
An Incremental Algorithm
for Computing n-concepts

Tatiana Makhalova1 and Lhouari Nourine2

1National Research University Higher School of Economics, Kochnovsky pr. 3,
Moscow 125319, Russia

2LIMOS, Université Blaise Pascal, BP 125, 62173 Aubière Cedex, France

tpmakhalova@hse.ru,nourine@isima.fr

Abstract. In this paper a new incremental algorithm for computing n-
concepts is proposed. The time complexity of the algorithm is O(|I|2 ·
In · |Bn|), where |I| is the size of a context (an n-ary relation), In =
|K1||Bn−1| is the input, where K1 is a set corresponding to an added
dimension and Bn−1 is the set of (n− 1)-concepts. The output Bn of the
algorithm is a set of n-concepts. The algorithm creates n-concepts (i.e.
elements in Bn) by merging sequentially (n−1)-concepts from Bn−1 with
the corresponding elements from the n-th dimension (i.e. set K1).

1 Introduction

Mining of closed itemsets are widely used in many practical applications of
data mining. Introduced by Rudolf Wille in 1982, formal concepts (i.e. dyadic
closed itemsets) was expanded later to the triadic [9] and n-dimensional cases
(n-concepts) [12]. Representation of data in the form of n-ary relations has been
becoming more and more popular recently. Analysis of high-dimensional data
can be more fruitful due to retaining some important information in complex
structures. Despite increasing interest in polyadic concept analysis, the problem
of the construction of high-dimensional concepts remains almost unexplored.

The large number of algorithms has been proposed for computing formal
concepts. For a comparative study of algorithms see [8]. In recent times, some
algorithms for computing triadic [4,5,11] and n-concepts [1] have been proposed
as well as computing approximate triconcepts, i.e. triclusters [3,2]. Recall that
in the worst-case the number of concepts can be exponential in the context size
and that even counting them is a #P-complete problem [6,7], so we have at least
the same complexity problems for triconcepts. However these algorithms are still
not compared in a comprehensive manner.

In this paper, we propose an algorithm for computing n-concepts sequentially
from (n− 1)-concepts.

The paper is organized as follows. In Section 2 we describe the proposed
approach and present the algorithm. In Section 3 we prove its properties. The
time complexity is discussed in Section 4. Section 5 briefly concludes.

2 Strategy of Computing n-concepts

In this section we provide the main definitions and the idea of the algorithm.
Let us consider an n-ary context K = (K1,K2, ...,Kn, I

n). KK1=a ⊆ K de-
notes a subcontext with fixed value a ∈ K1 , i.e. a context with the following
relation InK1=a = {{a, k2, ..., kn} | k2 ∈ K2, ..., kn ∈ Kn, (a, k2, ..., kn) ∈ In}. A
subcontext where elements from the several dimensions are fixed is denoted in the
same way. For example, a context where only elements aj ∈ Kj and ai ∈ Ki are
fixed is denoted by InKi=ai,Kj=aj

= {{k1, ..., ki−1, ai, ki+1, ..., kj−1, aj , kj+1, ..., kn} |
k1 ∈ K1, ki−1 ∈ Ki−1, ki+1 ∈ Ki+1, ..., kj−1 ∈ Kj−1, kj+1 ∈ Kj+1, kn ∈ Kn,
(k1, ..., ki−1, ai, ki+1, ..., kj−1, aj , kj+1, ..., kn) ∈ In}.

A set of n-concepts corresponding to the context K is denoted by Bn. Bxi
n−1

denotes a set of (n − 1)-concepts of KK1=xi . KK1=xi can be represented as an

n-ary context where the first dimension consists of a single element, thus B{a}n =
B(KK1={a}) = {({a}, X2, ..., Xn) | (X2, ..., Xn) ∈ Ban−1}. A set of n-concepts

that corresponds to a subcontext KK1={x1,x2,...,xi}, is denoted by B{x1,x2,...,xi}
n .

Example Let us consider a context given on Fig.1 (a). The context is comprised
of the following sets: K1 = {1, 2, 3, 4}, K2 = {a, b, c, d}, K3 = {α, β, γ, δ}.

Subcontext KK1=2 corresponds to the dyadic relation given in Fig. 1 (b).The
set of dyadic concepts is B22 = {({a}, {α, β}), ({a, b, c}, {β}), ({b, c}, {β, γ, δ})}.

The set of triadic concepts for subcontext KK1={1,2} given on Fig. 1 (c) is
following:

B{1,2}2 = {({1, 2}, {a}, {α, β}), ({1}, {d}, {β, γ}), ({1}, {a, d}, {β}),
({2}, {a, b, c}, {β}), ({2}, {{b, c}, {β, γ, δ}))}.

A subcontext with fixed elements from two dimensions in the triadic case
takes the following form: KK1=2,K2=b = {α, β, γ}.

During the recursive descent in step 8 of Algorithm 2 a particular value
a ∈ Ki form the next dimension i ∈ [1, 2, ..., n− 2] is fixed. At the end of the
descent, for a subcontext KK1=a1,...,Kn−2=an−2 , any algorithm for computing
formal concepts can be applied.

During the recursive ascent (see step 9 of Algorithm 2) (n − 1)-concepts
from Ban−1, a ∈ K1 are merged. In the recursive ascent on the i-th level the
algorithm builds (n− i+ 1)-concepts (the set of the concepts is denoted by Bn
in Algorithm 2) using computed during the recursive descent (n − i)-concepts
corresponding to a particular value a ∈ K1. With the introduced notation, the

states of Bn in Algorithm 2 is changed as follows: B{∅}n , B{x1}
n (derived from

Bx1
n−1), B{x1,x2}

n (derived by merging Bx1
n−1 and Bx2

n−1), ..., B{x1,x2,...,x|K1|}
n (the

result of the sequential merging of Bxj

n−1, where j ∈ {x1, x2, ..., x|K1|}).
Algorithm 3 iteratively constructs n-concepts by merging n-concepts from

B{x1,x2,...,xi−1}
n with (n−1)-concepts from Bxi

n−1. On each call a new set of (n−1)-
concepts, corresponding to a particular value xi ∈ K1, is added to a set of n-
concepts. To add (n − 1)-concepts to a set of n-concepts, each (n − 1)-concept

α β γ δ
a b c d a b c d a b c d a b c d

1 × × × ×
2 × × × × × × × ×
3 × × × × × × ×
4 ×

(a) A triadic context

α β γ δ
a × ×
b × × ×
c × × ×
d

(b) Subcontext KK1=2

1 2
α β γ δ α β γ δ

a × × × ×
b × × ×
c × × ×
d × ×

(c) Subcontext KK1={1,2}

Fig. 1. A triadic context and its subcontexts

X = (X2, ..., Xn) ∈ Bxi
n−1 is expanded to X = ({xi}, X2, ..., Xn) (see step 3 of

Algorithm 3). A function mark assigns a binary label to a concept, a function
isFull(Y1) checks whether Y1 ⊆ K1 contains all already considered elements
a ∈ K1.

Set-wise inclusion/exclusion relations between the corresponding sets A2, ...,
An of concepts from Bxi

n−1 and Bn are used to reduce the number of operations
and to avoid the redundant concept computation.

Algorithm 4 checks whether an n-ary itemset Z1, ..., Zn is closed by iterating
over dimensions. For the selected dimension dim it iterates over elements from
Kdim\Zdim and checks elements from Zi, i ∈ {1, ..., n}\{dim}. It stops when an
empty entry is found in the context for the first time or when all the dimensions
dim are checked.

Algorithm 5 works with a trie. The trie stores concept (A1, ..., An) as a se-
quence of lexicographically ordered elements from A1, ... An. A sequence of sets
Ai is fixed, i.e. elements of Ai are closer to the root than elements of Aj for all
i < j and elements from each dimension i are lexicographically ordered within set
Ai. To ensure the uniqueness of (A1, ..., An) it is sufficient to check the sequence
of the lexicographically ordered elements from A1 to An−1.

Algorithm 1: CreateSubcontext

Data: a ∈ K1,K = (K1,K2, ...,Kn, I
n)

Result: a subcontext KK1=a consisted of a set of (n− 1) tuples
{(k2, k3, ..., kn) | (a, k2, k3, ..., kn) ∈ In}

1 begin
2 return KK1=a = (K2, ...,Kn, I

n
K1=a)

Example Let us consider how the algorithm works using a context from the
running example. The algorithm consecutively computes triconcepts from the
formal concepts corresponding to the following contexts: KK1=1, KK1=2, KK1=3,
KK1=4. Parameters and results of the function “getNConcepts” in the execution
order are given in Table 1.

Algorithm 2: ComputeConcepts

Data: K = (K1,K2, ...,Kn, I
n)

Result: the set Bn = {{A1, A2, ..., An} |Ai ⊆ Ki} of n-concepts of K
1 begin
2 if n = 2 then
3 return ComputeFormalConcepts(K)

4 else
5 Bn = {∅}
6 for a ∈ K1 do
7 KK1=a = CreateSubcontext(a,K)
8 Ban−1 = ComputeConcepts(KK1=a)
9 Bn = getNConcepts(Bn,Ban−1, a)

10 return Bn

3 Properties of the Algorithm

Below it is proved that all concepts created by the algorithms are n-concepts
(i.e. closed n-itemsets) of the context and all n-concepts of the context are gen-
erated by the algorithm. Algorithm 2 iteratively adds a ∈ K1 to create n-closed
concepts. To denote an intermediate result the following notation is used: an
element a ∈ K1 is denoted by xi, thus already considered elements are denoted

by x1, ..., xi−1, the current state of Bn is denoted by B{x1,...,xi−1}
n . When element

xi is added to Bn, B{x1,...,xi−1}
n changes its state to B{x1,...,xi}

n .
The properties 1-4 claim that all modifications of the concepts from Bn as

well as construction of new ones result in a set of closed itemsets.

Property 1. If Y is marked (see step 16 and 28 in Algorithm 3) then Y = (Y1 ∪
{xi}, Y2, ..., Yn) ∈ B{x1,...,xi}

n , where (Y1, Y2, ..., Yn) ∈ B{x1,...,xi−1}
n . If, in addition,

∀x(x ∈ {x1, ..., xi−1}) x ∈ Y1, then the intersection ({xi}, X2, ..., Xn) ∈ B{a}n

with any other (Z1, Z2, ..., Zn) ∈ B{x1,...,xi−1}
n gives unclosed subsets.

Proof Let us assume that Y is marked, but Y /∈ B{x1,...,xi}
n . Then ∃Z(Z ∈

B{x1,...,xi}
n), such that Y ⊂ Z. Therefore, (Y1 ∪ {xi}) ⊂ Z1 ⇒ xi ∈ Z1, Z2 ⊆

Table 1. The sequence of “getNConcepts” calls for the running example

Input Output

Value in K1 Bn Ban−1 Bn

1 ∅
({a}, {α, β}),
({d}, {β, γ}),
({a, d}, {β})

({1}, {a}, {α, β}),
({1}, {d}, {β, γ}),
({1}, {a, d}, {β})

2
({1}, {a}, {α, β}),
({1}, {d}, {β, γ}),
({1}, {a, d}, {β})

({a}, {α, β}),
({b, c}, {β, γ, δ}),

({a, b, c}, {β})

({1, 2}, {a}, {α, β}),
({1}, {d}, {β, γ}),
({1}, {a, d}, {β}),

({2}, {b, c}, {β, γ, δ}),
({2}, {a, b, c}, {β})

3

({1, 2}, {a}, {α, β}),
({1}, {d}, {β, γ}),
({1}, {a, d}, {β}),

({2}, {b, c}, {β, γ, δ}),
({2}, {a, b, c}, {β})

({c, d}, {α}),
({b, c}, {β, γ}),
({c}, {α, β, γ}),
({a, b, c}, {β})

({1, 2}, {a}, {α, β}),
({1}, {d}, {β, γ}),
({1}, {a, d}, {β}),

({2, 3}, {a, b, c}, {β}),
({2}, {b, c}, {β, γ, δ}),

({3}, {c, d}, {α}),
({1, 2, 3}, {a}, {β}),
({2, 3}, {b, c}, {β, γ}),
({3}, {c}, {α, β, γ})

4

({1, 2}, {a}, {α, β}),
({1}, {d}, {β, γ}),
({1}, {a, d}, {β}),

({2, 3}, {a, b, c}, {β}),
({2}, {b, c}, {β, γ, δ}),

({3}, {c, d}, {α}),
({1, 2, 3}, {a}, {β}),
({2, 3}, {b, c}, {β, γ}),
({3}, {c}, {α, β, γ})

({d}, {β})

({1, 2}, {a}, {α, β}),
({1}, {d}, {β, γ}),
({1}, {a, d}, {β}),

({2, 3}, {a, b, c}, {β}),
({2}, {b, c}, {β, γ, δ}),

({3}, {c, d}, {α}),
({1, 2, 3}, {a}, {β}),
({2, 3}, {b, c}, {β, γ}),
({3}, {c}, {α, β, γ}),

({1, 4}, {d}, {β})

Algorithm 3: getNConcepts

Data: Bn - the intermediate result, set of concepts of the context
Ban−1 = {{A2, ..., An} | Ai ⊆ Ki, i = 2, ..., n} - the set of
(n− 1)-concepts of the subcontext KK1=a, a

Result: Bn = {{A1, A2, ..., An} |Ai ⊆ Ki} the set of n-concepts of K
1 begin
2 for (A2, A3, ..., An) ∈ Ban−1 do

3 B{a}n = B{a}n ∪ ({a}, A2, A3, ..., An)
4 end
5 if Bn = ∅ then
6 return Bimp

n
7 end
8 else
9 Bxn = {∅}

10 CMP = {∅}
11 for X = ({a}, X2, ..., Xn) ∈ B{a}n do
12 Z1 = {a}
13 for Y = (Y1, Y2, ..., Yn) ∈ Bn do
14 if X2 = Y2, ..., Xn = Yn then
15 Y1 = Y1 ∪ {a}
16 mark(Y) = 1
17 if isFull(Y1) then

18 B{a}n = B{a}n \X
19 end
20 end
21 else if (X2 ⊆ Y2)&...&(Xn ⊆ Yn) then
22 Z1 = Z1 ∪ Y1
23 CMP = CMP ∪ (Y, {X2, ...Xn})
24 end
25 else if (X2 ⊇ Y2)&...&(Xn ⊇ Yn) then
26 Y1 = Y1 ∪ {a}
27 CMP = CMP ∪ (Y, {X2, ...Xn})
28 mark(Y) = 1
29 end
30 end
31 Bxn = Bxn ∪ {(Z1, X2, ..., Xn)}
32 end

33 for X = (X2, ..., Xn) ∈ B{a}n do
34 Btemp = {∅}
35 for Y = (Y1, Y2, ..., Ym) ∈ Bn do
36 if mark(Y) = 0 then
37 if (Y,X2, ..., Xm) /∈ CMP then
38 Z1 = x ∪ Y1
39 Z2 = Y2 ∩X2, ..., Zn = Yn ∩Xn

40 if is closed(Z1, Z2, ..., Zn) then
// The alg. 4

41 if is unique(Z1, Z2, ..., Zn) then
// The alg. 5

42 Btemp = Btemp ∪ {Z}
43 end
44 end
45 end
46 end
47 end
48 Bn = Bn ∪ Btemp

49 end
50 Bn = Bn ∪ Bxn
51 end
52 end

X2, ..., Zn ⊆ Xn. Due to the assumption (Y ⊂ Z) and steps 14 and 25 of Algo-
rithm 3, X2 ⊆ Z2, ..., Xn ⊆ Zn. These relations holds iff X2 = Z2, ..., Xn = Zn.

This is contrary to the properties of B{x1,...,xi−1}
n , namely, the closedness and

uniqueness of elements, thus our assumption is wrong, i.e. Y is closed.
If, in addition, Y1 = {x1, ..., xi−1}, then any other concepts Z = (Z1, ..., Zn) ∈

B{x1,...,xi−1}
n are met the following conditions: Z1 ⊂ Y1∪{xi} and there exists Zj

such that Yj ⊂ Zj . Since Zl ∩Xl ⊂ Xl = Yl, one can not obtain (Z1 ∪{x1}, Z2 ∩
X2, ...Zn ∩Xn) 6⊆ (Y1 ∪ {x1}, X2, ..., Xn). It was required to prove.

Property 2. If Z = (Z1, X2, ..., Xn) has been updated in step 22 (and added in

step 31), then Z ∈ B{x1,...,xi}
n .

Proof Let us assume that Z /∈ B{x1,...,xi}
n , i.e. it is not closed and ∃Y =

(Y1, ..., Yn) (Y ∈ B{x1,...,xi}
n), such that Z ⊂ Y . Since (X2, ..., Xn) ∈ Bxi

n−1,
then Z is not closed iff ∃y(y ∈ Y1), such that y /∈ Z1. The last inference is
impossible, since Algorithm 3 ensures presence of all elements y ∈ Y1, such that
X2 ⊆ Y2, ..., Xn ⊆ Yn. We get the contradiction (i.e. y ∈ Z1) to the assumption

that Z is unclosed. It is wrong and Z ∈ B{x1,...,xi}
n .

Property 3. The modifications in step 26 produce a concept (i.e. closed itemset).

Proof Let us assume that we have updated Y , i.e. we have got Y mod = (Y1 ∪
xi, Y2, ..., Yn) (in the listing xi is denoted by a) and Y ∈ B{x1,...,xi−1}

n , but Y mod /∈
B{x1,...,xi}
n . Hence, Y mod = Y1, that contradicts to our assumption and Y mod ∈
B{x1,...,xi}
n .

Property 4. If Y ∈ Btemp, constructed in steps 35-43, then Y is closed and
unique.

The closedness and uniqueness of concepts is checked implicitly by Algorithms 4
and 5, respectively.

As it was shown before, the algorithm produces n-ary itemsets which are
closed. Property 5 claims that the algorithm computes all concepts and does not
miss any closed itemsets.

Property 5. Algorithm 3 computes all n-concepts and only them, i.e. X ∈ Bn ⇔
X ∈ B(K).

Proof It has been proved above that X ∈ Bn ⇒ X ∈ B(K).
Let us prove that X ∈ B(K)⇒ X ∈ Bn by the mathematical induction.
Basis: For any fixed values k1, k2, ..., kn−2 from the corresponding subcontext

KK1=k1,K2=k2,...,Kn−2=kn−2 ⊆ K

we get for all X ∈ Bk1,k2,...,kn−2

2 ⇒ X ∈ B(KK1=k1,K2=k2,...,Kn−2=kn−2
), since a

correct algorithm for formal concepts is used.

Algorithm 4: is closed

Data: An n-ary itemset (Z1, ..., Zn)
Result: Boolean value: true, if the itemset is closed; false, otherwise

1 begin
2 closed = True
3 dim = 1
4 while (dim < n) and closed do
5 for a ∈ Kdim \Adim do
6 contain all = True
7 for z1 ∈ Z1, ..., zdim−1 ∈ Zdim−1, zdim+1 ∈ Zdim+1, ..., zn ∈ Zn

do
8 if (z1, ...zdim−1, a, zdim+1, ..., zn) = 0 then
9 contain all = False

10 if contain all then
11 closed = False

12 dim = dim+ 1

13 retrun closed

Inductive step: Show that if for any x ∈ K1 and the subcontext KK1=x ⊆ K it
is true that ∀x∀X(x ∈ K1) (X ∈ B(KK1=x))⇒ X ∈ Bxn−1, then ∀Z (Z ∈ B(K))⇒
Z ∈ Bn.

Accordingly to the algorithm, ∀x∃Z(x ∈ K1)(Z ∈ Bn), such that x ∈ Z1 and
all concepts of B(KK1=x) present in Bn with maximal possible set X1.

The intersection X ∈ Bxi
n−1 with each elements of B{x1,...,xi−1}

n (closed con-
cepts of the previous step) results in the creation of all possible combinations of
(X2, ..., Xn) with other already existed elements. Since on each iteration a new

element xi ∈ K1 is added to B{x1,...,xi−1}
n , we will get all possible combinations

(Y2, ..., Yn) for all possible subsets of {x1, ..., xi} ⊆ K1. As the result, we obtain
all maximal Z ∈ Bn.

4 Complexity of the Algorithm

In this section the time complexity of Algorithm 3 is discussed. The input of
the algorithm is a set {({a}, A2, ..., An) | a ∈ K1} with the space complexity
inp = O(|K1||Bn−1|), the output is Bn with the space complexity O(|Bn|), and
|Bn| ≤ |K1||Bn−1|.

It should be noted here that as in [10] a trie is used to store concepts and
to improve the time complexity. One can ensure the presence of only unique
elements by storing (n − 1) sets in a trie, since any two closed n-dimensional
itemsets have at most n−2 similar subsets. The space complexity of this structure
will be huge, to be precise O(2|K1|+|K2|+...+|Kn−1|). Using this structure we need

Algorithm 5: is unique

Data: An n-ary itemset (Z1, ..., Zn), a trie T , computed on
K1 ×K2 × ...×Kn−1

Result: Boolean value: True, if the itemset is already exist; False,
otherwise

1 begin
2 if Z ∈ T then
3 retrun False

4 else
5 retrun True

O(|K1|...|Kn−1|) to check the uniqueness (Algorithm 5), to add new element to
the trie one needs O(|K1|...|Kn−1|) and to modify an element (to expand the
first set) one needs O(2|K1|...|Kn−1|).

The number of pairwise intersections of (n− 1) elements of Bn and Ban−1 is
reduced by utilizing mark labels, CMP. The absence of unclosed and non-unique
elements is ensured by applying Algorithm 4 and 5 to a subset of generated
concepts.

The closedness verification (Algorithm 4) for an itemset (A1, ..., An) takes at
most O(|K1 \ A1||A2|...|An| + |A1||K2 \ A2|...|An| + ... + |A1||A2|...|Kn \ An|),
more generally, O(n|K1||K2|...|Kn|).

Thus, the time complexity of the algorithm is

O(|K1||K2|...|Kn||Bn||Bn−1|︸ ︷︷ ︸
pairwise comparison of itemsets

(CV + UV + TP)),

where CV = |K1||K2|...|Kn|, UV = |K1||K2|...|Kn−1|, TU = |K1||K2|...|Kn−1|
correspond to the number of operations for the closedness validation, the unique-
ness validation and the trie update.

In terms of the input (p = |K1||Bn−1|) and the output (K = |Bn|) the
complexity takes the following form: O(|K2|...|Kn| · p ·K · (CV + UV + TU)),
or, more generally, O(|In|2p ·K).

5 Conclusion

In this paper we have proposed a new incremental algorithm for computing n-
concepts. The algorithm can be based on any algorithm for computing formal
concepts. The algorithm recursively computes k-concepts, where k ∈ {3, ..., n}
and iteratively merges k − 1-concepts to derive k-concepts. It has O(|In|2pK)
time complexity, p = |K1||Bn−1| and K = |Bn| are the size of the input and the
output, respectively.

An important direction for future work is to compare the proposed algorithm
with other algorithms for generating concepts of dimension n ≥ 3.

Acknowledgment

Sections 1, 2 were made by T. Makhalova and supported by the Russian Science
Foundation under grant 17-11-01294 and performed at National Research Uni-
versity Higher School of Economics, Russia. The work of Lhouri Nourine was
supported by ANR project Graphen ANR-15-CE40-0009.

References

1. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Data peeler: Contraint-based
closed pattern mining in n-ary relations. In: SDM. vol. 8, pp. 37–48. SIAM (2008)

2. Ignatov, D.I., Gnatyshak, D.V., Kuznetsov, S.O., Mirkin, B.G.: Triadic formal con-
cept analysis and triclustering: searching for optimal patterns. Machine Learning
101(1-3), 271 (2015)

3. Ignatov, D.I., Kuznetsov, S.O., Poelmans, J., Zhukov, L.E.: Can triconcepts be-
come triclusters? International Journal of General Systems 42(6), 572–593 (2013)

4. Jaschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias–an algorithm
for mining iceberg tri-lattices. In: null. pp. 907–911. IEEE (2006)

5. Ji, L., Tan, K.L., Tung, A.K.: Mining frequent closed cubes in 3d datasets. In:
Proceedings of the 32nd international conference on Very large data bases. pp.
811–822. VLDB Endowment (2006)

6. Kuznetsov, S.O.: Interpretation on graphs and complexity characteristics of a
search for specific patterns. Automatic Documentation and Mathematical Linguis-
tics 24(1), 37–45 (1989)

7. Kuznetsov, S.O.: On computing the size of a lattice and related decision problems.
Order 18(4), 313–321 (2001)

8. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gener-
ating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence
14(2-3), 189–216 (2002)

9. Lehmann, F., Wille, R.: Conceptual Structures: Applications, Implementation and
Theory: Third International Conference on Conceptual Structures, ICCS ’95 Santa
Cruz, CA, USA, August 14–18, 1995 Proceedings, chap. A triadic approach to
formal concept analysis, pp. 32–43. Springer Berlin Heidelberg, Berlin, Heidelberg
(1995)

10. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information pro-
cessing letters 71(5), 199–204 (1999)

11. Trabelsi, C., Jelassi, N., Yahia, S.B.: Scalable mining of frequent tri-concepts from
folksonomies. In: Advances in knowledge discovery and data mining, pp. 231–242.
Springer (2012)

12. Voutsadakis, G.: Polyadic concept analysis. Order 19(3), 295–304 (2002)

	An Incremental Algorithmfor Computing n-concepts

