
APD tool: Mining Anomalous Patterns from Event Logs

Laura Genga1, Mahdi Alizadeh1, Domenico Potena2, Claudia Diamantini2, and
Nicola Zannone1

1 Eindhoven University of Technology
2 Università Politecnica delle Marche

{l.genga,m.alizadeh,n.zannone}@tue.nl,
{c.diamantini,d.potena}@univpm.it

Abstract. A main challenge of today’s organizations is the monitoring of their
processes to check whether these processes comply with process models specify-
ing the prescribed behavior. Deviations from the prescribed behavior can repre-
sent either legitimate work practices not described by the models, which highlight
the need of improving it to better reflect the reality, or malicious behaviors rep-
resenting, for instance, security breaches and frauds. In this paper, we present a
tool designed to extract anomalous patterns representing recurrent deviations, to-
gether with their correlations, from historical logging data. The tool is targeted
to researchers and practitioners in business process and security domains, with
background in process mining.

1 Introduction

Organizations are required to monitor their business processes to ensure that their sys-
tem complies with the prescribed behavior, typically represented by a process model.
To this end, organizations usually employ logging mechanisms to record process ex-
ecutions in event logs. Event logs consist of traces, each of them recording the ac-
tivities performed in a process execution. Ideally, process executions comply with the
defined process models. However, reality may deviate from such models. Deviations
can point out the existence of work practices not properly represented by the process
model, which hence has to be updated. However, they can also indicate malicious be-
haviors, like security breaches and frauds, which can lead to severe consequences for an
organization, e.g. in terms of loss of money and reputation. It is crucial for organizations
to be able to detect and analyze deviations occurred during process executions.

In this paper, we introduce the Anomalous Pattern Discovery (APD) tool, whose
goal is to assist analysts in exploring anomalous behaviors occurred within process ex-
ecutions, i.e. behaviors that do not comply with the prescribed model. More precisely,
the APD tool aims to infer anomalous patterns showing the most relevant anomalous
behaviors from historical logging data, together with their correlations. Note that in
this work we relate the relevance of a deviation to its occurrence frequency. By doing
so, APD allows an analyst to focus on recurrent deviations. These deviations are partic-
ular interesting as they might indicate work practices (in contrast to isolated incidents)
that diverge from the normative behavior prescribed by the organization. Moreover, by
exploring correlations among detected deviations the tools allows identifying groups of



Fig. 1: The Anomalous Pattern Discovery framework

deviations, possibly occurring in different portions of the process, which can be actually
considered as part of a single deviant behavior.

It is worth noting that the APD tool can be considered as complementary to other
process diagnosis techniques, like, for instance, conformance checking [2] that usu-
ally focuses on diagnosing single process executions by matching each trace in the log
against the process model to pinpoint possible deviations.

The tool has been developed to support the anomalous patterns extraction approach
we introduced in a previous work [6]. The approach involves two main steps. Given a
process model and an event log consisting of partially ordered traces (i.e., traces rep-
resenting possible parallelisms among process activities, modeled by means of directed
graphs), first we extract all anomalous subgraphs, i.e. recurrent subgraphs involving one
or more deviations. Then, we generate the set of anomalous patterns representing par-
tially ordered anomalous subgraphs that tend to occur together. The remainder of the
paper presents the main functionalities of the APD tool.

2 Tool Description

The APD tool has been implemented as a new plug-in of ESub tool [4], a web appli-
cation supporting the visualization and exploration of the outcome of subgraph mining
algorithms. Fig. 1 provides an overview of the framework underlying the APD frame-
work. The steps of framework have been implemented in two modules, namely the
Anomalous Subgraphs Discovery module and the Partial Orders Discovery module.

The Anomalous Subgraphs Discovery module takes as input (i) an event log and
(ii) a process model, and returns the set of anomalous subgraphs mined from the traces
along with an occurrence matrix where each cell cij represents the number of occur-
rences of the j-th subgraph in the i-th trace.

The module accepts event logs both in the “.g” format, that is a format used to
represent a set of graphs (i.e., in our case, a set of partially ordered traces), and XES
format, which is the de-facto standard for event logs. However, since traces in XES
format are totally ordered, i.e. events are ordered on the basis of their occurrence in the
trace, thus hiding possible parallelisms, the module converts XES traces in partially or-
dered traces by applying the BIG algorithm [5]. Process models are provided in PNML
format, which is the standard format to represent Petri nets.

The extraction of anomalous subgraphs involves two steps: i) the mining of rele-
vant subgraphs from the event log and ii) the compliance checking of the mined sub-



Fig. 2: Anomalous Subgraphs Extraction module

graphs against the given process model. Since traces are represented as directed graphs,
we exploit a frequent subgraph mining algorithm to infer the subgraphs (i.e., subpro-
cesses) from the log traces. More precisely, the module exploits the SUBDUE algo-
rithm [8], which extracts and orders subprocesses on the basis of their Minimum De-
scription Length, a metric that considers both the dimension and support (i.e., the oc-
currence frequency) of a subgraph. SUBDUE arranges subgraphs hierarchically, based
on their inclusion relations. Specifically, at the top level we have subgraphs that do
not include in any other subgraph; whereas descending the hierarchy we have sub-
graphs built by adding one or more nodes (i.e., process activities and/or subgraphs)
to their parent nodes. The module exploits the SUBDUE implementation available at
http://ailab.wsu.edu/subdue/.

Once the subgraph hierarchy has been generated, the module checks the confor-
mance of each subgraph with the process model. It is worth noting that, when both a
subgraph and its children are found anomalous, only the parent subgraph is considered
for the analysis. In fact, considering both of them can introduce noise when defining
anomalous patterns, since they are strictly correlated because of the inclusion relation.
By doing so, we focus on common and more general anomalous subgraphs that are
preferable for the definition of anomalous patterns. There are, however, a few excep-
tions. For instance, we can have anomalous subgraphs with some compliant children.
This scenario typically occurs when choice constructs (i.e., XOR) occur in a branch of a
parallel behavior as defined in the process model. It is straightforward to observe that a
branch without choice constructs will have a higher occurrence frequency than a branch
where the choice constructs occur. As a result, a parallel behavior is often captured in
the SUBDUE hierarchy by child subgraphs, whose parent subgraph only exhibits a por-
tion of the parallel behavior. Clearly, subgraphs representing a parallel behavior with a
missing branch are considered anomalous with respect to the process model. However,
these subgraphs may not represent an actual anomalous behavior. In fact, by adding the
missing branches they become compliant. Therefore, subgraphs that have (some, but
not all) compliant children are neglected in our analysis.

http://ailab.wsu.edu/subdue/


Fig. 3: Partial Order Discovery module

Fig. 2 shows an example of the output returned by the Anomalous Subgraphs Dis-
covery. Compliant subgraphs are denoted by a green dash-dotted line rectangle; anoma-
lous subgraphs are denoted by a red full line rectangle; anomalous subgraphs with some
compliant descendants are denoted by a blue dotted line rectangle; finally, subgraphs
whose parent is anomalous are denoted by a yellow dash-dotted line rectangle. The set
of anomalous subgraphs, together with their occurrence matrix, become the input for
the Partial Orders Discovery module.

The Partial Orders Discovery module generates a set of patterns representing par-
tially ordered anomalous subgraphs. First, the module discovers anomalous subgraphs
that occur together with a frequency above a user-defined threshold. To this end, a
frequent itemset algorithm is exploited. More precisely, the module exploits an imple-
mentation of the FP-growth algorithm [7] provided by the SPMF library (http://
www.philippe-fournier-viger.com/spmf/). Then, the module determines
ordering relations among each pair of subgraphs (SUB i,SUB j) in the same itemset.

Four types of ordering relations are defined: i) strictly sequential relations, which
state that SUB i occurs immediately before SUB j , ii) sequential relations, which state
that SUB i occurs before SUB j but some activities may (or may not) occur in between,
iii) eventually relations, which state the SUB i occurs before SUB j and at least another
activity occurs in between, and iv) interleaving relations, which state that some of the
activities in SUB i and SUB j can be executed concurrently or are shared between the
two subgraphs.

To derive these relations, the module analyzes the position of the events forming
each subgraph of the itemset in the traces, evaluating the occurrence frequency of each
ordering relation for a given pair of subgraphs. Note that we consider only ordering
relations whose occurrence frequency is above a user-defined threshold, to deal with
possible presence of noise in the event log.

Fig. 3 shows an example of the patterns that can obtained using the APD tool, to-
gether with their support with respect to the event log. The tool provides three filtering
mechanisms to simplify the exploration of the patterns. In particular, patterns can be fil-
tered on the basis of their support. For example, by selecting a minimum support of 6%,
PO17 would be removed by the output in Fig. 3. In addition, patterns can be filtered on
the basis of their structure. Namely, it is possible to filter all non-maximal patterns (i.e.,
patterns included in other patterns) or all non-minimal patterns (i.e., patterns including
smaller patterns). Finally, the support-based and structure-based filtering can be com-

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/


bined, thus allowing the selection, for instance, of maximal patterns whose support is
above a given threshold.

The anomalous patterns extracted using the APD tool can support analysts in vari-
ous ways. First, they highlight frequent and correlated anomalous behaviors in historical
logging data, providing valuable insights to investigate deviant behaviors. In addition,
they can be used to enhance classic conformance checking techniques to detect high-
level deviations, as proposed in [3]. These patterns can also be exploited for on-line
monitoring. In fact, they make it possible to detect the occurrence of recurring anoma-
lous behaviors for which accurate diagnostics is already available when analyzing new
process executions, thus relieving the analyst from the burden of reevaluating situations
already analyzed. Last but not least, the identified anomalous patterns can drive the def-
inition of measures for preventing and/or responding to deviant behaviors, especially
those indicating that the opportunity of a fraud or a security breach exists.

3 Link and Screencast

The ADP tool can be found at http://kdmg.dii.univpm.it/?q=content/
esub. The tool has been used for the analysis of both synthetic and real-world event
logs, including the event log made available for the BPI 2012 challenge [1].

A screencast demonstrating the usage of the APD tool can be found at https:
//goo.gl/khpyg9.

Acknowledgment This work has been partially funded by the NWO CyberSecurity pro-
gramme under the PriCE project and by the ITEA2 project M2MGrids (No. 13011).

References

1. BPI2012 Challenge. doi:10.4121/uuid:3926db30-f712-4394-aebc-
75976070e91f (2012), [Online; accessed 07-June-2017]

2. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models for
conformance checking and performance analysis. Wiley Int. Rev. Data Min. and Knowl. Disc.
2(2), 182–192 (2012)

3. Adriansyah, A., van Dongen, B.F., Zannone, N.: Controlling break-the-glass through align-
ment. In: Proceedings of International Conference on Social Computing. pp. 606–611. IEEE
(2013)

4. Diamantini, C., Genga, L., Potena, D.: Esub: Exploration of subgraphs. Proceedings of the
BPM Demo Session pp. 70–74 (2015)

5. Diamantini, C., Genga, L., Potena, D., van der Aalst, W.: Building instance graphs for highly
variable processes. Expert Systems with Applications 59, 101–118 (2016)

6. Genga, L., Potena, D., Martino, O., Alizadeh, M., Diamantini, C., Zannone, N.: Subgraph
Mining for Anomalous Pattern Discovery in Event Logs. In: Proceedings of International
Workshop on New Frontiers in Mining Complex Patterns. Springer (2016)

7. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM
Sigmod Record. vol. 29, pp. 1–12. ACM (2000)

8. Jonyer, I., Cook, D., Holder, L.: Graph-based Hierarchical Conceptual Clustering. Journal of
Machine Learning Research 2, 19–43 (2002)

http://kdmg.dii.univpm.it/?q=content/esub
http://kdmg.dii.univpm.it/?q=content/esub
https://goo.gl/khpyg9
https://goo.gl/khpyg9
doi:10.4121/uuid:3926db30-f712-4394 -aebc-75976070e91f
doi:10.4121/uuid:3926db30-f712-4394 -aebc-75976070e91f

	APD tool: Mining Anomalous Patterns from Event Logs

