
Predictive Analysis of BPM tasks with autoCEP

Raef Mousheimish1,2, Yehia Taher1, and Karine Zeitouni1

1 DAVID Laboratory
University of Versailles
78000 Versailles, France

2 Fondation des Sciences du Patrimoine
Labex Patrima

{firstName.lastName}@uvsq.fr

Abstract. BPM engines are designed to follow a coarse-grained process-
ing methodology, which is not enough to manage long-running activities.
To cope with this, Complex Event Processing (CEP) is exploited. How-
ever, the integration of the two fields had always been intricate. This
paper demonstrates an easy tool to work out this integration.

Keywords: Business Process Management, Complex Event Processing,
Real-time Analysis, Prediction

1 Introduction

Existing BPM engines [1] manage the entire process in an activity-oriented fash-
ion. This is very advantageous to administer the flows of procedures, keep them
compliant with agreements, logs, and monitor the beginning and end of tasks.
However, engines give basically little or no knowledge about what is happening
inside long-running tasks. Even though, most agreement violations could po-
tentially stem from the inside of these tasks, BPM users have no possibility to
predict these violations. Given the ubiquity of sensors nowadays and the avail-
ability of measurements that otherwise were unattainable before, business users
are actually seeking more insight that could help to take proactive measures
while long activities are executing.

To compensate for this shortcoming, many research initiatives integrate the
CEP technology within BPM engines [1–3]. Even though these initiatives pro-
posed various conceptual and practical solutions to the BPM/CEP integration,
they have mainly focused on design-time integration. In other words, they anno-
tate process models with all-purpose events at design-time. This practice does
not support predictions while tasks are executing.

Up to this day, no real attempt was made to integrate predictive CEP
capabilities inside executing long activities. We argue that the explicit reason
for this is the overwhelming complexity that this integration could yield. Since in
the CEP world rules are written manually, an easy-to-use solution of integrating
on-th-fly such rules is not evident. And BPM tech users would find themselves
in urge to master yet another complex domain with intricate jargons.



This paper demonstrates an easy-to-use tool to fulfill a BPM/CEP integra-
tion. This integration predicts in-activities violations, and therefore it helps to
realize a proactive BPM. Apart from its predictive capabilities, our approach is
also generic, in a sense that it works whenever classified time series data sets
exist, regardless of the application domain. This data set contains the history of
executions of monitorable activities, and it constitutes the training data to learn
complex and predictive CEP rules.

In this work, we make use of the concept of contextual templates to tackle
context-dependent monitorable tasks, and we demonstrate how autoCEP [4]- an
innovative approach that automatically constructs an equipped CEP engine with
predictive capabilities - could be easily integrated into BPM engines. AutoCEP
heavily counts on time series data mining techniques, and technical details about
it could be found in one of our recent publication [4].

2 Motivating Scenario

In the manufacturing of semiconductor microelectronics, several sensors to cap-
ture important measurements are deployed on the machines that etch the wafers.
After the creation of one silicon wafer, it is manually checked if it is normal or
abnormal, and then the sensor data related to this specific wafer are classified
accordingly. Such workflow is simplified in Figure. 1. The manufacture wafer
task is long-running and beyond the reach of the BPM engine.

Fig. 1. Manufacturing Business Process

Currently, one could have the (un)interrupting error event that is attached
to the manufacture task. Thanks to this, reactive procedures could be later
executed (React to Violation sub-process in figure 1). In contrast, what could
be achieved using our approach is a proactive management. The manufacture
wafer task could have another (un)interrupting event, however this time for a
predicted situation. Therefore, the management of the process could be carried
out proactively (Proact to Violation sub-process in figure 1).



The strong point to emphasize is that this is not going to be achieved through
an ad-hoc support, but it could be done easily in many domains and for any
number of situations. The CEP engine will work automatically and signal any
violation that it is trained to predict.

3 Contextual Templates

A main concept that paves the way for a better management of monitorable and
long-running activities is contextual templates. Templates are supposed to wrap
such activities in order for the CEP engine to infer what should predicted for this
specific instance. This practice constitutes a way of specializing the management
of processes on the instance level).

Templates comprise two types of attributes in addition to a prediction sec-
tion. The first type is instance-based attributes. These are static data that are
useful to configure the engine. The second type is run-time attributes. They
constitute the attributes that the CEP engine should monitor in real-time.

The other part of a template is the prediction section where checkboxes for
each situation (class) need to be provided. The user can select what situations
he/she is interested in predicting for this specific instance, and later on the CEP
engine will make sure to predict and signal them. Figure 2 shows an example
template for manufacturing activities. It is obvious that there are six sensors
deployed on the machine. The CEP engine will seek to provide real-time values
from each sensor during the execution of the manufacture task. Regarding the
predictions, there are two situations or classes in this case because historical
wafer manufacturing scenarios are classified as normal or abnormal. Selecting
some of these classes will notify the CEP engine that users are interested in
predicting. Afterwards, the CEP engine will work its magic to predict these
classes in an automatic way and without any manually written CEP code.

Templates are extensible, flexible, and can be easily created using current
BPM engines. All typical engines provide an easy way (usually HTML forms) in
order to create templates to assign values to process variables.

Fig. 2. Example of a Template for a Manufacturing Activity



4 Integrating autoCEP into BPM

The learning part of autoCEP runs over historical scenarios and produces pre-
dictive patterns. The learned patterns are saved to a local repository. Afterwards,
when the process starts executing, users can check from the template the classes
they are interested to predict. For instance, in the manufacturing scenario, it
makes sense to predict abnormality. When the execution flow reaches the moni-
torable activity, e.g. manufacture, whose behavior we aim to predict, the BPM
engine will trigger autoCEP while pointing it to the location where the temporal
patterns are saved. Such a pointing could be done through the instance-based
attributes of the template, or easily through the autoCEP API. AutoCEP
then transforms on-the-fly the different patterns into predictive CEP rules, it
configures the CEP engine to predict for the checked classes in the template,
it runs the engine, and starts real-time monitoring and analysis. Subsequently,
whenever one of the checked classes (in the template) is predicted, autoCEP
will signal an event to the BPM engine (e.g., throw a BPM error with the code
equals to the name of the class). Finally, attached events to the monitorable
tasks (as shown in the scenario section, fig. 1) with the same code as the class
will catch the error event dispatched by autoCEP, and the management could
be carried out proactively.

BPM users are not responsible of writing CEP rules. They are rather left to
focus on the design of their business processes. The only requirement is to name
the process variables of the checkboxes in the prediction section of the template
and the codes of the attached events, the same as the existing classes from the
historical scenarios. Given this simple setup, the interaction between the BPM
and the CEP engines will be done behind the scenes.

5 Demonstration

A video that presents our demonstration and puts the whole system into action
(with the manufacturing scenario) could be found on our website 3. Moreover, the
website contains the source code, links to the data sets, and more experiments
to assess the tool from data mining perspectives.

What we have proposed so far could be done in different existing BPM en-
gines. In our implementation we exploited the open-source Camunda engine4 to
this end. After deploying and configuring the process (in BPMN format), execut-
ing it will trigger autoCEP. Then autoCEP will go side by side with Camunda
to provide real-time analysis and prediction for the manufacturing task.

Figure 3 presents two portions of two running instances of the manufacturing
process. On the left side of the figure, a normal test instance was streamed
through autoCEP, correctly no abnormality was predicted, and the flow of the
process continued normally. This is shown with the execution token inside the
Camunda engine cockpit on the No Predicted Abnormality task. On the right side

3 https://goo.gl/2aDHyu
4 https://camunda.org/



Fig. 3. A. Normal Instance B. Abnormal Instance

of figure 3, an abnormal test instance was streamed, and as shown the execution
of the process was interrupted by the attached error event - the execution token
on the Abnormality Predicted task. Thanks to this easy integration with CEP,
proactive measures could now be designed and triggered.

6 Conclusion

In this paper, we presented a new technique to put autoCEP in service of the
BPM domain in order to allow for more fine-grained management, and prediction
when dealing with long-running activities. The overall tool could be considered
as an easy way to integrate BPM and CEP, a problem that is lately storming
the research area of BPM.

Predicting situations was discussed in this demo, however proposing adap-
tation countermeasures is still out of its reach. Therefore, further researches are
to be continued in this direction.

References

1. A. Baumgrass, D. Ciccio, C. Claudio, R. Dijkman, M. Hewelt, J. J. Mendling, A. A.
Meyer, S. S. Pourmirza, M. M. Weske, and T. Wong. Get controller and unicorn:
Event-driven process execution and monitoring in logistics. CEUR Workshop Pro-
ceedings, 2015.

2. C. Cabanillas, A. Baumgrass, J. Mendling, P. Rogetzer, and B. Bellovoda. Towards
the enhancement of business process monitoring for complex logistics chains. In
Business Process Management Workshops, pages 305–317. Springer, 2013.

3. F. M. Maggi, C. Di Francescomarino, M. Dumas, and C. Ghidini. Predictive moni-
toring of business processes. In Advanced Information Systems Engineering, pages
457–472. Springer, 2014.

4. R. Mousheimish, Y. Taher, and K. Zeitouni. Automatic learning of predictive cep
rules: Bridging the gap between data mining and complex event processing. In
Proceedings of the 11th ACM International Conference on Distributed and Event-
based Systems. ACM, 2017.


