
Searching an Appropriate Journal for your Paper – an

Approach Inspired by Expert Search and Data Fusion

Andreas Henrich1 and Markus Wegmann2

1 Media Informatics Group, University of Bamberg, Bamberg, Germany

andreas.henrich@uni-bamberg.de
2 markus.wegmann@live.de

Abstract. On an abstract level, one is often confronted with some type of classi-

fication problem where we have one example instance or a textual query and we

are looking for the class most appropriate for this instance or query. More con-

cretely, we consider journals as classes and the papers published in certain jour-

nals as constituting and describing the respective class. In this scenario two in-

formation needs are conceivable: (1) We know one paper and we are looking for

all journals which could potentially contain similar work. (2) We want to write a

paper, have a first working title, and are looking for journals which could be po-

tential targets for a submission of that paper. In this work, we transfer methods

used in expert search and data fusion to find appropriate journals: Using a flat,

title based search query for articles we examine voting models used in expertise

retrieval with its different data fusion techniques to find and rank journals asso-

ciated with the matching articles that potentially contain most suitable other arti-

cles. To evaluate the ranking of found journals, we remove several test articles

from the applied collection and utilize them as request items with their titles. We

assume that—on average—the journals where these test articles have been pub-

lished should be among the top ranked journals to provide a suitable result. This

fully automated evaluation provides the opportunity to execute a huge number of

requests against the collection of articles and to evaluate the different voting tech-

niques transferred from expert search.

Keywords: Expert Search, Expertise Retrieval, IR Systems, Collection Search

1 Motivation and Related Work

One of the approaches introduced for expertise retrieval [1] is based on relevant docu-

ments retrieved by a search query. These documents vote for their associated authors

as candidate experts. In this work, we transfer this approach to another domain:

Our keyword search on a bibliographic collection yields matching articles which

vote for the journals where the articles have been published as beneficial sources or

targets. Our aim is to identify a technique, which yields and ranks journals that poten-

tially contain other publications and resources which match the information need of the

user. This information need targets journals rather than single articles.

Copyright © 2017 by the paper’s authors. Copying permitted only for private and academic purposes.
In: M. Leyer (Ed.): Proceedings of the LWDA 2017 Workshops: KDML, FGWM, IR, and FGDB.
Rostock, Germany, 11.-13. September 2017, published at http://ceur-ws.org

mailto:andreas.henrich@uni-bamberg.de

In a first step, we don’t evaluate the discussed techniques using manually created

test data or test users. Instead, we use article-titles from the collection itself to automat-

ically send these titles as search requests. Since we have the information in which jour-

nal 𝑗 a single article has been published, we can measure the position of this respective

journal 𝑗 in the result ranking and evaluate the algorithms.

This work is based on research in data fusion techniques and their application in the

field of expertise retrieval. Different approaches show, that combining multiple re-

trieval results using voting models can improve retrieval effectiveness [2]. In their sur-

vey, Balog et al. [3] present different approaches used in expertise retrieval including

the document based voting model. Rank- and score-based fusion techniques are listed

and evaluated, mostly based on the work of MacDonald et al. [1]. Furthermore, nor-

malization methods are applied for the underlying candidate expert profiles to gain bet-

ter results. In the mentioned works, it becomes quite significant that the documents in

the upper ranks together with their score values have a disproportionately high impact

on the quality of the fusion results; exponential variants of fusion techniques can have

better results and prove this fact [3].

In the paper at hand, we investigate how such approaches perform in our setting. We

present first promising experimental results and discuss potential future research direc-

tions.

It should be mentioned that existing journal recommenders from publishers—like

EndNote’s manuscript matcher, Elsevier’s journal finder, or Springer’s journal sug-

gester—are obviously related to our approach. However, these systems apply complex

ranking schemes using much more information than our simple approach discussed in

this short paper. The aim of our paper is to investigate the capability of rather simple

voting techniques in the sketched scenario. A comparison with the existing journal rec-

ommenders will be an interesting next step but is out of scope for this short paper.

2 Applied Ranking Techniques

This section describes the utilized ranking techniques. For the flat, title-based article

search—i.e. the underlying document ranking—we use Elasticsearch’s classic TF/IDF

[5] and the BM25 similarity algorithm (cf. section 2.1). For the conversion of the doc-

ument ranking into a journal ranking—or, more general, collection ranking—four dif-

ferent voting schemes are used (cf. section 2.2).

2.1 Document ranking

TF/IDF. The 𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) of a document 𝑑 given a query 𝑞 which consists of terms 𝑡 is

computed as follows 𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) = ∑ (𝑡𝑓(𝑡 𝑖𝑛 𝑑) ⋅ 𝑖𝑑𝑓(𝑡)2 ⋅ 𝑛𝑜𝑟𝑚(𝑑))𝑡 𝑖𝑛 𝑞 . The

term frequency 𝑡𝑓 of term 𝑡 in document 𝑑 is computed as 𝑡𝑓(𝑡 𝑖𝑛 𝑑) = √𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦.

The inverse document frequency 𝑖𝑑𝑓 for term 𝑡 is computed as 𝑖𝑑𝑓(𝑡) = 1 +

 log (
𝑛𝑢𝑚𝐷𝑜𝑐𝑠

𝑑𝑜𝑐𝐹𝑟𝑒𝑞(𝑡) + 1
), where 𝑛𝑢𝑚𝐷𝑜𝑐𝑠 is the number of all documents in the collection

and 𝑑𝑜𝑐𝐹𝑟𝑒𝑞(𝑡) is the number of documents containing term 𝑡.

The normalization factor 𝑛𝑜𝑟𝑚(𝑑) =
1

√𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠
 for a matching document 𝑑 causes

higher weights for short documents (documents with a lower number of terms

𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠) in the score computation.

The score formula for Lucene’s classic similarity TF/IDF in addition contains other

weighting factors (for normalization and coordination) which are not considered or not

relevant in our experiments and not involved in the score-computation.

BM25. For BM25, the 𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) of a document 𝑑 given a query 𝑞 which consists of

terms 𝑡 is computed as follows:

𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) = ∑ (𝑖𝑑𝑓(𝑡) ⋅
𝑡𝑓(𝑡 𝑖𝑛𝑑 𝑑) ⋅ (𝑘 + 1)

𝑡𝑓(𝑡 𝑖𝑛 𝑑) + 𝑘 (1 − 𝑏 + 𝑏 ⋅
|𝐷|

𝑎𝑣𝑔𝑑𝑙
)

)

𝑡 𝑖𝑛 𝑞

The term frequency 𝑡𝑓 describes the number of occurrences of term 𝑡 in document 𝑑,

|𝐷| represents the document length, and 𝑎𝑣𝑔𝑑𝑙 is computed as the average document

length over all documents in the collection.

Here the inverse document frequency 𝑖𝑑𝑓 for term 𝑡 is computed as 𝑖𝑑𝑓(𝑡) =

log (1 +
𝑛𝑢𝑚𝐷𝑜𝑐𝑠 − 𝑑𝑜𝑐𝐹𝑟𝑒𝑞(𝑡) + 0.5

𝑑𝑜𝑐𝐹𝑟𝑒𝑞(𝑡) + 0.5
), with 𝑛𝑢𝑚𝐷𝑜𝑐𝑠 and 𝑑𝑜𝑐𝐹𝑟𝑒𝑞(𝑡) defined as before.

In our experiments, we use BM25 with standard values for 𝑘 (1.2) and 𝑏 (0.75).

2.2 Collection ranking

Based on the article ranking as search result, four approaches introduced in expert

search are adopted to derive a journal ranking—respectively, a collection ranking. In

general, the voting model can be based on different inputs: the number of items in the

search result associated with a collection, the ranks of the items associated with a col-

lection, and the score values calculated for the items associated with a collection [1].

Let 𝑅(𝑞) be the set of articles retrieved for the query 𝑞 and 𝑠𝑐𝑜𝑟𝑒(𝑗, 𝑞) the computed

score for journal 𝑗 and query 𝑞, we apply four different voting models:

Votes. This metric takes the number of found articles for every journal as the score:

𝑠𝑐𝑜𝑟𝑒𝑉𝑜𝑡𝑒𝑠(𝑗, 𝑞) = |{𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∈ 𝑅(𝑞) ∩ 𝐽𝑜𝑢𝑟𝑛𝑎𝑙(𝑗)}|

CombSUM. For every journal, this aggregation sums up the scores of the articles:

𝑠𝑐𝑜𝑟𝑒𝐶𝑜𝑚𝑏𝑆𝑈𝑀(𝑗, 𝑞) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑞)
𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∈ 𝑅(𝑞)∩𝐽𝑜𝑢𝑟𝑛𝑎𝑙(𝑗)

CombANZ. This aggregation is based on the previous CombSUM method normalized

by the number of found articles for every journal (i.e. divided by the Votes-value):

𝑠𝑐𝑜𝑟𝑒𝐶𝑜𝑚𝑏𝐴𝑁𝑍(𝑗, 𝑞) =
𝑠𝑐𝑜𝑟𝑒𝐶𝑜𝑚𝑏𝑆𝑈𝑀(𝑗, 𝑞)

𝑠𝑐𝑜𝑟𝑒𝑉𝑜𝑡𝑒𝑠(𝑗, 𝑞)

CombMAX. This metric takes the first result stemming from 𝑗, respectively, the article

with the highest ranking, as voting candidate with its score:

𝑠𝑐𝑜𝑟𝑒𝐶𝑜𝑚𝑏𝑀𝐴𝑋(𝑗, 𝑞) = 𝑀𝑎𝑥({𝑠𝑐𝑜𝑟𝑒(𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑞) ∶ 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∈ 𝑅(𝑞) ∩ 𝐽𝑜𝑢𝑟𝑛𝑎𝑙(𝑗)})

3 Experiment

For our experiments, we take data from the dblp computer science bibliography (Digital

Bibliography & Library Project), an online reference for bibliographic information on

major computer science publications [4]. Dblp offers bibliographic metadata and links

to the electronic editions of publications and consists of nearly 3,800,000 publications.

The data is published by the University of Trier which exposes a dump for download

and further research. In this work, we restrict the experiments using only the roughly

1,500,000 articles published in the 1,657 journals ignoring e.g. conference articles.

In the first step, we take 10,000 randomly chosen articles and remove them from the

collection. All removed items serve as requests for the evaluation series with their title.

The length distribution of all titles used as keyword queries is as follows: The minimum

is 1 word. 25% of the queries/titles comprise 7 or fewer terms. The median is 9 and the

3rd quartile is 12. The longest title among the 10,000 chosen titles consist of 37 words.

For every item of the 10,000 articles, all combinations of the two similarity algo-

rithms and the four voting models described in section 2 are combined and applied.

Hence, every search request yields eight sets of ranked journals.

For each article and for each set of ranked journals the rank of the article’s corre-

sponding journal is determined and saved. Ideally, an article’s corresponding journal

should appear at rank 1 or at least among the top ranks of all ranked journals.

Our setup contains 1,657 different journals and nearly 1,500,000 articles. Figure 1

shows the distribution of articles over journals. Nearly 60% of all journals (965 items)

contain 500 articles at most. As the maximum, the collection contains one journal in

which more than 18,000 articles are published.

4 Results

For all 10,000 article-requests, we determine the rank of the article’s corresponding

journal. Table 1 shows the effectiveness results for each combination of document-sim-

ilarity model and voting technique. We state the 1st quartile (value 𝑥 meaning that for

25% of the queries the respective journal has been among the top 𝑥 results), the median,

the 3rd quartile, the share of queries where the expected journal is in top 10, and the

mean reciprocal rank (MRR).

Aggregations calculated by the Votes algorithm for BM25 and TF/IDF have the

worst—and the same—results. For only 25% of the queries the journal associated with

the requested article appears among the top 30 results. CombANZ and CombSUM fol-

low, they deliver at least 25% of the corresponding journals within the top 20 results.

Fig. 1. All 1,657 journals categorized by the number of published articles

model ► BM25 TF/IDF

voting technique

(combination) ►

C
o

m
b

A
N

Z

C
o

m
b

M
A

X

C
o

m
b

S
U

M

V
o

te
s

C
o

m
b

A
N

Z

C
o

m
b

M
A

X

C
o

m
b

S
U

M

V
o

te
s

1st quartile 19 3 16 30 16 3 12 30

median 70 12 72 117 57 14 58 117

3rd quartile 242 59 239 336 193 67 202 336

share with journal

in top 10
15.7% 48.5% 20.5% 13.5% 18.4% 44.9% 24.0% 13.5%

MRR 0.06 0.27 0.1 0.07 0.07 0.25 0.13 0.07

Table 1. Effectiveness measures for the rankings of the articles’ corresponding journals

The best results for getting the associated journal are achieved by applying Comb-

MAX which returns the searched journal among the top 12, respectively top 14, jour-

nals in 50% of all cases.

The presented results suggest that the underlying similarity algorithms (retrieval

model) do not fundamentally change the ranking behavior of the imposed collection

ranking methods. A much stronger influence can be observed for the combination

schemes. Hence, these schemes seem to be worth more in-depth consideration.

965

278
136

79
98

43

9

14
12

3

5

3

4 4

2 1 1
1

10

100

1,000

< 5
0

0

< 1
,0

0
0

< 1
,5

0
0

< 2
,0

0
0

< 3
,0

0
0

< 4
,0

0
0

< 5
,0

0
0

< 6
,0

0
0

< 7
,0

0
0

< 8
,0

0
0

< 9
,0

0
0

< 1
0

,0
0

0

< 1
1

,0
0

0

< 1
2

,0
0

0

< 1
3

,0
0

0

< 1
4

,0
0

0

< 1
5

,0
0

0

< 1
6

,0
0

0

< 1
7

,0
0

0

< 1
8

,0
0

0

< 1
9

,0
0

0
N

u
m

b
er

 o
f

Jo
u

rn
al

s
(l

o
g

sc
al

e)

Number of Articles

Distribution of the
Number of Articles per Journal

5 Conclusion and Future Work

When comparing all ranking methods, it turns out that CombMAX yields the best re-

sults regarding the journal ranking. Here, no noise based on lower ranked results—

respectively, articles—that contribute as voters is generated. In certain cases, these

lower ranked results considered in the aggregation distort the ranking. When applying

CombANZ and CombSUM, this effect is shown. Both methods yield worse results,

especially regarding the rankings above the median and first quartile.

The approach using the Votes algorithm is not well suited in this form: not even 50%

of the rankings see the expected journal under the top 100. This is because the approach

does not differentiate between results on higher and on lower ranks.

CombMAX as the best performing approach is also in accordance with the experi-

mental results presented in [1], when no profile length normalization was applied. Nev-

ertheless, in our perception the results achieved by the simple CombMAX approach are

surprising since the approach corresponds to a nearest neighbor based classification or

a single link approach.

For further research, we plan to modify the applied aggregation techniques: accord-

ing to current results, a CombSUM technique which considers only the upper ranking

articles might deliver more accurate results. Considering only the top article result for

every journal would end up in the applied CombMAX method.

Taking a closer look at the results it is a bit astonishing that CombSUM is much

closer to Votes than to CombMAX. One could hypothesize that the decline of the score

values might be well suited for ranking single documents but not for summing them up

to yield a combined score for a journal. Problems with independence assumptions as

well as ranking equivalent transformations in the formulas might be potential reasons

in this respect. We plan to consider this further and to investigate combination schemes

reflecting these observations. The sketched observations might also be the reason why

using the reciprocal ranks from documentsrespectively, articlesin combination

schemes performed surprisingly well in [6].

6 References

1. Macdonald, C., Ounis, I.: Searching for Expertise: Experiments with the Voting Model. In:

THE COMPUTER JOURNAL, Vol. 52 No. 7, pp. 729–748. Published by Oxford Univer-

sity Press on behalf of The British Computer Society 2008.

2. Lee, Joon Ho: Analyses of Multiple Evidence Combination. In: SIGIR 97 Philadelphia PA,

USA, pp. 267-276.

3. Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise Retrieval. In: Foundations

and Trends in Information Retrieval, Vol. 6, Nos. 2–3, pp. 180–184, 2012

4. dblp Homepage, http://dblp.uni-trier.de/, last accessed 2017/06/12.

5. Elasticsearch homepage, https://www.elastic.co/guide/en/elasticsearch/guide/current/prac-

tical-scoring-function.html, last accessed 2017/06/12.

6. Macdonald, C., Ounis, I.: Voting for candidates: Adapting data fusion techniques for an

expert search task, in Proc. of the ACM International Conf. on Information and Knowledge

Management, (CIKM ’06), New York, NY, USA, pp. 387–396, 2006.

http://dblp.uni-trier.de/
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html

