local search.  We do not care about detail of meth-

od to select a state from the neighbor N(x).  In practice, we may select a state with the 

best evaluation value within a subset of N(x) in a steepest descent manner.   

Since, at the beginning stage, the number of resampled samples R is small, the er-

ror of f(x, R) with respect to f(x, S) becomes large with high probability, and therefore, 

AIR may make state transition to a state with lower evaluation value.  Thus, AIR 

makes random walks as SA at high temperature.  Finally when t(i) becomes close to 

1, AIR behaves as local search because f(x, R)≒f(x, S).   

As for the advantage of AIR, it can make search at the beginning stage faster, be-

cause state evaluation using smaller samples can be done in low cost.  On the other 

hand, a conventional SA needs high cost for state transitions in high temperature. 

There is no significant difference of AIR and SA in convergence speed, because AIR 

can behave almost same as SA by using resampling sizes corresponding to the anneal-

ing schedule.   

4 EXPERIMENTS 

In this section, we give experimental results on optimization of dimension reductions 

S-Map and BP sketch by the proposed method.  We use two kinds of data, feature 

data of images (images) and SISAP colors database (colors). The number of data in 

images is 6.8 million extracted from 1,700 videos and dimensionality n of data in 

images is 64. On the other hand, the number of data in is about 0.1 million and di-

mensionality n of data in colors is 112.  For both data of images and colors, each axis 

has integer value from 0 to 255 and distances between them are L1.   

4.1 Simple-Map 

In this experiment, we adopt m = 8 for the dimensionality of S-Map, which shows the 

best performance in similarity search using R-Tree constructed by S-Map images. 

We use the average value (Ave.) and the standard derivation (S.D.) for distance 

preservation ratio (DPR) to evaluate pivot sets using randomly selected 5,000 pairs of 

features.  AIR finds a pivot set with maximum distance preservation ratio.  A pivot set 

P = {p1, … , pm} consists of mn integers corresponding to m pivots of n dimension. 

The neighbor N(P) of a pivot set P is defined as the set of pivot sets such that any P’ 

in N(P) is the same as P but at one of mn integers.  For data of images, features con-

sist of 8-bit integers from 0 to 255.  Therefore, N(P) consists of 256mn = 256×8×64 

pivot sets.  In our experiments, we implement AIR to randomly choose one of mn 

integers of P, change it from 0 to 255, and move to the best of 256 neighbors of P. 

That is, AIR makes a hill climbing using subsets of neighbors.   



We compare AIR with conventional simulated annealing (SA), binary quantization 

(BQ)[18] and local search (LS).  BQ is a heuristic method using stochastic property of 

data which can find relatively good pivot set within a small computation time.  Table 

1 shows the results for images.  We repeat each method at 10 times.  The computing 

times of BQ and LS are about 50 and 100 seconds, respectively.  For SA and AIR, we 

tuned parameters of the number of state transition trials, which is corresponding to T 

in Figure 2, to compare their computing times with BQ and LS.  We also run SA and 

AIR in about 500 seconds.   

From Table 1, we can observe that AIR can find better pivot sets than BQ in about 

50 seconds and LS in about 100 seconds.  On the other hand, pivot sets by SA are 

almost comparable with BQ and LS.  For every case of computing time about 50, 100 

and 500 seconds, the number of state transition trials by AIR is about 8 times as large 

as one by SA.  This experimentally shows the AIR’s merit to SA pointed out in Sec-

tion 3.   

From Table 2, which shows the results for colors, we can observe the similar be-

havior of AIR to images in Table 1.   

Table 1. Results for Simple-Map (images) 

Method 
Time 

(sec) 

Trials 

(×103) 

DPR (%) 

Ave. S.D. 

BQ 47.9 ― 56.5 0.329 

LS 95.3 ― 56.1 0.357 

SA 

49.2 3 56.5 0.208 

98.0 7 56.9 0.313 

511 40 57.4 0.238 

AIR 

47.5 24 57.3 0.260 

94.2 56 57.4 0.130 

487 330 57.5 0.154 

Table 2. Results for Simple-Map (colors) 

Method 
Time 

(sec) 

Trials 

(×103) 

DPR (%) 

Ave. S.D. 

BQ 84.6 ― 83.2 0.191 

LS 196 ― 83.6 0.307 

SA 

85.7 3 83.2 0.233 

167 7 83.4 0.305 

858 40 83.6 0.324 

AIR 

85.0 24 83.7 0.206 

167 56 83.8 0.210 

880 330 83.9 0.145 



4.2 Sketches 

In this experiment, we adopt w = 32 bits as the width of sketch.  Neighbors of pivot 

set are similarly defined as for S-Map.  Radius of a pivot is selected to equally divide 

space by the ball.  The set S of samples for evaluating pivot sets consists of randomly 

selected 10,000 points from database.  We use collision probability (CP) to evaluate 

pivot set to be minimized.   

We compare AIR with a conventional ball partitioning with random selection (BP), 

BP using binary quantization (QBP).  As for observation of the search performance, 

we show their precision.  Nearest neighbor search using sketches consists of two 

stages.  At first stage, we select candidates using Hamming distance, that is, we select 

the top K nearest data in the meaning of Hamming distance.  At the second stage, we 

select the nearest neighbor from the K candidates.  Search precision is the probability 

that top K candidates include the exact nearest neighbor.  For both databases images 

and colors, we adopt K as the 0.1% of the database size, which is reasonable from 

both viewpoints of speed and precision.   

Table 3 and 4 show results for sketches on images and colors, respectively. 

5 Concluding Remarks 

In this paper, we have proposed a method of Annealing by Increasing Resampling 

(AIR, for short) to select an optimal set of pivots for dimension reduction.  As shown 

in Table 1, 2, 3 and 4, AIR can efficiently find better sets of pivots than the conven-

tional method from the viewpoint of evaluation function used for optimization.  How-

ever, from both Table 3 and 4, from the viewpoint of search precision, the best pivot 

set is found by the conventional method QBP.  However, this is completely the matter 

of evaluation function.  It is a future work to explain the behavior of AIR theoretical-

ly.  For example, we expect that the solution found by AIR will eventually converge 

to the optimum one.  It is also an important future work for similarity search to inves-

Table 3. Results for Sketches (images) 

Method 
Time 

(sec) 

CP (×10－6) Precision 

(%) Ave. S.D. 

BP 116 2.6 0.62 95.2 

QBP 106 2.2 0.50 96.6 

AIR 97.8 1.0 0.46 94.5 

Table 4.   Results for Sketches (colors) 

Method 
Time 

(sec) 

CP (×10－5) Precision 

(%) Ave. S.D. 

BP 174 3.4 0.29 74.7 

QBP 163 7.4 0.96 86.4 

AIR 306 1.3 0.24 67.3 



tigate other evaluation functions than distance preservation ratio for S-Map and colli-

sion probability for sketch.   
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