
Search for faster and shorter proofs

using machine generated lemmas

Petr Pudlák

Charles University in Prague

pudlak@artax.karlin.mff.cuni.cz

Abstract

When we have a set of conjectures formulated in a common language and proved from

a common set of axioms using an automated theorem prover, it is often possible to automat-

ically construct lemmas that can be used to prove the conjectures in a shorter time and/or

with shorter proofs.

We have implemented a system that repeatedly tries to improve the set of assumptions

for proofs of given conjectures using lemmas that it extracts from the proofs constructed

by an automated theorem prover. In many cases it can significantly reduce the total time or

the overall sum of the lengths of the proofs of the conjectures.

We present several examples of such sets of conjectures and show the improvements

gained by the system.

1 Motivation

Imagine a professor of mathematics who gives the same lectures every year. She works in a

standard theory and she has a fixed set of theorems that she wants to present and prove every

year during the course. And because she wants to save her and her students’ time, she would like

to have as efficient proofs as possible. She would like to find such lemmas that would shorten

the total time she has to spend for presenting the proofs.

Our aim will be to search for lemmas in such environment and try to use them to make the

proofs of conjectures more efficient.

Finding useful lemmas has of course much more serious applications, namely reducing the

amount of resources necessary to prove a particular set of conjectures or to prove conjectures

that could not be proved without such lemmas.

Currently the system only restructures and compacts the proofs and doesn’t handle conjec-

tures that the prover was not able to prove at the beginning. It can only improve existing proofs.

In future we hope to be able to also search for proofs of the conjectures that couldn’t be proved

from the initial set of assumptions.

2 Previous research

The idea of an automated discovery of lemmas or theorems is not a new one. There were many

different approaches to solve this task.

34 Empirically Successful Computerized Reasoning

Owen L. Astrachan and Mark E. Stickel [AS92] used the idea of reusing lemmas to speed

up a model elimination theorem prover.

Art Quaife [Qua92] used Otter [McC94] to prove many fundamental mathematical theo-

rems. He included the theorems he had already proved as assumptions for the more complicated

ones. The sequence in which the theorems were proved was determined by Quaife, based on his

mathematical knowledge.

Marc Fuchs, Dirk Fuchs and Matthias Fuchs sought for lemmas using genetic programming

to improve tableau-based proof search [FFF99].

The HR system [Col02a], named after mathematicians Hardy and Ramanujan, uses a model

generator to construct models based on a set of axioms, attempts to formulate conjectures and

then prove them using an automated theorem prover. A brief description can be also found in

[Col02b].

Larry Wos and Gail W. Pieper describe the technique of lemma adjunction in [WP03] and

also discuss many different approaches for evaluating lemmas.

Article [SGC03] summarizes many different criteria for constructing and identifying quality

lemmas. Humans generally use the inductive approach – from many similar problems they try

to induce a more general conjecture. This approach requires good knowledge of the particu-

lar field of mathematic and also good mathematical intuition. Another approach described is

generative, when more sophisticated techniques (for example syntactic manipulation) are used

to construct new conjectures. An example of such a system is the HR [Col02b] program. The

manipulative approach tries to construct interesting conjectures from already existing theorems.

Finally, the deductive approach tries to automatically construct many logical consequences from

a set of axioms using an automated theorem prover and then filter them and pick those that are

interesting for the researcher.

The authors of [SGC03] also categorize different possible filters for interestingness. The

filters include non-obviousness, novelty, suprisingness, intensity and usefulness.

Our approach is somewhat different from those mentioned above. It lies in between the

manipulative and the deductive approach. We observe proofs of all the given problems and

identify lemmas that are common to many of the proofs. The filter we develop and use for

selecting good lemmas falls into the usefulness category - our measure is, how much each lemma

could contribute to the proofs of other conjectures. Unlike other measures, this one can easily

be evaluated by comparing different proofs conducted by the prover.

The lemmas that we produce are therefore interesting from the point of view of a machine.

Hence, this can give us an interesting comparison between human and machine opinions on the

usefulness of a lemma.

The ideas in the article [SGC03] and personal communication with many other researchers

inspired our work which we present in this paper together with the empirical results we have

obtained.

3 Overview of the system

In sequel we assume that a consistent theory is given with some (possibly infinite) set of axioms.

All the formulas we work with are formulated in the language of the theory and the conjectures

that are to be proved and the lemmas that are constructed are proved using axioms selected from

the axioms of the theory.

Empirically Successful Computerized Reasoning 35

The systems starts by proving the conjectures one by one. The proofs of the conjectures that

were successfully proved are then analyzed by the system. Formulas that appear multiple times

in the proofs are then used as additional assumptions when looking for less costly proofs of the

conjectures. The system tries to optimize the set of such formulas. We will call such formulas

lemmas.

3.1 Basic notions

Let us first define some basic notions we will use throughout the text.

Notation 1 (Axiom, conjecture, lemma, proof) By an axiom we understand either an axiom

of the underlying theory or a well known theorem of the theory that we use as an assumption.

A conjecture is a formula given on the input that is to be proved by the system. The system

tries to find the most efficient proof of the conjecture using different sets of assumptions. Each

such a set can contain some of the axioms, other conjectures or lemmas.

A lemma is a formula constructed by the system that is proved in a similar fashion as the

conjectures are, and is used to improve the proofs of the conjectures or the proofs of other

lemmas.

A proof is an output of a successful run of the prover. As we use a single theorem prover

with the same settings on every run, the proof only depends on the conjecture being proved and

on the set of assumptions being used.

The aim of the system is to find such lemmas and such sets of assumptions for the conjec-

tures and the lemmas that either the total time required to prove the conjectures and the lemmas

or the overall size or length of the proofs is minimized.

3.2 System input

Initially, the system is given a set C of conjectures and for each conjecture C from C the system

is given an initial set of assumptions AC. The set AC consists of a subset of axioms of the

underlying theory and (possibly) of some other conjectures from C.

The idea is that the proofs of conjectures in C need not use the set of all the axioms of the

theory (which might be infinite) and that some other conjectures from C might be useful. The

user may have his own idea, which conjectures to add as assumptions to AC.

In the process of computation the system tries to optimize the set of lemmas and for each

lemma the set of its assumptions.

3.3 System output

At the end the system outputs the conjectures given at the input along with the lemmas that

participate in the fastest/shortest set of proofs. For each conjecture and each lemma it outputs

the optimal set of assumptions it has found, in the sense described later.

4 An example

In our example we use a commonly used encoding to encode an axiomatization of propositional

logic into terms, thus forcing the prover to use only the specified axioms and rules for inferences.

Then we use the system to prove some basic propositional theorems.

36 Empirically Successful Computerized Reasoning

Note that the automated theorem provers were already used to look for interesting axiomat-

ics of propositional logic, for example [MVF+02]. However, our aim is not to look for a new or

otherwise interesting axiomatic, we use the system to optimize the proofs of several theorems.

We will denote the code of a formula by an over-line. For example for a propositional

formula ϕ we denote the term that codes it by ϕ. Negation is coded by a unary function n and

implication is coded by a binary function i. The fact that ϕ is a theorem ⊢ ϕ is coded by a unary

predicate t. The following table summarizes the codes:

¬ϕ n(ϕ)
ϕ → ψ i(ϕ,ψ)

⊢ ϕ t(ϕ)

We use “→” just for implication in propositional logic we are coding. We use “⇒” for im-

plication in predicate logic in which the conjectures are presented and in which the prover

actually works. Thus the statement “if ϕ is provable then ψ → χ is provable” would be coded

as t(A) ⇒ t(i(B,C)).
In order to increase the difficulty of the task we’ve used Meredith’s single axiom for propo-

sitional logic. It has only a single axiom schema and a single rule.

The axiom schema is defined for any formulas ϕ, ψ, χ, ξ and η, but the theorem prover

computes with their codes, which are represented by the variables A, B, C, D and E in the

language of the theorem prover. As these variables are universally quantified, the prover can

replace each variable by any coded formula. The same applies to the coded modus ponens rule.

The coded representations of the schema and the rule are:

Meredith: ⊢ ((((ϕ → ψ) → (¬χ →¬ξ)) → χ) → η) → ((η → ϕ) → (ξ → ϕ))
t(i(i(i(i(i(A,B), i(n(C),n(D))),C),E), i(i(E,A), i(D,A))))

MP: ϕ,ϕ → ψ ⊢ ψ

(t(A)∧ t(i(A,B))) ⇒ t(B)

This set of axioms was used as the initial set of assumptions for all the conjectures. No other

dependencies between the conjectures were specified. The system was let to discover all the

lemmas by itself from the proofs of the conjectures.

Table 1 shows the conjectures whose proofs the system was improving. The conjectures

were proved using E prover[Sch02]. The cost of the proofs was measured in the number of

processed clauses. This measure closely corresponds to the time the prover spends on a problem,

but it is not dependent on the hardware the prover runs on. In the second column the conjectures

are presented in their coded form. The third column shows the number of processed clauses the

prover spent on each of the conjectures if they were proved only using the original assumptions.

The fourth column shows the cost of the proofs after the system had finished the improvements

using lemmas generated from the proofs. Note that to obtain the total cost of the final proofs

we also have to include the cost of the proofs of the generated lemmas. The full listing of the

generated lemmas is included in Table 10. As we can see, the total cost of proofs needed to

prove the conjectures in this case was reduced to 3%.

5 Description of the system

Let us first discuss how the lemmas are generated. The modification of the set of assumptions

of the conjectures by using the lemmas will be described in the next part.

Empirically Successful Computerized Reasoning 37

conjecture coding into terms original cost final cost

¬(ϕ →¬ψ) ⊢ ϕ t(n(i(A,n(B)))) ⇒ t(A) 938 62

¬(ϕ →¬ψ) ⊢ ψ t(n(i(A,n(B)))) ⇒ t(B) 1673 17

ϕ ⊢ ¬ϕ → ψ t(A) ⇒ t(i(n(A),B)) 31 4

ψ ⊢ ¬ϕ → ψ t(B) ⇒ t(i(n(A),B)) 13 3

¬(ϕ → ϕ) ⊢ ψ t(n(i(A,A))) ⇒ t(B) 41 8

⊢ ϕ → (ψ → ϕ) t(i(A, i(B,A))) 17 4

ϕ →¬(ψ →¬χ),ϕ ⊢ χ (t(i(A,n(i(B,n(C)))))∧ t(A)) ⇒ t(C) 287 20

⊢ ϕ → ϕ t(i(A,A)) 15 2

⊢ ¬ϕ → (ϕ → ψ) t(i(n(A), i(A,B)))) 5731 4

⊢ ¬¬ϕ → ϕ t(i(n(n(A)),A)) 3297 7

⊢ ϕ →¬¬ϕ t(i(A,n(n(A))) 3682 4

total cost of the conjectures: 15725 135

cost for proving the lemmas: 375

total cost: 15725 510

Table 1: Formulas proved from the Meredith’s axiomatization.

5.1 Generation and evaluation of lemmas

Notation 2 (Subsumption) By c ⊑ d we denote that the clause c that subsumes the clause d.

Let a set of proofs1 P be given. We collect all the clauses that appear in the proofs and that were

derived only from the assumptions into a single set

L =
[

P∈P

{c |c is a clause in P derived only from assumptions and without Skolem symbols}

We do not include clauses that were derived from the negated conjecture, because they are

not true formulas in our theory. Also we remove those clauses that contain Skolem symbols

created by the prover, because these symbols have different meaning in different runs of the

prover. (In future we might implement the reverse skolemization algorithm [CP80, CP93] to

deal with such formulas.)

Thus, the clauses in L don’t contain any skolem symbols, but they have no special form,

they can contain arbitrary number of positive and/or negative literals.

Note that although it would be an obvious thing to do, we don’t use the conjectures as lem-

mas. The reason is that the conjectures are not necessarily clauses, therefore we can’t process

them the same way as the clauses produced by the prover. As it turns out, many of the con-

jectures are then anyway discovered as lemmas by the system. However, this issue deserves a

better solution in the future.

From the set L we construct a minimal L′ set with respect to subsumption such that L′ has

the following properties:

1. L′ ⊆ L, therefore L′ contains only true formulas.

1Recall that for us a proof is a successful run of the prover that proves a particular conjecture from a given set of

assumptions.

38 Empirically Successful Computerized Reasoning

2. for every d ∈ L there is c ∈ L′ such that c ⊑ d.

3. for any pair c ∈ L′, d ∈ L′ we know that c doesn’t subsume d: c 6⊑ d.

Therefore, L′ contains just the most general variants of the lemmas appearing in L.

The clauses from L′ are then used as lemmas to modify the set of assumptions of the con-

jectures.

Now let us have a clause c that is a lemma, c = L1, . . . ,Lk,¬Lk+1, . . . ,¬Ln where Li are

atomic formulas. Let |Li| be the number of function symbols appearing in Li. Let P by a proof

whose set of assumptions we want to improve by c. We would like to have an estimate that

would tell us, if it is likely that c will contribute to the proof P. A natural idea suggests itself

that the more often an atomic formula Li occurs in the proof P the more likely the lemma will

contribute and also that the longer Li is (measured in the number of symbols) the more likely it

will shorten/speed up the proof. Therefore our estimation formula is defined by

weight(c,P) =
n

∑
i=1

|Li| · (the number of occurrences of Li in P) (1)

There are many other possible estimation methods. One may, for example, take into account

the number of formulas in the proof which the lemma subsumes, look for similar terms in the

lemma and in the proof, etc.

5.2 Evaluation of the proofs

In order to evaluate the applicability of lemmas, we need to have a criterion for the cost of a

proof:

Notation 3 (Measure of a proof) A proof measure is a function that maps proofs into non-

negative real numbers.

We use the following proof measures:

the number of processed clauses reported by the prover; this measure is closely related to the

time the prover spends while searching for the proof of the conjecture, but is independent

of the hardware of the computer the prover runs on;

the length of the proof is the number of formulas appearing in the proof that is constructed by

the prover;

the size of the proof is the total number of occurrences of function symbols (not predicate

symbols) appearing in the proof that is constructed by the prover.

The length and the size of a proof are also independent on the hardware of the computer being

used.

Notation 4 If we are proving a conjecture C from assumptions A1, . . . ,An, we denote the mea-

sure of the proof by

||A1, . . . ,An �C||

If the prover is not able to conduct the proof we set

||A1, . . . ,An �C|| = +∞

Empirically Successful Computerized Reasoning 39

Remark 1 (The proof size/length) If we could prove all the given conjectures together, the

size/length of the resulting hypothetical proof would be of course less than the sum of the

sizes/lengths of the individual proofs of the conjectures. But in most cases the prover is not

able to prove all the conjectures together, therefore the system proves the conjectures one by

one. The system then tries to compact the proofs of the conjectures to make them closer to the

size of the hypothetical proof.

The number of generated lemmas is usually very large, so only some of them will be in-

cluded in the output. Such lemmas are marked as accepted. Each lemma is initially unaccepted.

When the system figures out that the lemma is worth including in the output, it marks it as

accepted.

For each conjecture or lemma C the system maintains a list SC of sets of assumptions that

were used to produce different proofs of the conjecture.

Each such a set S ∈ SC is marked as accepted iff all the lemmas it contains are accepted. The

initial set of assumptions of each conjecture contains no lemmas, hence it is always accepted.

Now, we may define:

Notation 5 (Best accepted set of assumptions) The best accepted set of assumptions

Sbest
C ∈ SC

of a conjecture C is an accepted set of assumptions that produces the best proof of C with respect

to the proof measure:

∀S : ((S ∈ SC) ∧ (all the lemmas in S are accepted)) ⇒ ||S �C|| ≥ ||Sbest
C �C|| (2)

If there are several sets of assumptions that match the criteria for the best accepted set (they

produce proofs of the same measure), we arbitrarily choose one among them.

Let us call the proof of C produced from Sbest
C the best accepted proof of C.

Remark 2 (System output) The output of the system consists of all the input conjectures and

all the accepted lemmas at the time the system finishes execution. For each of these conjectures

or lemmas the best accepted set of assumptions is presented.

5.3 Modifying the set of assumptions to get better ones

The outline of the work of the system is as follows:

1. The system first tries to prove all the given conjectures one by one. Let C be the set of

those conjectures that were successfully proved. Let L be the set of constructed lemmas

and let La ⊆ L be the set of lemmas that are accepted. Initially, these sets are empty.

2. The system takes the best accepted proofs of all the conjectures and accepted lemmas.

From those proofs the system constructs new lemmas as described in section 5.1. It sets

L = L∪{the newly constructed lemmas}

40 Empirically Successful Computerized Reasoning

3. The system produces pairs consisting of a best assumption set of a conjecture and of a

lemma that will be used to improve the set of assumptions of the best proof of the con-

jecture. It takes all the new lemmas together with the lemmas it already has constructed

before and combines them with all the best accepted sets of assumptions of all the con-

jectures and accepted lemmas. This way it produces every possible pair of

L×{Sbest
C |C ∈ C∪La}

However some pairs of a lemma l and the best set of assumptions Sbest
C of a conjecture C

have to be excluded, namely

• if already l ∈ Sbest
C , or

• if the lemma l is the conjecture C itself, or

• if the conjecture C is directly or indirectly used to prove l; this means that either C

is one of the assumptions in the best accepted set of l, or it is one of the assumptions

in the best set of some conjecture that is an assumption of l, and so on.

Otherwise it could happen for example that there would be two equivalent lemmas, one

proving another with a one-step proof.

4. These pairs are sorted according to the estimate described in section 5.1.

5. The system subsequently takes these pairs (l,Sbest
C) starting with the one with the highest

weight:

(a) It tries to conduct a new proof of C using Sbest
C ∪{l}. The gain of this single im-

provement is

g = ||Sbest
C �C||− ||Sbest

C , l �C||

(b) If g is positive, it means that the lemma l has brought an improvement. The lemma l

is then checked, if its total gain to all the conjectures whose set of assumptions were

improved by l is larger than the cost of the proof of l. If so, the system sets

La = La ∪{l}

which means that l is marked as accepted.

If l is accepted, we want to incorporate the lemmas that originate from the proof of

l as well as the lemmas that originate from the proofs of the conjectures that use l

as an assumption. Hence, in such a case the process is restarted from the beginning

and the system goes again to point 2.

(c) Until there are any unprocessed pairs (l,Sbest
C) the system takes the next pair and

goes again to 5a.

6. When all the pairs are exhausted and no improvement was made the system outputs the

conjectures C, the accepted lemmas La and their best accepted sets of assumptions Sbest
C ,

C ∈ C∪La, as described above, and halts.

Empirically Successful Computerized Reasoning 41

It may happen that as the result of adding l, some of the assumptions in Sbest
C are not needed

any more and do not appear in the proof. In such a case the system omits them and tries to prove

the conjecture only using this reduced set of assumptions. If the proof attempt succeeds, it

is evaluated the same way as described above. This practice helps to reduce the number of

assumptions appearing in the proofs. Without it, the prover would soon become overwhelmed

by the number of assumptions and no further improvement would be possible. In the current

version of the system this check is not iterated, so the proof conducted from the reduced set of

assumptions is not checked again for redundant assumptions.

6 Experimental results

The system is still under development, therefore we don’t have an in-depth statistics of its

behavior. However, we have performed tests on different sets of conjectures from different

sources and we present a selection of them.

All experiments were run on a Linux machine with Intel® Pentium® 4 CPU 3.4GHz with

2GB of RAM. The conjectures were proved using E prover with resource limits set to 80 sec-

onds, 512MB RAM and 100000 processed clauses.

We have developed an independent server component that lies between the actual system

and the automated prover. The component caches all conducted proofs on a hard-disk and if a

client requests the server to perform a proof that has already been processed, the server returns

the cached version. This greatly speeds up the development of the system, particularly if we

rerun the system many times with different settings or with slight modifications on the same set

of problems.

For some cases we include a full list of the conjectures and the lemmas, for others we only

summarize the results.

6.1 TPTP problems – set theory

We used several selected TPTP [SS98] problems concerning set theory. These problems orig-

inate from [Qua92]. For presentation in this paper we have converted the machine syntax into

a more human-readable form. The meaning of the symbols that we use is summarized in Ta-

ble 2. The conjectures that were proved are shown in Table 3. The table also shows the results

obtained when running the system with the proofs being measured by the number of processed

clauses. The second column labeled “level” is an inductively defined property defined for both

the conjectures and the lemmas. The axioms have level 0. If a conjecture or a lemma is proved

just from the axioms, it has level 1. Each lemma or conjecture has its level set to the maximum

level of its assumptions plus 1. This can give us an approximation on how complicated the

conjecture or the lemma is. The third column labeled || · ||i shows the initial cost of the proof

of the conjecture while the fourth column labeled || · || f shows the final cost of the proof of the

conjecture when the system terminates. The fifth column shows the actual formula converted

into a human-readable form. The last column shows which lemmas were finally used to prove

the conjecture.

Some of the conjectures in the listings may have levels greater than 1 although they don’t

use any lemmas or the level of a particular conjecture is higher than one plus the level of the

lemmas that are used to prove it. The reason is that the user has specified that some other

42 Empirically Successful Computerized Reasoning

A ⊆ B subclass

{A,B} unordered pair

〈A,B〉 ordered pair

{A} singleton

A[1] first member of an ordered pair A

A[2] second member of an ordered pair A

A ∈ B membership

A class complement

A×B cross product

/0 null class

A∩B intersection

U universal class

member of(A) choice function (from the axiom of choice)

Table 2: Meaning of the symbols used in the TPTP set theory sample

conjectures should be used as assumptions to prove the conjecture and they increase the level of

the conjecture.

We can see that often the conjectures that were harder to prove with respect to the proof

measure have a higher level. This means that they were finally proved using several layers of

lemmas.

Several conjectures that were too complicated are omitted for brevity.

The lemmas that the system generated with the processed clauses count proof measure are

in Table 4. The lemmas are clauses, but for the presentation we have converted them into a more

readable form using implication notation. As the lemmas have no initial set of axioms given by

the user, they also have no initial cost, so only their final cost is shown.

They are sorted by their total accumulated improvement with respect to the proof measure,

the more useful lemmas are at the beginning of the table. This is however only an informative

ordering, as it depends very much on the order in which the lemmas were tried. For example,

consider some two almost same lemmas l1 and l2. Whichever is chosen second will bring no

improvement as the assumption sets were already improved by the one chosen first.

The lemmas are more or less complicated formulas that the system found useful for proving

the conjectures. This can give us an interesting comparison, as the input conjectures were

selected by a human, whereas the lemmas were constructed by a machine. Tables 5 and 6 show

the results on the same set of conjectures when different proof measures were selected. Many

of the lemmas appear in all three tables, although in different positions. Such lemmas seem to

be essential for the automated prover when working with this particular theory.

Note that some of the lemmas the system has found are just conjectures reformulated as

clauses. In such a case the system usually proves such conjecture using the lemma in a single

step and then further improves the proof of the lemma.

Table 7 shows the summary of achieved results. For each proof measure the initial and the

final cost of the proofs is shown.

Empirically Successful Computerized Reasoning 43

no. level || · ||i || · || f formula lemmas

C1 1 1 1 ∀X : X = X

C2 1 5 2 ∀X : (X ⊆ X)
C3 1 2 2 ∃X : ∀Z : ¬(Z ∈ X)
C4 2 6 2 ∀X : (/0 ⊆ X) L18

C5 2 16 9 (/0 ∈ U) L5

C6 2 4 3 ∀X ,Y : ((Y ∈ {X}) ⇒ Y = X) L14

C7 1 3 3 ∀Z : (Z = /0∨∃Y : (Y ∈ Z))
C8 1 2 2 ∀X : ({X} ∈ U)
C9 2 11 4 ∀X : ((X ⊆ /0) ⇒ X = /0) L18 L11

C10 2 8 2 ∀X ,Y : ({X} ∈ 〈X ,Y 〉)
C11 3 19 4 ∀X ,Y : ((X ∈ Y) ⇒ ({X} ⊆ Y)) L1

C12 1 9 9 ∀X ,Y : ¬(Y ∈ (X ∩X))
C13 1 2 2 ∀X ,Y : (〈X ,Y 〉 ∈ U)
C14 1 11 11 ∀X ,Y,Z : (((X ⊆ Y)∧ (Y ⊆ Z)) ⇒ (X ⊆ Z))
C15 2 7 3 ∀X : ((X ∈ U) ⇒ (X ∈ {X})) L12

C16 1 22 21 ∀X ,Y : ({X ,X} ⊆ {X ,Y})
C17 2 9 4 ∀X : ((X ∈ U) ⇒{X} 6= /0) L12

C18 2 21 3 ∀X : (¬(X ∈ U) ⇒{X} = /0) L8

C19 1 3 3 ∀X : ({member o f (X)} = X ⇒ (X ∈ U))
C20 2 7 2 ∀X ,Y : ({X ,{Y}} ∈ 〈X ,Y 〉)
C21 1 10 10 ∀X ,Y : (({member o f (X)} = X ∧ (Y ∈ X)) ⇒ member o f (X) = Y)
C22 6 87 25 ∀X ,Y : ((X ⊆ {Y}) ⇒ (X = /0∨{Y} = X)) L16

C23 1 19 10 ∀X ,Y : (({X} = {Y}∧ (Y ∈ U)) ⇒ X = Y)
C24 3 15 10 ∀X ,Y : (({X} = {Y}∧ (X ∈ U)) ⇒ X = Y) L12 L17

C25 2 12 4 ∀X ,Y : ((X ∈ U) ⇒{X ,Y} 6= /0) L9

C26 2 9 4 ∀X ,Y : ((Y ∈ U) ⇒{X ,Y} 6= /0) L12

C27 1 3 3 ∀X : (〈X[1],X[2]〉 = X ⇒ (X ∈ U))
C28 6 610 7 ∀X ,Y,Z : (((X ∈ Z)∧ (Y ∈ Z)) ⇒ ({X ,Y} ⊆ Z)) L1 L2

C30 8 706 213 ∀W,X ,Y,Z : ((〈W,X〉 = 〈Y,Z〉∧ (X ∈ U)) ⇒ X = Z) L3 L10 L5 L17

L9

C31 2 20 12 ∀W,X ,Y,Z : ((〈W,X〉 = 〈Y,Z〉∧ (W ∈ U)) ⇒W = Y) L14 L9

C32 2 32 4 ∀X ,Y : ((¬(X ∈ U)∧¬(Y ∈ U)) ⇒{X ,Y} = /0) L8

C33 2 16 11 ∀X ,Y,Z : (((Y ∈ U)∧ (Z ∈ U)∧{X ,Y} = {X ,Z}) ⇒ Y = Z) L12 L14

C34 2 16 11 ∀X ,Y,Z : (((X ∈ U)∧ (Y ∈ U)∧{X ,Z} = {Y,Z}) ⇒ X = Y) L14 L9

C35 3 21 4 ∀X ,Y : ({{X},{X , /0}} = 〈X ,Y 〉∨ (Y ∈ U)) L10

Table 3: Selected conjectures from the TPTP set theory sample with the proof cost measured by

the number of clauses processed by the prover.

no. level || · || formula lemmas

L1 4 32 (A ∈C)∧ (B ∈C) ⇒ ({A,B} ⊆C) L7

L2 5 4 (A ∈C) ⇒ ({A,B} ⊆C)∨ (B ∈C)
L3 7 5 (B ∈ D)∧ (A ∈C) ⇒ ({{A,A},{A,{B,B}}} ∈ (C×D)) L6

L4 3 6 (A ∈C)∧ (A ∈ B) ⇒ (A ∈ (B∩C)) L7

L5 1 8 (A ∈ B) ⇒ (A ∈ U)
L6 6 7 (B ∈ D)∧ (A ∈C) ⇒ (〈A,B〉 ∈ (C×D)) L7

L7 2 8 (B ∈C) ⇒ (A ∈ U)∨ ({B,A} ⊆C) L13 L5

L8 1 32 /0 = {A,B}∨ (A ∈ U)∨ (B ∈ U)
L9 1 8 (A ∈ U) ⇒ (A ∈ {A,B})

L10 2 3 /0 = {A,A}∨ (A ∈ U) L8

L11 1 6 (B ⊆ A)∧ (A ⊆ B) ⇒ A = B

L12 1 7 (A ∈ U) ⇒ (A ∈ {B,A})
L13 1 31 (A ∈C) ⇒ ({A,B} ⊆C)∨ (B ∈ {A,B})
L14 1 5 (A ∈ {C,B}) ⇒ A = B∨A = C

L15 1 2 (A ⊆ U)
L16 5 4 (A ⊆ {B,C})∧ (C ∈ A)∧ (B ∈ A) ⇒ A = {B,C}
L17 2 4 (A ∈ U)∧A = B ⇒ (A ∈ {B,C}) L9

L18 1 6 (/0 ⊆ A)

Table 4: Lemmas found for the TPTP set theory sample with the proof cost measured by the

number of clauses processed by the prover.

44 Empirically Successful Computerized Reasoning

no. level || · || formula lemmas

L1 1 37 (A ∈ {C,B}) ⇒ A = B∨A = C

L2 2 64 /0 = {A,B}∨ (A ∈ U)∨ (B ∈ U) L1

L3 2 43 (A ∈C)∧ (B ∈C) ⇒ ({A,B} ⊆C) L1

L4 1 24 (A ∈ U) ⇒ (A ∈ {B,A})
L5 1 24 (A ∈ U) ⇒ (A ∈ {A,B})
L6 3 28 /0 = {A,A}∨ (A ∈ {A,A}) L2 L4

L7 3 44 (A ∈ U) ⇒ (A ∈ B)∨ (A ∈ B) L2

L8 1 34 (A ∈ (B∩C))∧ (A ∈C) ⇒ false

L9 1 23 {A} = {A,A}
L10 1 21 (A ∈ B) ⇒ (A ∈ U)
L11 1 11 (A ∈ /0) ⇒ false

L12 1 18 ({A,B} ∈ U)
L13 2 75 〈A,B〉 = {{A},{A,{B}}} L9

L14 1 31 ((A∩B) ⊆ B)
L15 2 42 (A ∈ U)∨ ({A,A} ⊆ B) L1 L10

Table 5: Lemmas found for the TPTP set theory sample with the proof cost measured by the

proof size.

no. level || · || formula lemmas

L1 2 19 /0 = {A,B}∨ (A ∈ U)∨ (B ∈ U) L2

L2 1 15 (A ∈ {C,B}) ⇒ A = B∨A = C

L3 3 16 (A ∈ U) ⇒ (A ∈ B)∨ (A ∈ B) L1

L4 4 20 (A ∈ B) ⇒ ({A,A} ⊆ B) L2

L5 1 8 {A} = {A,A}
L6 1 11 (A ∈ U) ⇒ (A ∈ {A,B})
L7 1 11 (A ∈ U) ⇒ (A ∈ {B,A})
L8 1 10 (A ∈ /0) ⇒ false

L9 1 16 (B ⊆ A)∧ (A ⊆ B) ⇒ A = B

L10 2 10 〈A,B〉 = {{A},{A,{B}}} L5

L11 1 9 ({A,B} ∈ U)
L12 1 15 (A ∈C)∧ (A ∈ B) ⇒ (A ∈ (B∩C))
L13 1 16 (A ∈ B) ⇒ (A ∈ U)

Table 6: Lemmas found for the TPTP set theory sample with the proof cost measured by the

proof length.

proof measure initial cost final cost

number of processed clauses 3991 1921 (48%)

proof size 3487 2794 (80%)

proof length 1086 878 (81%)

Table 7: Results for the TPTP set theory sample.

Empirically Successful Computerized Reasoning 45

6.2 Mizar problems – Boolean properties of sets

These theorems address basic boolean properties of sets in the Mizar database for mathematics.

The conjectures were converted from the Mizar language by Josef Urban [Urb04, Urb03] into a

form suitable for automated theorem provers.

The system was rather effective for reducing the number of processed clauses required to

prove these set of conjectures. Table 8 shows the summary of achieved results. For each proof

measure the initial and the final cost of the proofs is shown.

proof measure initial cost final cost

number of processed clauses 62706 1852 (3.0%)

proof size 10680 9351 (88%)

proof length 3687 3046 (83%)

Table 8: Results for the Mizar boolean properties of sets.

As the list of the conjectures and the lemmas in this case is rather long, we did not include

it in this paper.

6.3 Meredith’s axiomatization of propositional logic

In this section we give detailed results for the example in section 4. The formulas are presented

using standard logic symbols.

Table 9 shows the conjectures along with the results obtained when running the system with

the proofs being measured by the number of processed clauses and Table 10 shows the lemmas

that were found.

no. level || · ||i || · || f formula lemmas

C1 8 15 2 ⊢ (A → A) L27

C2 11 3682 2 ⊢ (A →¬¬A)
C3 7 3297 2 ⊢ (¬¬A → A)
C4 2 17 2 ⊢ (A → (B → A))
C5 9 5731 2 ⊢ (¬A → (A → B))
C6 8 41 5 ¬(A → A) ⊢ B L27

C7 5 31 3 A ⊢ (¬A → B)
C8 3 13 3 B ⊢ (¬A → B) L18

C9 11 1673 16 ¬(A →¬B) ⊢ B L22 L8 L4

C10 7 938 62 ¬(A →¬B) ⊢ A L17 L9 L16

L30 L18 L4

C11 12 287 20 (P →¬(Q →¬R)), P ⊢ R L21 L30 L8 L4

Table 9: Conjectures from the Meredith’s axiomatization example with the proof cost measured

by the number of clauses processed by the prover.

Because we code propositional formulas into terms of predicate logic, we can express much

more than just that a propositional formula is a theorem. We can also express meta-theorems

that speak about provability of different formulas and what are the relations between them. For

example, recall how that modus ponens rule was coded as (t(A)∧t(i(A,B)))⇒ t(B). The system

derived many lemmas of similar nature, thus discovering many admissible rules. This fact

becomes much more interesting in the case of modal logic, described in the next section, where

the deduction theorem does not hold, hence the admissible rules have much greater importance.

46 Empirically Successful Computerized Reasoning

no. level || · || formula lemmas

L1 6 7 C ⊢ (A → (¬¬B → B)) L14 L4

L2 6 24 D ⊢ (A → (B → (¬¬C →C))) L12 L4 L3

L3 3 8 (((D → B) → (E → B)) → (B →C)) ⊢ (A → (B →C)) L23 L4

L4 1 4 A, (A → B) ⊢ B

L5 3 5 A ⊢ ((A → B) → (C → B)) L18 L12

L6 8 6 ((((B →C) → (¬D →¬A)) → D) → B) ⊢ (A → B) L27 L12

L7 7 4 ⊢ ((((¬A →¬B) → A) →C) → (B →C)) L12

L8 8 6 C ⊢ (A → ((¬B →¬A) → B))
L9 5 28 ((C → E) → (¬B →¬D)) ⊢ (((A → B) →C) → (D →C)) L18 L4 L19

L10 8 7 (((¬C →¬A) →C) → B) ⊢ (A → B) L7 L4

L11 8 4 ⊢ (((A → B) →¬(¬B →¬C)) → (C →¬(¬B →¬C))) L7 L12

L12 1 6 ((((B → D) → (¬E →¬C)) → E) → A) ⊢ ((A → B) → (C → B))
L13 6 13 (((B →C) → D) → (¬C →¬A)) ⊢ (A → (B →C)) L9 L12 L4

L14 5 4 ⊢ (A → (B → (¬¬C →C))) L2

L15 10 4 B ⊢ (A →¬¬A)
L16 2 7 D, C ⊢ (A → (B →C)) L18

L17 5 7 ((C →C) → B) ⊢ (A → B) L31

L18 2 6 B ⊢ (A → B)
L19 4 7 C, A ⊢ (¬A → B)
L20 6 6 ⊢ (((A → (B → B)) →C) → (D →C)) L17 L31 L12

L21 11 4 B ⊢ (A →¬¬A) L15

L22 6 14 ((C → D) → B), (¬D →¬A) ⊢ (A → B) L9 L18 L4

L23 2 4 ⊢ ((((A → B) → (C → B)) → (B → D)) → (E → (B → D))) L12

L24 6 4 ⊢ (((A →¬¬B) →C) → (B →C)) L12

L25 3 4 ⊢ (((A → (¬B →C)) → D) → (B → D)) L23 L12

L26 3 11 (D →C), D ⊢ (A → (B →C)) L18 L4

L27 7 4 ⊢ (A → A) L32

L28 1 6 C ⊢ (A → (B → A))
L29 7 3 C ⊢ (A → (B → B))
L30 6 5 (¬B →¬D) ⊢ (((A → B) →C) → (D →C)) L9 L18

L31 4 4 ⊢ (((A → A) → B) → (C → B)) L25 L12

L32 6 4 ⊢ (A → (B → (C →C))) L17 L31

L33 9 2 ⊢ (((A → B) →¬¬C) → (C →¬¬C)) L9 L13 L11

Table 10: Lemmas found for the Meredith’s axiomatization with the proof cost measured by the

number of clauses processed by the prover.

proof measure initial cost final cost

number of processed clauses 15725 510 (3.2%)

proof size 1299 1024 (79%)

proof length 314 277 (88%)

Table 11: Results for the Meredith’s axiomatization of propositional logic.

Empirically Successful Computerized Reasoning 47

Table 11 shows the summary of achieved results. Again, for each proof measure the initial

and the final cost of the proofs is shown.

6.4 S5 modal logic

S5 modal logic uses meta-theorems (mentioned above), since the theorem of deduction doesn’t

hold in S5. From this point of view S5 is an interesting example.

This set of conjectures is similar to the previous example. We have used [Hal05] to construct

an axiomatization for S5 modal logic with the three Hilbert’s axioms for propositional logic,

axioms K, T and 5 and modus ponens and necessitation rule. We have used the same formula

coding with an additional unary function symbol l(. . .) for the modal operator 2.

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

Number of proved (not necessarily accepted) lemmas

proof cost
no. of accepted lemmas

Figure 1: Run of the system on the S5 axiomatization with with the proof cost measured by the

number of clauses processed by the prover.

For this example we also show a graph that illustrates performance of the system, see Fig-

ure 1. The x axis shows time points distinguished by the total number of lemmas (both accepted

and unaccepted) the system has used at least in one proof. The thick line shows how the total

cost of the proofs evolved and corresponds to the tick marks on the left. The thin line shows the

number of lemmas that were marked as accepted and corresponds to the tick marks on the right.

As we can see, the cost of the proofs was reduced to about 1/3 with the first 10 lemmas. The

cost of the proofs then gradually decreased and the lemmas that were accepted often brought

only a slight gain. There were two more significant improvements at the points 40, 81 and 97,

when interesting lemmas were discovered and sudden advancements were made.

Most of the the lemmas that were discovered say that a particular proposition is a theorem

of S5. But the system also discovered several lemmas that describe admissible rules of S5. For

example the lemma L40 in Table 15 states that from 2B and B → A we can derive 2A.

Table 16 shows the summary of achieved results. For each proof measure the initial and the

final cost of the proofs is shown.

48 Empirically Successful Computerized Reasoning

no. level || · ||i || · || f formula lemmas

C1 6 11 2 ⊢ (A → A) L19

C2 1 2 2 ⊢ (2P → P)
C3 9 1086 2 ⊢ (A →¬¬A)
C4 2 5 3 ⊢ A∨¬2A L43

C5 1 3 3 ⊢ ¬A∨2A

C6 9 1089 2 ⊢ (¬¬A → A)
C7 7 3586 2 ⊢ ((¬A → A) → A)
C8 7 44 2 ⊢ (¬A → (A → B)) L25

C9 8 680 15 ⊢ 2(A →¬2¬A) L37 L2 L36

L33

C10 5 15332 72 ⊢ (P → 2¬2¬P) L17 L2 L1

C11 6 43 5 ¬(A → A) ⊢ B L19

C12 8 58 3 A ⊢ (¬A → B)
C13 2 5 3 B ⊢ (¬A → B) L10

C14 6 90 10 ¬(A →¬B) ⊢ B

C15 7 1293 6 ¬(A →¬B) ⊢ A L20 L23

C16 8 30413 2 ⊢ ((A → B) → (¬B →¬A))
C17 9 23254 3 ⊢ (A → (¬B →¬(A → B))) L19

C18 10 9580 4 A, B ⊢ ¬(A →¬B) L14

C19 1 3 3 ⊢ 2(¬2¬P → 2¬2¬P)
C20 7 5471 171 ¬(B →¬A) ⊢ ¬(A →¬B) L28 L2 L13

L22 L1 L42 L9

L24

C21 1 8 6 2(A → B),2(B → A) ⊢ 2(2A → 2B)
C22 10 23271 26 ¬(A →¬¬(B →¬C)) ⊢ ¬(¬(A →¬B) →¬C) L20 L23 L14

Table 12: Conjectures in the S5 axiomatization, prover processed clauses count measure

no. level || · || formula lemmas

L1 2 59 (A →C), (A → (C → B)) ⊢ (A → B) L4

L2 3 40 (A →C), (C → B) ⊢ (A → B) L1

L3 3 40 C, (A → (C → B)) ⊢ (A → B) L1

L4 1 39 22B, (B → A) ⊢ 2A

L5 5 25 ⊢ (¬¬A → A) L3

L6 6 44 (¬B → A) ⊢ (¬A → B)
L7 4 59 (A → (¬C →¬B)) ⊢ (A → (B →C)) L2

L8 1 33 (¬A →¬B), B ⊢ A

Table 13: Lemmas found for the S5 axiomatization with the proof cost measured by the proof

size.

no. level || · || formula lemmas

L1 1 13 (A →C), (A → (C → B)) ⊢ (A → B)
L2 2 12 (A →C), (C → B) ⊢ (A → B)
L3 2 13 C, (A → (C → B)) ⊢ (A → B) L1

L4 4 10 (¬B → A) ⊢ (¬A → B) L7

L5 3 8 ⊢ (¬¬A → A)
L6 1 13 22B, (B → A) ⊢ 2A

L7 1 10 (¬B →¬A) ⊢ (A → B)

Table 14: Lemmas found for the S5 axiomatization with the proof cost measured by the proof

length.

Empirically Successful Computerized Reasoning 49

no. level || · || formula lemmas

L1 3 8 (A →C), (A → (C → B)) ⊢ (A → B) L32

L2 4 11 (A →C), (C → B) ⊢ (A → B)
L3 1 9 (B → (C → D)) ⊢ (A → ((B →C) → (B → D)))
L4 6 8 C, (C → B) ⊢ (A → B) L24

L5 2 11 22B, (B → A) ⊢ 22A L43

L6 8 5 A ⊢ (¬¬(A → B) → B) L13

L7 7 247 ⊢ (¬A → ((B → A) →¬B)) L8 L25 L1 L15

L8 5 30 ((C → A) → ((C → B) → D)) ⊢ ((A → B) → ((C → A) → D)) L3 L31 L1

L9 5 11 (A → (B → D)), (B → (D →C)) ⊢ (A → (B →C)) L2 L32

L10 1 6 B ⊢ (A → B)
L11 3 21 ((C → A) → B) ⊢ (A → B) L10 L32 L15

L12 6 10 D, (D →C) ⊢ (A → (B →C)) L10

L13 4 8 (A → (C → B)), C ⊢ (A → B) L10 L1

L14 9 6 B, A ⊢ ¬(A →¬B) L20 L6

L15 1 4 B, (B → A) ⊢ A

L16 1 5 A, B ⊢ 22A

L17 4 5 (B → (A →C)) ⊢ (A → (B →C)) L11 L32

L18 6 5 ((A → B) → A) ⊢ ((A → B) → B) L19 L1

L19 5 4 ⊢ (A → A)
L20 2 7 (¬A →¬B), B ⊢ A L37 L15

L21 6 7 ((C →C) → B) ⊢ (A → B) L19

L22 5 9 (A → (C → B)), ((C → B) →C) ⊢ (A → B) L2 L1

L23 6 11 ¬(A →C) ⊢ (¬A → B) L29 L24

L24 5 10 (A →C), ¬C ⊢ (A → B) L28 L2

L25 6 4 ⊢ (¬A → (A → B)) L29

L26 6 32 (C → (A → D)) ⊢ (A → (B → (C → D))) L10 L9

L27 2 7 2B, (B → A) ⊢ A L43

L28 1 4 ¬A ⊢ (A → B)
L29 5 6 (A → (¬C →¬B)) ⊢ (A → (B →C)) L2

L30 6 5 (¬A → (B →¬C)) ⊢ ((¬A → B) → (C → A)) L29 L32

L31 4 4 ((A → (B →C)) → (((A → B) → (A →C)) → D)) ⊢ ((A → (B →C)) → D) L1

L32 2 7 (A → (B →C)) ⊢ ((A → B) → (A →C)) L15

L33 7 4 ⊢ (¬¬A → (B → A)) L29 L25

L34 8 4 ⊢ (A → (¬¬B → B)) L17 L33

L35 1 9 (¬C →¬B) ⊢ (A → (B →C))
L36 4 4 (A → ((C → A) → B)) ⊢ (A → B) L1

L37 1 6 (¬B →¬A) ⊢ (A → B)
L38 8 6 (A → (¬B → (C → B))) ⊢ (A → (¬B →¬C)) L7 L9

L39 7 6 (¬A → A) ⊢ (¬A → B) L25 L1

L40 2 9 2B, (B → A) ⊢ 2A L43

L41 8 6 ⊢ (A → (B →¬¬B)) L17 L29 L33

L42 6 11 (A → D), (D →C) ⊢ (A → (B →C)) L2 L24

L43 1 5 2A ⊢ A

Table 15: Lemmas found for the S5 axiomatization with the proof cost measured by the number

of clauses processed by the prover.

proof measure initial cost final cost

number of processed clauses 115327 2091 (1.8%)

proof size 632 379 (60%)

proof length 642 389 (61%)

Table 16: Results for S5 modal logic.

50 Empirically Successful Computerized Reasoning

The system again performed very well in the case when the measure was the number of

processed clauses. This time, the total cost of the proofs was reduced to less than 2%.

7 Future work

As the system is particularly efficient in speeding up the prover, we believe that it could be

modified to search for lemmas that would make it possible to prove conjectures that the prover

alone wasn’t able to prove. This will require a change of strategy, because currently the system

looks primarily for lemmas that improve already existing proofs of the conjectures and therefore

are not general enough to prove some new unknown conjecture.

We would also like to investigate the nature of the lemmas that help to improve particular

proof measures in order to develop a better strategy for their evaluation.

Finally, we plan to perform a in-depth testing of the system on various sets of conjectures

from different sources.

8 Conclusion

Given a related set of conjectures, it is possible to automatically construct lemmas that can

significantly reduce the cost of the proofs of the conjectures. The results are summarized in

Table 17 for convenience.

processed clauses proof size proof length

set of conjectures || · ||i || · || f || · ||i || · || f || · ||i || · || f

TPTP set theory 3991 1921 (48%) 3487 2794 (80%) 1086 878 (81%)

Mizar set properties 62706 1852 (3.0%) 10680 9351 (88%) 3687 3046 (83%)

Meredith’s axiomatization 15725 510 (3.2%) 1299 1024 (79%) 314 277 (88%)

S5 modal logic 115327 2091 (1.8%) 632 379 (60%) 642 389 (61%)

Table 17: Summary of the results of the system on the presented sets of conjectures.

The system that we have developed performs well on different sets of conjectures, particu-

larly if the cost of the proofs of the conjectures is measured in the number of clauses processed

by the prover. The system can also improve the size and/or the length of the proofs, although it

is not as effective in these cases.

References

[AS92] Owen L. Astrachan and Mark E. Stickel. Caching and lemmaizing in model elim-

ination theorem provers. In Deepak Kapur, editor, CADE, volume 607 of Lecture

Notes in Computer Science, pages 224–238. Springer, 1992.

[Col02a] Simon Colton. Automated Theory Formation in Pure Mathematics. Distinguished

Dissertations. Springer, 2002.

Empirically Successful Computerized Reasoning 51

[Col02b] Simon Colton. The HR program for theorem generation. In Andrei Voronkov,

editor, CADE, volume 2392 of Lecture Notes in Computer Science, pages 285–289.

Springer, 2002.

[CP80] P. T. Cox and T. Pietrzykowski. A complete, nonredundant algorithm for reversed

skolemization, volume 87 of Lecture Notes in Computer Science. Springer, May

1980.

[CP93] Ritu Chadha and David Plaisted. Finding logical consequences using unskolemiza-

tion, volume 689 of Lecture Notes in Computer Science. Springer, May 1993.

[FFF99] Marc Fuchs, Dirk Fuchs, and Matthias Fuchs. Generating lemmas for tableau-

based proof search using genetic programming. In Wolfgang Banzhaf, Jason Daida,

Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E.

Smith, editors, Proceedings of the Genetic and Evolutionary Computation Con-

ference, volume 2, pages 1027–1032, Orlando, Florida, USA, July 1999. Morgan

Kaufmann.

[Hal05] John Halleck. Logic systems, 2005. http://www.cc.utah.edu/˜nahaj/logic/structures/.

[McC94] W. W. McCune. OTTER 3.0 reference manual and guide. Technical Report ANL-

94/6, Argonne National Laboratory, Argonne, Illinois, 1994.

[MVF+02] William McCune, Robert Veroff, Branden Fitelson, Kenneth Harris, Andrew Feist,

and Larry Wos. Short single axioms for boolean algebra. J. Autom. Reasoning,

29(1):1–16, 2002.

[Qua92] Art Quaife. Automated Development of Fundamental Mathematical Theories.

Kluwer Academic Publishers, 1992.

[Sch02] S. Schulz. E – A brainiac theorem prover. Journal of AI Communications, 15(2-

3):111–126, 2002.

[SGC03] G. Sutcliffe, Y. Gao, and S. Colton. A Grand Challenge of Theorem Discovery. In

J. Gow, T. Walsh, S. Colton, and V. Sorge, editors, Proceedings of the Workshop on

Challenges and Novel Applications for Automated Reasoning, 19th International

Conference on Automated Reasoning, pages 1–11, 2003.

[SS98] G. Sutcliffe and C. B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.

Journal of Automated Reasoning, 21(2):177–203, 1998.

[Urb03] Josef Urban. Translating Mizar for first order theorem provers. In MKM, volume

2594 of Lecture Notes in Computer Science, pages 203–215. Springer, 2003.

[Urb04] Josef Urban. MPTP - motivation, implementation, first experiments. Journal of

Automated Reasoning, 33(3-4):319–339, 2004.

[WP03] Larry Wos and Gail W. Pieper. Automated Reasoning and the Discovery of Missing

and Elegant Proofs. Rinton Press, 2003.

52 Empirically Successful Computerized Reasoning

