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Abstract. An algorithm is proposed to implement the well-known effec-
tive inductive method of constructing sets of cardinality (q+1) from their
previously constructed subsets of cardinality q. A new neural network-
like combinatorial data structure supporting this algorithm is advanced.
Some algorithms for constructing concept lattice, inferring good max-
imally redundant and irredundant classification tests are given using a
generalization process based on Galois connections and a direct and back-
ward wave of network activity propagation.
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1 Introduction

There is a great interest in computer sciences to the relation between the Ar-
tificial Neuron Networks (ANN) and the Formal Concept Analysis (FCA). The
first attempts to relate the FCA and the Neural Networks (NN) were given in
[28]. The main goals for using the FCA with respect to the ANN are the fol-
lowing ones: applying concepts lattices for constructing ANN’s architecture and
to make ANNs to be interpretable. In [5], the FCA is applied for interpretation
of neuron codes. In [33,22], the authors apply concept lattices to constructing
neural network architecture.

In [11], the authors proposed another possible implementation of building
interpretable NN using FCA. Their approach to generating NN architecture is
based on constructing covering relation of a lattice with the use of two type of
Galois connections: antitone (standard concept lattices) [7] and monotone [4]
ones.

In our paper, we do not propose any approach to improve NN architecture.
We advance a new configuration of neuron-like logical-combinatorial network
to implement the well-known effective inductive method of constructing sets of



cardinality (q + 1) from their subsets of cardinality q. This method is applica-
ble to many problems of symbolic machine learning including Concept Lattices
construction and, in particularly, generating good classification tests (maximal
hypotheses in the FCA and their minimal generators).

Mining logical rules (dependencies) from datasets in the form of association
rules, implicative and functional dependencies, and key patterns [3,31] attracts
a great interest because of its potential useful application. It has been proven
that the problems of implicative and functional dependences inferring (w.r.t.
classification problem) are algorithmically equivalent [19]. These problems are
viewed as ones of supervised symbolic machine learning based on classification
and plausible (commonsense) reasoning.

A universal algorithm (as the studies demonstrate) for inferring logical de-
pendencies is the algorithm using an effective inductive method of constructing
sets of cardinality (q+1) from their subsets of cardinality q. A (q+1)-set can
be constructed if and only if there exist all its proper q-subsets. For example,
the algorithms Apriori, AprioriTid, and AprioriHybrid have been presented in
[1,30] for association rule mining. Data mining using the Apriori Algorithm is de-
scribed in [25]. The same principle underlies the algorithm Titanic for generating
key patterns [31] and the algorithm TANE for discovering functional dependen-
cies [9]. A level-wise method of (q+1)-sets’ construction has also been proposed
for inferring good diagnostic tests for a given classification or class of objects
[17,19]. These tests serve as a basis for extracting functional dependences, impli-
cations, and association rules from a given dataset. Discovering frequent closed
itemsets and generators (algorithm FCFG) is considered in [27]. This algorithm
extracts frequent itemsets in a depth-first search method. Then this algorithm
extracts frequent closed itemsets and frequent generator itemsets by a level-wise
approach. Algorithm Titanic is used for computing Iceberg Concept Lattice [31].
Also the algorithms of fast iceberg lattice construction are described in [29,32].

A level-wise procedure is also applied in text mining, for example, for ex-
tracting association dependencies between words, extracting topic of text and
contexts of topic [10,16].

In all enumerated problems, the same algorithm deals with different sets of
elements (items, itemsets, attributes, object descriptions, indices of itemsets)
and checks the different properties of generated subsets. These properties can
be, for example: “to be a frequent (large) itemset”, “to be a key pattern”, “to
be a test for a given class of examples”, “to be a good test for a given class of
examples”, and some others.

If a constructed subset does not possess a required property, then it is deleted
from consideration. This deletion reduces drastically the number of subsets to be
built at all greater levels. Generally, this algorithm solves the task of inferring all
maximal subsets of a set S (i.e., such subsets that cannot be extended) possessing
a given PROPERTY. The set S can be interpreted depending on the context of
a considered problem. This algorithm implements a level-wise inductive method
of (q+1)-sets’ construction.



A neural network-like combinatorial data structure for constructing (q+1)-
sets from their q-subsets has been proposed in a number of publications, see,
please, for details [21]. In this paper, two algorithms based on this structure are
proposed for generating Good Maximally Redundant Tests (GMRT) and Good
Irredundant Tests (GIRT) or generators.

Sec. 2 presents the basic definitions of formal concept analysis (FCA) and
good test analysis (GTA). Sec. 3 is devoted to the idea of a level-wise algorithm
of inferring (q+1)-sets of elements from their previously constructed q-subsets of
elements. Some special combinatorial networks for this algorithm are discussed
in Sec. 4. Some related papers are discussed in Sec. 5.

2 Basic Definitions

Let us recall the main definitions of FCA [7] and GTA [20]. Denote by M the
set of attribute values such thatM = ∪{dom(attr), attr ∈ U }, where dom(attr)
is the set of all values of attr, and U is a set of all considered attributes. Let
G = G+ ∪ G− be the set of objects, where G+ and G− are the sets of positive
and negative objects, respectively. Denote a description of g ∈ G by δ(g) and
the descriptions of positive and negative objects by D+ = {δ(g) | g ∈ G+} and
D− ={δ(g) | g ∈ G−}, respectively.

We give the following Galois mappings 2G → 2M and 2M → 2G, respectively
[18]: obj(B) = {g ∈ G | B ⊆ δ(g)}, returning all the objects the descriptions of
which include the set B of values, and val(A) = {m ∈ M | m ∈ ∩ δ(g), g ∈ A},
returning the intersection of all objects descriptions δ(g), g belonging to A.

Two closure operators [18] are defined as follows: generalization_of(B) =
val(obj(B)) and generalization_of(A) = obj(val(A)). A set A is closed if A =
obj(val(A)). A set B is closed if B = val(obj(B)). Similar mappings denoted by
one symbol (·)′ are given in [35], see also notation (·)� in [8] and other notations,
for example, in [6,14,23].

The pair (A,B), where A and B are closed, is the formal concept in terms of
Formal Concept Analysis and A is called concept extent and B is called concept
intent. All formal concepts form Galois lattice (concept lattice) [24]. A triplet
(G,M, I), where I is a binary relation between G andM determined by functions
obj(B) and val(A), is a formal context K .

According to the goal attribute, we get some possible forms of the formal
context: Kε := (Gε, M , Iε) and Iε := I ∩ (Gε × M), where ε ∈ {+, −} (if
necessary, the value τ can be added to provide undefined objects) [13]. These
contexts form a classification context K±.

Definition 1. A Diagnostic Test (DT) for G+ is a pair (A,B) such that B⊆M ,
A = obj(B) 6= ∅, A⊆ G+, and obj(B) ∩ G− = ∅.

In this connection, it is worth noting that DT in Definition 1 is a special kind
of semiconcept in the framework of FCA [15].

Definition 2. A Diagnostic Test (A,B) for G+ is maximally redundant if obj(B
∪ m) ⊂ A for all m ∈ M\B.



It is worth noting that Definition 2 is equivalent to the definition of positive
hypothesis given in [13].

Definition 3. A Diagnostic Test (A,B) for G+ is good iff any extension A* =
A ∪ i, i ∈ G+\A, implies that (A∗, val(A∗)) is not a test for G+ .

It is worth noting that good maximally redundant test (GMRT) is equivalent
to the definition of minimal positive hypothesis given in [13] and GMRTs are
formal concepts.

Definition 4. A Diagnostic Test (A,B) for G+ is irredundant if for all m ∈ B,
(obj(B\m), B\m) is not a test for positive objects (any proper subset of B is not
the intent for a test for G+).

Note that a good irredundant test (GIRT) is not generally a formal concept.
If a GIRT is closed, then it is simultaneously a GMRT and it is unique in its
class of equivalence with positive hypothesis in [12]. Naturally, GIRT is a minimal
generator of a minimal positive hypothesis.

We use a method of GIRT construction based on the following consideration:
GIRT is contained in one and only one GMRT equivalent to it with respect to its
extent (a set of objects covered by it). So, we shall search for GIRTs contained
in a given GMRT.

3 Idea of Level-Wise Algorithm

Let S be a set of some entities. By sq = (i1, i2, . . . , iq), we denote a subset of
S, containing q elements of S. Let S (prop-q) be the set of subsets s = {i1, i2,
. . . , iq}, q = 1, 2, . . . , nt-1, satisfying the PROPERTY. Here nt denotes the
cardinality of S. We use an inductive rule for constructing {i1, i2, . . . , iq+1}
from {i1, i2, . . . , iq}, q = 1, 2, . . . , nt-1. This rule relies on the following
consideration: if the set {i1, i2, . . . , iq+1} possesses the PROPERTY, then all
its proper subsets must possess this PROPERTY too. Thus the set {i1, i2, . . . ,
iq+1} in S(prop-(q+1)) can be constructed if and only if S (prop-q) contains all
its proper subsets.

Having constructed the set sq+1 = {i1, i2, . . . , iq+1}, we have to determine
whether it possesses the PROPERTY or not. If not, sq+1 is deleted, otherwise
sq+1 is inserted in S (prop-(q+1)). The algorithm is over when it is impossible
to construct any element for S (prop-(q+1)).

The Background Algorithm has an essential disadvantage consisting in the
necessity to generate all subsets {i1, i2, . . . , iq+1} from {i1, i2, . . . , iq}, q = 1,
2, . . . , nt-1. In next section, we consider a neuron-like combinatorial structure
that makes this construction more effective.

4 Special Logical-Combinatorial Network for Background
Algorithm

The idea of the following algorithm is based on the functioning of a combina-
torial network structure, whose elements correspond to subsets of a finite set S



generated in the algorithm. These elements are located in the network along the
layers, so that each q-layer consists of the elements corresponding to subsets the
cardinality of which is equal to q. All the elements of q-layer have the same num-
ber q of inputs or connections with the elements of previous (q-1)-layer. Each
element “is excited” if and only if all the elements of previous layer connected
with it are active. The weight of connection going from the excited element is
taken as equal to 1; the weight of connection going from the unexcited element
is taken as equal to 0. An element of q-layer is activated if and only if the sum of
weights of its inputs is equal to q. The possible number Nq of elements (nodes)
at each layer is known in advance as the number of combinations of S on q. In
the process of the functioning of the network, the number of its nodes can only
diminish.

An advantage of this network consists in the fact that its functioning does not
require the complex techniques for changing the weights of the connections and
it is not necessary to organize the process of constructing q-sets from their (q-1)-
subsets. The nodes of network can be interpreted depending on a problem to be
solved. The assigned properties can be checked via different attached procedures.

If an activated node does not possess the assigned property, then it is excluded
from consideration by setting to 0 all connections going from it to the nodes of
above layer. The work of this combinatorial network consists of the following
steps:

1. The weights going from the nodes of the first layer is set to 1. For each layer
beginning with the second one:

2. The excitation of nodes, if they were not active and all their incoming traffic
(links) have the weight equal to 1; checking the assigned property for the
activated nodes of this layer;

3. If the assigned property of a node is not satisfied, then all the outgoing
connections of this node are established to 0. If the assigned property of a
node is satisfied, then its outgoing connections are set to be equal to 1;

4. The propagation of “excitation” to the nodes of the following higher layer
(with respect to the current one) and the passage to analyzing the following
layer;

5. “The readout” of the nodes not connected with above lying nodes. Such nodes
correspond to intents of GIRTs (not extended).

The process of excitation stops if it is impossible to generate the next layer
of the network.

The work of the network can be performed by several ways: 1) step by step
from lower layers to upper layers; 2) with back propagation: from top to bottom
and from bottom to top, simultaneously; 3) in parallel, with decomposition of
the network into fragments connected via some nodes.

4.1 Examples of the Network Functioning

Example 1. Generating GMRTs with and without back propagation.



For inferring all GMRTs for G+, let S = G+. We use the level-wise algorithm,
testing the property “to be test” for G+ ”, vertical mode of generating extents of
tests, i. e. generating nodes as subsets of objects. An attached testing procedure
verifies whether the following property fulfils: PROPERTY(s) = if obj(val(s)) ⊆
G+, then true else false, where s ⊆ G+.

In Tables 1, 2, the sets of positive and negative object descriptions are given,
for our examples.

Table 1. The set D+ of positive object descriptions

G D+

1 m1 m2 m5 m6 m21 m23 m24 m26

4 m1 m4 m5 m6 m7 m12 m14 m15 m16 m20 m21 m24 m26

7 m3 m4 m5 m6 m12 m14 m15 m20 m22 m24 m26

8 m3 m6 m7 m8 m9 m13 m14 m15 m19 m20 m21 m22

10 m2 m3 m4 m5 m6 m8 m9 m13 m18 m20 m21 m26

Fig. 1 depicts the network for generating GMRTs for objects G+ given in
Table 1. In Fig. 1, dashed arrows have weight 1, all other arrows have weight 0,
double circles presents excited nodes.

All the nodes of two first levels of the network are activated but nodes {4,10},
{7,10}, {1,8}, and {1,10} do not possess the given property and they have no
active outgoing links. At the third level, two nodes are activated, but node {4,7,8}
does not possess the given property. As a result, we have 2 nodes possessing the
given property: {8,10}, {1,4,7}. Only 12 nodes have been checked and 14 ones
did not require to be checked.

With testing PROPERTY, we perform the closure operation and find the
extended subset of objects corresponding to a node belonging to one of upper
levels, then we use a process of back propagation in the network. Then, by this
process, the nodes of all lower levels connected with this node will be activated
too without checking PROPERTY. Fig. 2 depicts the situation of back propa-
gation for our example. In Fig. 2, the dashed arrows illustrate activation of the
node through the closure by objects, all down arrows are established with weight
1 because of backtracking.

Example 2. Extracting good irredundant tests (GIRT) from a good maxi-
mally redundant test (GMRT).

Let X = {m4, m12, m14, m15, m24, m26} be the intent of a GMRT. In Table
3, we give the initial set of negative examples for GIRTs extracting from X.

We use the level-wise algorithm, testing the property “not to be test for
G+”, horizontal mode of generating intents of GIRTs, i. e. generating nodes as
subsets of attribute values. An attached procedure verifies whether the following



Table 2. The set D− of negative object descriptions

G D−

15 m3m8m16m23m24

16 m7m8m9m16m18

17 m1m21m22m24m26

18 m1m7m8m9m13m16

19 m2m6m7m9m21m23

20 m19m20m21m22m24

21 m1m20m21m22m23m24

22 m1m3m6m7m9m16

23 m2m6m8m9m14m15m16

24 m1m4m5m6m7m8m16

25 m7m13m19m20m22m26

26 m1m2m3m5m6m7m16

27 m1m2m3m5m6m13m18

28 m1m3m7m13m19m21

29 m1m4m5m6m7m8m13m16

30 m1m2m3m6m12m14m15m16

31 m1m2m5m6m14m15m16m26

32 m1m2m3m7m9m13m18

33 m1m5m6m8m9m19m20m22

34 m2m8m9m18m20m21m22m23m26

35 m1m2m4m5m6m7m9m13m16

36 m1m2m6m7m8m13m16m18

37 m1m2m3m4m5m6m7m12m14m15m16

38 m1m2m3m4m5m6m9m12m13m16

39 m1m2m3m4m5m6m14m15m19m20m23m26

40 m2m3m4m5m6m7m12m13m14m15m16

41 m2m3m4m5m6m7m9m12m13m14m15m19

42 m1m2m3m4m5m6m12m16m18m19m20m21m26

43 m4m5m6m7m8m9m12m13m14m15m16

44 m3m4m5m6m8m9m12m13m14m15m18m19

45 m1m2m3m4m5m6m7m8m9m12m13m14m15

46 m1m3m4m5m6m7m12m13m14m15m16m23m24

47 m1m2m3m4m5m6m8m9m12m14m16m18m22

48 m2m8m9m12m14m15m16



1,4,7,8,10

4,7,8,10 1,7,8,10 1,4,8,10 1,4,7,10 1,4,7,8

4 , 7 , 8 4,7,10 4,8,10 7,8,10 1,7,8 1,7,10 1,8,10 1,4,8 1,4,10 1 , 4 , 7

4 , 7 4 , 8 7 , 8 4 , 10 7 , 10 8 , 10 1 , 7 1 , 8 1 , 10 1 , 4

1 4 7 8 10

Fig. 1. Fragment of GMRTs Generation



6,11,8,4

6,11,8 6,8,4 6,11,4 11,8,4

6,4 6,8 . . . 6,11 11,8 11,4 8,4

Fig. 2. Example of backtracking in GMRTs inferring

Table 3. The set D− of negative object descriptions for example 3

G D−

17 m24m26

23 m14m15

30, 48 m12m14m15

31 m14m15m26

37,40,41,43,44,45 m4m12m14m15

39 m4m14m15m26

42 m4m12m26

46 m4m14m15m24

47 m4m12m14



property fulfils: PROPERTY(s) = if ∃g, g ∈ G− such that s ⊆ δ(g) then true
else false, where s ⊆ S.

Note that intents of GIRTs consist only of essential values. Recall the def-
inition of essential value and procedure for finding the essential values in any
subset t of values.

Definition 5. Let t be a set of values such that (obj(t), t) is a test for G+ . The
value m ∈ M , m ∈ t is essential in t if (obj(t\m), (t\m)) is not a test for G+.

Generally, we are interested in finding a maximal subset sbmax(t) ⊂ t such
that (obj(t), t) is a test but (obj(sbmax(t)), sbmax(t)) is not a test for G+. Then
sbmin(t) = t\sbmax(t) is one of minimal subsets of essential values in t.

In our example, GMRT contains only one essential value: m26, because delet-
ing m26 implies that remain part X\m26 = {m4, m12, m14, m15, m24} is equal
to the description of negative object 46 (see Table 3). It means that value m26
will be included in any GIRT. Thus, we need in a configuration of the network
containing only the nodes in which m26 appears.

A quasi minimal subset of essential values in t can be found by the use of
the following procedure.

We begin with the first value m1 of t, then we take the next value m2 of t and
evaluate the function to_be_test((obj(m1, m2), (m1, m2))). If the value of the
function is false, then we take the next value m3 of t and evaluate the function
to_be_test ((obj(m1, m2, m3), (m1, m2, m3))). If the value of the function
to_be_test((obj(m1, m2), (m1, m2))) is true, then value m2 is skipped and the
function to_be_test((obj(m1, m3), (m1, m3))) is evaluated. We continue this
process until we achieve the last value of t.

The function to_be_test(t∗), where t∗ ⊆ t, in this procedure: if t∗ 6⊂ g, for
all g ∈ G− then true else false.

As a result, we have one of quasi maximal subsets, let sbmax, sbmax ⊆ X
such that (obj(sbmax), sbmax) is not a test for G+. Then Lev = {X\sbmax} is a
quasi minimal subset of essential values in X. In our illustrative example with
only one essential value m26 in X, we have the following configuration of the
network: Fig. 3, where dashed arrows have weight 1, all other arrows have weight
0, double circles presents intents of GIRTs.

Table 4 depicts the number of nodes in the complete network (C(6,5) + C(6,
4)+C(6,3)+C(6,2)+C(6,1)), where C(n, i) means the combination from n by i.

As a result, we obtain 6 GIRTs: {m2,m14,m26}, {m4,m15,m26}, {m4,m24,m26},
{m12,m14,m26}, {m12,m15,m26}, {m12,m24,m26}.

Construction of initial configuration of networks is beyond the scope of this
paper.

Example 3.
The next example: X = {m19, m20, m21, m22, m26}.
In this case, the only GIRT is ((3,8), {m19, m20, m21, m22, m26}). We can

find essential values in X by means of the procedure described above. Assume
that we have find that m26, m22, m21 are essential in X. Since essential values
must enter simultaneously in an intent of a GIRT we can obtain only one node



m14m15m26 m4m12m26 m4m14m26 m4m15m26 m4m24m26 m12m14m26 m12m15m26 m12m24m26

m14m15 m4m12 m4m26 m12m26 m4m14 m14m26 m4m15 m15m26 m4m24 m24m26 m12m14 m12m15 m12m24

m4 m12 m14 m15 m24 m26

Fig. 3. Network with one essential value m26

Table 4. Comparison the complete and real configurations of networks

Number of nodes in
the complete network

Number of nodes
in the real network

C(6,5) = 6 0
C(6,4) = 15 0
C(6,3) = 20 8
C(6,2) = 15 13
C(6,1) = 6 6



in the network, containing m26, m22, and m21 and it is (m19m21m22m26), which
is the GIRT in X.

Apparently, we can see that the size of network may be a problem if the
data is large. But the decomposition of the main task into subtasks drastically
diminishes the memory size of the algorithm. A subtask is determined by a
sub-network generated by a node of the network.

Generally, the main advantages of combinatorial network are the following
ones: 1) the size of network is computed in advance; 2) it is possible to decompose
network into autonomic fragments; 3) different fragments of network can be
joined via common nodes; 4) the states of nodes can be established by the use
of attached procedures; 5) this can be used for problems of pattern recognition
based on using logical rules [20].

5 Special Logical-Combinatorial Network as a Cognitive
Structure

Let us note that the model of perceptron-type neuron with the summing up of
the weights of the connections, widely utilized in technical sciences is criticized
from the side of specialists, who study the work of brain. This model cannot
explain the work of organism’s functional systems [2].

Neuron in [34] is defined as conversion of the values of predicates P1, P2, Pk,
which designate input excitations arriving via axons at the entrance of neuron,
into the value of predicate P0 (output of neuron). It is known that each neu-
ron has a receptive field, whose stimulation excites it unconditionally (without
learning).

In the process of learning, neurons obtain the supporting or braking (pro-
hibitive) signals depending on varied conditions and purposes of organism.

A neuron participates in the work of different functional systems and, thus,
separate neuron does not have specific fixed semantics. It is assumed that among
all input excitations of each neuron there are motivational and emotional excita-
tions, and at each moment of time in the dependence on the purpose and state
of organism neuron works within the framework only one functional system.

It is assumed also that there is a mechanism including in the operation of
neuron the frequency of its excitation, i.e., the ratio of the number of simultane-
ous excitation of all its entrances to the number of reinforcements from the side
of conditional signals.

It is important for us that the model of neuron, proposed by us, coincides
mainly with the new formal model of neuron, described in [34,26].

– neuron network has lattice structure;
– neuron, which is located in the lattice node obtains the excitations from the

previous layers and transfers the excitations to the subsequent layers;
– the reinforcement of neuron is realized within the framework a certain func-

tional system and only if some goal is achieved (in our model, if it is carried
out a certain purposeful property). Neuron can not transfer excitation with
a forbidden signal, i.e., if a certain necessary condition is not satisfied.



We do not deny existence of perceptron-type neuron network. However, neu-
ral logical-combinatorial network can interact with it. While the perceptron, as
a result of learning, recognizes the objects of some class and gives an answer of
the type “yes-no”, neural logical-combinatorial network gives the description of
this class of objects in terms of objects’ properties.

6 Conclusion

In this paper, we proposed a neural network-like combinatorial structure of data
and knowledge the advantage of which consists in the fact that the functioning
of it does not require the complex techniques for changing the weights of con-
nections. The nodes of network can be interpreted depending on a problem to be
solved. The assigned properties of nodes can be checked via different attached
procedures.

Furthermore, the advantages of combinatorial network are the following ones:

– the size of network is computed in advance;
– it is possible to decompose network into autonomic fragments which can

operate in a parallel way;
– different fragments of network can be joined via common nodes;
– this network can be used not only for inferring logical rules from datasets

but also for problems of pattern recognition based on these induced rules
[20];

– a neuron is activated if and only if its weight reaches a certain value equal
to the number of its inputs (the sum of the weights of its inputs) and the
excitation in the network is transmitted in the same way as in the artificial
neural network.
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