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Abstract. Today personalized medicine is one of the most popular in-
terdisciplinary research field, risk group identification being one of its
most important tasks. Even though the first attempts to estimate the ef-
fect of patient’s characteristics on the outcome were proposed in statistics
in the middle of the twentieth century, it is still an open question how
to explore such effects properly. In this paper we propose a trial version
of the approach to risk group specification based on pattern structures
and competing risk estimation, and discuss further steps of research on
its performance and specificity.
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1 Introduction

Risk group identification is one of the task of personalized medicine. Often clini-
cians are required to define or to specify risk groups of patients to change treat-
ment protocols properly. The task becomes more complicated if treatment out-
come variable is not binary or numerical, but censored with several possible
events. Such outcome is typical for most of the oncological diseases. Medical
statistics calls the risk of occurrence of such event as competing risk and has a
collection of techniques for their estimation and comparison [1]. However, there
are almost no good techniques for risk groups specification when we deal with
this type of outcome. To solve this problem, we presented an idea of approach to
risk group identification when patients are described by nominal and/or numer-
ical features with censored multi-event outcome. The mining process is based
on pattern structures construction [2–5] with several adjustments which make
it possible to apply the general approach to the dataset on acute lymphoblastic
leukemia from ALL-MB-2008 trial [6] to obtain some promising results demon-
strating the potential of the proposed approach.

The paper is organized as follows. In section 2 the theoretical basics of pat-
tern structures and competing risks essential for the proposed approach are
presented. Section 3 is devoted to the proposed approach. In section 4 we briefly
describe results of application of the proposed approach to the data on acute
lymphoblastic leukemia. Section 5 concludes the paper.



2 Preliminaries

2.1 Pattern Structures

In this section we give an introduction to pattern structures and discuss some
of their applications.

Let G be a set (of objects), (D,u) be a meet-semilattice (of all possible
object descriptions), and δ : G→ D be a mapping. Then (G, (D,u), δ) is called
a pattern structure, provided that the set δ(G) = {δ(g) | g ∈ G} generates a
complete subsemilattice (Dδ,u) of (D,u), i.e. every subset X of δ(G) has an
infimum ⊔X in (D,u). Elements of D are called patterns and are naturally
ordered by subsumption relation v: c v d ⇔ c u d = c, where c, d ∈ D. If
(G, (D,u), δ) is a pattern structure we define the derivation operators which
form a Galois connection between the powerset of G and (D,u) as:

A� = ⊔g∈A δ(g) for A ⊆ G
d� = {g ∈ G | d v δ(g)} for d ∈ D (1)

The pairs (A, d) satisfying A ⊆ G, d ∈ D, A� = d, and A = d� are called pattern
concepts of (G, (D,u), δ), with pattern extent A and pattern intent d. Pattern
concepts are ordered with respect to set inclusion on extents. The ordered set of
pattern concepts makes a lattice, called pattern concept lattice. Operator (·)��
is an algebraical closure operator on patterns, since it is idempotent, extensive,
and monotone.

If objects are described by binary attributes from set M , then D = ℘(M),
the powerset of M , and δ(g) is prime operator (·)′ in the context (G,M, I):
δ(g) = {m ∈M | gIm}, and d1ud2 = d1∩d2 where d1, d2 ∈ D. So, subsumption
corresponds to set inclusion: d1 v d2 ⇔ d1 u d2 = d1 ⇔ d1 ∩ d2 = d1 ⇔ d1 ⊆ d2.

If objects are described by k nominal features {ψ1, ..., ψk}, we assume that ψi
takes values from {1, ..., li}, where li ∈ N, for i ∈ {1, ..., k}. Nominal features can
be transformed into binary attributes in many different ways. In this paper we
will assume just one variant of transformation. For each ψi we construct li binary
attributes {β1

i , ..., β
li
i } such that βji : G → {0, 1} and βji (g) : g → ψi(g) 6= j

where g ∈ G, j = 1, ..., li. As a result we get
∑
i=1,...,n li binary attributes.

Patterns on such binary attributes define subsets of values of nominal features.
For instance, if a pattern contains binary attributes β1

i and β4
i and no other βji

then in terms of nominal feature it will look like ψi ∈ {2, 3, 5, ..., li}.
To operate with numerical features interval pattern structures [3–5] can be

applied. If objects are described by n numerical features, we can represent them
as a set of functions {ϕ1, ϕ2, ..., ϕn}, such that ϕi : G → R for i = 1, ..., n. For
each feature ϕi we construct an interval attribute αi : G → [R,R] such that
if ϕi(g) = x for g ∈ G, then αi(g) = [x, x], where x ∈ R. Then each object
is described by a n-dimensional tuple of intervals. Let a and b be tuples of n
intervals, so a = 〈[vi, wi]〉i=1,...,n and b = 〈[xi, yi]〉i=1,...,n, where vi, wi, xi, yi ∈
R ∀i = 1, ..., n. In this case operator u is defined as follows:

a u b = 〈[vi, wi]〉i=1,...,n u 〈[xi, yi]〉i=1,...,n = 〈[vi, wi] u [xi, yi]〉i=1,...,n (2)



where [vi, wi]u [xi, yi] = [min(vi, xi),max(wi, yi)]. Hence, subsumption on inter-
val tuples is defined as:

a v b⇔ [vi, wi] v [xi, yi]i=1,...,n ⇔ [vi, wi] u [xi, yi] = [vi, wi]i=1,...,n ⇔
⇔ [min(vi, xi),max(wi, yi)] = [vi, wi]i=1,...,n ⇔ [vi, wi] ⊇ [xi, yi]i=1,...,n

(3)

For example, 〈[2, 6], [4, 5]〉 v 〈[3, 4], [5, 5]〉 as [2, 6] v [3, 4] and [4, 5] v [5, 5].
In a case when objects have both nominal and numerical features, we as-

sociate the set of binary attributes with each nominal feature and an inter-
val attribute with each numerical one. Assume there are k binary and n in-
terval attributes, then every d ∈ D can be represented as d = 〈α, β〉 where
α is an interval tuple of length n, and β is a subset of binary attributes.
If d1, d2 ∈ D, d1 = 〈α1, β1〉, and d2 = 〈α2, β2〉 operator u can be set as
d1 u d2 = 〈α1 u α2, β1 u β2〉 where operator u for interval tuples and the sets
of binary attributes is defined above. The subsumption is also defined by sub-
sumption on interval tuples and the sets of binary attributes:

d1 v d2 ⇐⇒ d1 u d2 = d1 ⇐⇒ 〈α1, β1〉 u 〈α2, β2〉 = 〈α1, β1〉 ⇐⇒
⇐⇒ α1 u α2 = α1, β1 u β2 = β1 ⇐⇒ α1 v α2, β1 v β2

(4)

In our application we consider below objects are patient IDs, and object descrip-
tions are tuples of binary and interval attribute values.

2.2 Competing Risks

In this paper the outcome variable is represented by a pair (T,C), where C ∈
{0, 1, ..., p} and T ∈ R+. Here C = i, i ∈ {1, ..., p} corresponds to a type of event
(for instance, relapse or death in case of cancer-study data), and in this case T is
the time from the beginning of observation to the event occurrence. When C = 0
corresponds to censorship (observation had ended before any event occurred), T
is the time from the beginning of observation to the moment of censorship. Then
the survival function is defined as S(t) = P(T > t), the probability of being free
from any event at time t [1, Chapter 2]. However, if we aim at estimation of the
risk of a specific event i (event of interest) in the presence of other competing
events we are more interested in the cumulative incidence function (CIF), defined
as Fi(t) = P(T ≤ t, C = i), the probability that event i occurs before time t
[1, Chapter 4, p. 55]. Let t1 < t2 < ... < tr be observed unique uncensored
time points, dij be the number of events of type i observed at time tj , nj be
the number of patients for whom T is not less than tj . Then, first, we non-
parametrically estimate the survival function through Kaplan-Meier estimator
[7, 8]:

Ŝ(t) =
∏
tj≤t

[
1−

∑p
i=1 dij
nj

]
(5)

Second, we estimate the CIF of the event of interest i as [1, Chapter 4, p. 56]:

F̂i(t) =
∑
tj≤t

dij
nj
Ŝ(tj−1) (6)



To test the confidence of the difference in risk of event of interest occurrence
between M non-overlapping groups of patients, we use Gray’s test for multiple
groups [9] [1, Chapter 5, p. 74]. The main subject of it is to test the null hy-
pothesis H0 : Fmi (t) = Fi(t),m = 1, ...,M , where Fmi (t) is the CIF of event i in
group m, and Fi is the CIF of event i without groups specification. The general
form of the score for group m is

zm =

∫ tr

0

Wm
i (t){γmi (t)− γi(t)}dt (7)

where tr is the maximum observed time, γmi (t) =
Fm

i (t)′

1−Fm
i (t) is the hazard of event i

in group m, γi(t) = Fi(t)
′

1−Fi(t)
is the hazard of event i without groups specification,

and Wm
i (t) is a weight function. The test statistics is a quadratic form

ZΣ−1Zt ∼ χ2
M−1 (8)

where Z = (z1, ..., zM−1) and Σ is the corresponding covariance matrix.
For M = 2 only z1 needs to be computed. Frequently, W 1

i (t) is assumed to be
equal to R1

i (t), an adjusted number of individuals at risk. Let n1j be the number

of patients in group 1 for whom T is not less than tj . We put R1
ij = R̂1

i (tj) =

n1j
1−F̂ 1

i (tj−1)

Ŝ1(tj−1)
, where Ŝ1(tj−1) is Kaplan-Meier estimation of survival function in

group 1 and F̂ 1
i (tj−1) is the estimation of the CIF of event i in group 1. Then

the score is

z1 =
∑

tj∈{t1,...,tr}

R1
ij

( d1ij
R1
ij

−
d1ij + d2ij
R1
ij +R2

ij

)
,

z1

V̂ ar(z1)
∼ χ2

1 (9)

where d1ij and d2ij are the number of events i at time tj in groups 1 and 2,
respectively.

3 Risk Group Identification Procedure

In this section the procedure of identification of groups of patients with high
or low risk of the event of interest is proposed. Here we assume that patients
are described by numerical and/or nominal features, which can be transformed
into ordinal and binary attributes, respectively. The most obvious way of group
identification is the exhaustive search among all possible relevant descriptions.
However, several group descriptions may correspond to the same subset of pa-
tients, therefore it is reasonable to search them only among pattern intents, which
we also call closed descriptions, as all descriptions of any subset of patients are
subsumed by the corresponding pattern intent. Hence, the search process can
be considerably reduced. Further we will see that the reduction of the search
is also important in terms of multiple testing. To construct all closed descrip-
tions object-wise version of Close-by-One (CbO) algorithm [11] can be applied.



It is also possible to use InClose2 [10] after the appropriate scaling of interval
features.

As the number of closed descriptions is theoretically exponential in the num-
ber of patients and the number of unique values of all features, it may be still
necessary to curtail the search. The possible solution is to construct closed de-
scriptions only from data on patients who experienced exactly the event of in-
terest, but to perform all further steps on the whole dataset.

We may also consider a closed description as a rule which splits the whole
set of patients into two parts: those who satisfy and not satisfy this description.
It allows us to perform Gray’s test for every closed description with two parts of
the corresponding split as groups. However, it may be also reasonable to perform
additional pre-selection steps before.

The idea of pre-selection is to define one or several measures of difference
between CIFs of two parts of a split different from Gray’s test statistics. If
Fcd(t) and ncd are the CIF of the event of interest and the number of patients
satisfying a closed description and Fr(t) and nr are the CIF of the event of
interest and the number of the remaining patients, you can find two examples
of difference measures below:

– Absolute difference of total CIFs × Entropy:∣∣F̂cd(∞)− F̂r(∞)
∣∣[− ncd

ncd + nr
log
( ncd
ncd + nr

)
− nr
ncd + nr

log
( nr
ncd + cr

)]
(10)

– Absolute t-test statistics: ∣∣F̂cd(∞)− F̂r(∞)
∣∣√

V̂ ar(F̂cd(∞))
ncd

+ V̂ ar(F̂r(∞))
nr

(11)

As we want to obtain groups with high or low risk of the event of interest
we attempt to maximize difference measures chosen for pre-selection. The main
problem here is choosing the cutoff of pre-selection. A possible solution would be
computing the value of difference measure for every closed description, sorting
computed values in ascending order and setting cutoff at the point from which
the values of measure increase faster than before it. So, for further analysis we
retain only closed descriptions with the value of difference measure not less than
the chosen cutoff value.

After all pre-selection steps we compute Gray’s test p-value for all remaining
closed descriptions. Taking into account multiple testing correction we select
only closed descriptions with confident difference in CIF between two parts of
the corresponding splits. Let us call them confident descriptions. Then from all
confident descriptions we retain only those which are not subsumed by other
confident descriptions.

To present the obtained descriptions in a better way, one can remove unin-
formative attributes from the descriptions, such as interval attributes taking the
whole attribute range, and transform binary attributes to the subsets of values
of nominal features. Finally, when several similar splits (i.e. closed descriptions)
are obtained we try to combine them through intersection and unification.



4 Experiments

The proposed procedure was applied to the data of MB-ALL-2008 study [6].
We tried to specify relapse risk groups separately for patients from standard
risk group (SRG) and intermediate risk group (ImRG) (more than 1000 patients
each). Patients are described by 5 nominal and 4 numerical features. The out-
come is represented by the censored variable with 5 possible events, one of which
is a relapse (the event of interest).

As for SRG, closed descriptions were constructed on the relapse patient data.
Closed descriptions with the small inside or outside number of patients (less than
50) were excluded beforehand as the corresponding splits are too unbalanced,
which may badly affect the value of Gray’s test statistics. So, we started from
8383 closed descriptions for SRG. After that they were pre-selected with the use
of two difference measures provided in section 4 as difference measure examples.
The cutoff vales were set manually after looking at the graphs in Figure 1.

Fig. 1. Sorted values of absolute total CIF difference time entropy on the left picture
and sorted value of t-statistics on the right picture for SRG. Dashed lines are the chosen
cutoffs.

Applying both measures with chosen cutoffs only 18 closed descriptions were
selected and corresponding splits were tested with Gray’s test. Among 18 per-
formed Grey’s tests p-value of 14 tests was less than corrected level of confidence
2.8 × 10−3. Here and further Bonferroni correction [12] was applied. Subsump-
tion removing resulted in 3 quite similar descriptions, which were finally trans-
formed into one split of all SRG patients into two groups with Gray’s test p-value
7.8× 10−11:

1. High risk (201 patients): (age is not less than 11 years) OR (age ∈ [4, 11) in
years AND spleen enlargement is more than 2 cm)

2. Low risk (959 patients): others.

CIF estimations with 95% confidence intervals are shown in Figure 2. The p-
value of Gray’s test is very small and may satisfy even more strict multiplicity



corrections. For instance, if we apply Bonferroni correction for all closed descrip-
tions the difference between CIFs will remain confident. This definitely looks like
a promising result.

Fig. 2. The final split of SRG into high- and low-relapse-risk groups.

As far as ImRG concerns, 588178 closed descriptions, for which the inner and
outer number of patients were not less than 100, were constructed. After pre-
selection with two measures mentioned above, the number of candidate closed
descriptions decreased to 4599. Performing Gray’s test with Bonferroni corrected
p-value 1.1 × 10−5 we cut down the number of descriptions to 61, and after
subsumption removal we resulted in 12 confident closed descriptions. Most of the
descriptions did not differ a lot, hence after their transformation and combination
we resulted in the split of ImRG into 3 groups:

1. High risk (97 patients): (age is not less than 6 years old) AND (neuroleukemia
OR white blood cell count is larger than 100/nl)

2. Low risk (575 patients): no neuroleukemia AND white blood cell count is
not larger than 100/nl AND age is less than 6 years old

3. Medium risk (388 patients): others.

Fig. 3. The final split of ImRG into high-, medium- and low-relapse-risk groups.



You can find the illustration of CIF estimations with 95% confidence intervals
in Figure 3. Gray’s test p-value for 3 groups is 3× 10−4, pairwise Gray’s test p-
values: low-medium – 1.1×10−2, medium-high – 1.3×10−3, low-high – 1.8×10−8.
So, the significance of the difference in relapse risk between found groups of
ImRG patients is questionable, except the difference between the low- and high-
risk groups.

5 Conclusion

In this paper we proposed the first version of the procedure which realizes the
approach to risk group specification based on pattern structures. This approach
was applied to data with nominal and/or numerical features and censored out-
come with several possible events and one event of interest. The reason for us-
ing pattern structures and closed descriptions comes from the idea that, first,
definitions of risk groups should be interpretable and, second, not a greedy op-
timization, but global one should be realized. However, the general procedure
still employs several heuristics that allow us to reduce the global search. The
open questions that remain are the following: what is the best decision for mul-
tiple testing problem in terms of the proposed approach? What should be done
with multiple solutions given by overlapping groups? Although some promising
results were obtained, a comparison to other approaches has to be performed.
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