
A Comparison of Frequent Pa�ern Techniques and a
Deep Learning Method for Session-Based Recommendation

Iman Kamehkhosh

TU Dortmund

iman.kamehkhosh@tu-dortmund.de

Dietmar Jannach

TU Dortmund

dietmar.jannach@tu-dortmund.de

Malte Ludewig

TU Dortmund

malte.ludewig@tu-dortmund.de

ABSTRACT
Making session-based recommendations, i.e., recommending items

solely based on the users’ last interactions without having access

to their long-term preference pro�les, is a challenging problem

in various application �elds of recommender systems. Using a

coarse classi�cation scheme, the proposed algorithmic approaches

to this problem in the research literature can be categorized into

frequent pa�ern mining algorithms and approaches that are based

on sequence modeling. In the context of methods of the la�er class,

recent works suggest the application of recurrent neural networks

(RNN) for the problem. However, the lack of established algorithmic

baselines for session-based recommendation problems makes the

assessment of such novel approaches di�cult.

In this work, we therefore compare a state-of-the-art RNN-based

approach with a number of (heuristics-based) frequent pa�ern

mining methods both with respect to the accuracy of their recom-

mendations and with respect to their computational complexity.

�e results obtained for a variety of di�erent datasets show that in

every single case a comparably simple frequent pa�ern method can

be found that outperforms the recent RNN-based method. At the

same time, the proposed much more simple methods are also com-

putationally less expensive and can be applied within the narrow

time constraints of online recommendation.

CCS CONCEPTS
•General and reference →Evaluation; •Information systems
→Recommender systems; •Computingmethodologies→Ne-
ural networks; Rule learning;

KEYWORDS
Session-Based Recommendations; Deep Learning; Frequent Pa�ern

Mining; Benchmarking

1 INTRODUCTION
Making recommendations solely based on a user’s current session

and most recent interactions is a nontrivial problem for recom-

mender systems. On an e-commerce website, for instance, when

a visitor is new (or not logged in), there are no long-term user

models that can be applied to determine suitable recommendations

for this user. Furthermore, recent work shows that considering the

user’s short-term intent has o�en more e�ect on the accuracy of the

recommendations than the choice of the method used to build the

long-term user pro�les [20]. In general, such types of problems are

Workshop on Temporal Reasoning in Recommender Systems, collocated with ACM Rec-
Sys’17, Como, Italy.
Copyright©2017 for this paper by its authors. Copying permi�ed for private and

academic purposes.

.

common on e-commerce sites, e.g., when returning users do not log

in every time they use the site. �e same challenges can, however,

be observed also for other application domains, in particular for

news and media (music and video) recommendation [21, 33].

�e problem of predicting the next actions of users based solely

on their sequence of actions in the current session is referred to

in the literature as session-based recommendation. A number of

algorithmic approaches have been proposed over the years to deal

with the problem. Early academic approaches, for example, rely

on the detection of sequential pa�erns in the session data of a

larger user community. In principle, even simpler methods can be

applied. Amazon’s “Customers who bought . . . also bought” feature

represents an example that relies on simple co-occurrence pa�erns

to generate recommendations, in that case in the context of the

very last user interaction (an item view event). A number of later

works then explored the use of Markov models [30, 35, 39], and

most recently, researchers explored the use of recurrent neural

networks (RNN) for the session-based next-item recommendation

problem [16, 17, 38, 42].

Today, RNNs can be considered one of the state-of-the-art meth-

ods for sequence learning tasks. �ey have been successfully ex-

plored for various sequence-based prediction problems in the past

[5, 9, 11, 18] and in a recent work, Hidasi et al. [16] investigated an

RNN variant based on gated recurrent units (GRU) for the session-

based recommendations problem. In their work, they benchmarked

their RNN-based method gru4rec with di�erent baseline methods

on two datasets. �eir results showed that gru4rec is able to out-

perform the baseline approaches in terms of accuracy for top-20

recommendation lists.

While these results indicate that RNNs can be successfully ap-

plied for the given recommendation task, we argue that the experi-

mental evaluation in [16] does not fully inform us about di�erent

aspects of the e�ectiveness and the practicability of the proposed

method. First, regarding the e�ectiveness, it is unclear if the meth-

ods to which gru4rec was compared are competitive. Second, as

the evaluation was based on one single training-test split and only

using accuracy measures, further investigations are necessary to

assess, for example, if some algorithms exhibit certain biases, e.g., to

recommend mostly popular items. �ird, even if the RNN method is

e�ective, questions regarding the scalability of the method should

be discussed, in particular as hyper-parameter optimization for the

complex networks can become very challenging in practice.

�e goal of this work is to shed light on these questions and in

the remainder of this paper we will report the detailed results of

comparing a state-of-the-art RNN-based method with a number

of computationally more e�cient pa�ern mining approaches in

di�erent dimensions.



2 PREVIOUS WORKS
In session-based recommendation problems, we are given a se-

quence of the most recent actions of a user and the goal is to �nd

items that are relevant in the context of the user’s speci�c short-

term intent. One traditional way to determine recommendations

given a set of recent items of interest is to apply frequent pat-

tern mining techniques, e.g., based on association rules (AR) [1].

AR are o�en applied for market basket analysis with the goal to

�nd sets of items that are bought together with some probability

[14]. �e order of the items or actions in a session is irrelevant

for AR-based approaches. Sequential pa�erns mining (SP) [2] tech-

niques, in contrast, consider the order of the elements in sessions

when identifying frequent pa�erns. In one of the earlier works,

Mobasher et al. [32] used frequent pa�ern mining methods to pre-

dict a user’s next navigation action. In another work, Yap et al. [47]

propose a sequential pa�ern-mining-based next-item recommen-

dation framework, which weights the pa�erns according to their

estimated relevance for the individual user. In the domain of music

recommendation, Hariri et al. more recently [15] propose to mine

sequential pa�erns of latent topics based on the tags a�ached to

the tracks to predict the context of the next song.

A di�erent way of �nding item-to-item correlations is to look

for sessions that are similar to the current one (neighbors), and to

determine frequent item co-occurrence pa�erns that can be used in

the prediction phase. Such neighborhood-based approaches were

for example applied in the domains of e-commerce and music in

[4] or [26]. In some cases and application domains, simple co-

occurrence pa�erns are despite their simplicity quite e�ective, see,

e.g., [20, 40] or [44].

Di�erently from such pa�ern- and co-occurrence-based tech-

niques, a number of recent approaches are based on sequence mod-
eling using, e.g., Markov models. �e main assumption of Markov-

model-based approaches in the context of session-based recom-

mendation is that the selection of the next item in a session is de-

pendent on a limited number of previous actions. Shani et al. [35]

were among the �rst who applied �rst-order Markov chains (MC)

for session-based recommendation and showed the superiority of

sequential models over non-sequential ones. In the music domain,

McFee and Lanckriet [30] proposed a music playlist generation

algorithm based on MCs that – given a seed song – selects the

next track from uniform and weighted distributions as well as from

k-nearest neighbor graphs. Generally, a main issue when applying

Markov chains in session-based recommendation is that the state

space quickly becomes unmanageable when all possible sequences

of user selections should be considered [12, 16].

More recent approaches to sequence modeling for session-based

recommendation utilize recurrent neural networks (RNN). RNNs

process sequential data one element at a time and are able to selec-

tively pass information across sequence steps [28]. Zhang et al. [49],

for example, successfully applied RNNs to predict advertisement

clicks based on the users’ browsing behavior in a sponsored search

scenario. For session-based recommendations, Hidasi et al. [16]

investigated a customized RNN variant based on gated recurrent

units (GRU) [5] to model the users’ transactions within sessions.

�ey also tested several ranking loss functions in their solutions.

Later on, in [17] and [42] RNN-based approaches were proposed

which leverage additional item features to achieve higher accu-

racy. For the problem of news recommendation, Song et al. [36]

proposed a temporal deep semantic structured model for the combi-

nation of long-term static and short-term temporal user preferences.

�ey considered di�erent levels of granularity in their model to

process both fast and slow temporal changes in the users’ prefer-

ences. In general, neural networks have been used for a number

of recommendation-related tasks in recent years. O�en, such net-

works are used to learn embeddings of content features in compact

�xed-size latent vectors, e.g., for music, for images, for video data,

for documents, or to represent the user [3, 6–8, 13, 25, 29, 46].

�ese representations are then integrated, e.g., in content-based

approaches, in variations of latent factor models, or are part of new

methods for computing recommendations [7, 8, 13, 27, 37, 43, 45].

In the work presented in this paper, we will compare di�erent

existing and novel pa�ern-mining-based approaches with a state-

of-the-art RNN-based algorithm.

3 EXPERIMENT CONFIGURATIONS
3.1 Algorithms

3.1.1 RNN Baseline. gru4rec is an RNN-based algorithm that

uses Gated Recurrent Units to deal with the vanishing or exploding

gradient problem proposed in [16]. In our experiments, we used

the Python implementation that is shared by the authors online.
1

3.1.2 Session-based kNN – knn. �e knn method searches the k
most similar past sessions (“neighbors”) in the training data based

on the set of items in the current session. Since the process of

determining the neighbor sessions becomes very time-consuming

as the number of sessions increases, we use an special in-memory

index data structure (cache) in our implementation. Technically, in

the training phase, we create a data structure that maps the training

sessions to their set of items and one structure that maps the items

to the sessions in which they appear. To make recommendations for

the current session s , we �rst create a union of the sessions in which

the items of s appear. �is union will be the set of possible neighbors

of the current session. �is is a fast operation as it only involves a

cache lookup and set operations. To further reduce the computa-

tional complexity of the prediction process, we select a subsample

of these possible neighbors using a heuristic. In this work, we took

the m most recent sessions as focusing on recent trends has shown

to be e�ective for recommendations in e-commerce [23]. We then

compute the similarity of thesem most recent possible neighbors

and the current session and select the k most similar sessions as

the neighbor sessions of the current session. Again through lookup

and set union operations, we create the set of recommendable items

R that contains items that appear in one of the k sessions. For each

recommendable item i in R, we then compute the knn score as the

sum of the similarity values of s and its neighbor sessions n ∈ Ns
which contains i (Equation 1). �e indicator function 1n (i) returns

1 if n contains i and 0 otherwise, see also [4].

scoreknn(i, s) = Σn∈Ns sim(s,n) × 1n (i) (1)

In our experiments, we tested di�erent distance measures to

determine the similarity of sessions. �e best results were achieved

when the sessions were encoded as binary vectors of the item space

1
h�ps://github.com/hidasib/GRU4Rec

https://github.com/hidasib/GRU4Rec


and when using cosine similarity. In our implementation, the set

operations, similarity computations, and the �nal predictions can

be done very e�ciently as will be discussed later in Section 4.2.2.

Our algorithm has only two parameters, the number of neighbors

k and the number of sampled sessionsm. For the large e-commerce

dataset used in [16], the best parameters were, for example, achieved

with k = 500 and m = 1000. Note that the kNN method used in

[16] is based on item-to-item similarities while our kNN method

aims to identify similar sessions.

3.1.3 kNN Temporal Extension – tknn. �e knn method, when

using cosine similarity as a distance measure, does not consider the

temporal sequence of the events in a session. To be able to leverage

the temporal information within the knn technique, we designed

an additional temporal-�ltering heuristic for it. �e proposed tknn

method uses the same scoring scheme as the knn method (Equa-

tion 1). �e only di�erence is that, given the current session s , we

consider item i as being recommendable only if it appears in the

neighbor session n directly a�er a certain item. In our implemen-

tation, that certain item is the last item of the current session s .
Technically, we therefore use a slightly di�erent implementation of

the indicator function of Equation 1: 1n (i) = 1 if neighbor session

n contains i and (j, i) is a subsequence of n, where j is the last item

of the current session and thus the basis to predict the next item.

3.1.4 Simple Association Rules – ar. To assess the strength of

simple two-element co-occurrence pa�erns, we included a method

named ar which can be considered as an association rule technique

with a maximum rule size of two. Technically, we create a rule rp,q
for every two items p and q that appear together in the training

sessions. We determine the weight, wp,q , of each rule simply as the

number of times p and q appear together in past sessions. Given

the current session s , the ar score of a target item i will be then

computed as

scorear(i, s) = wi, j × 1AR (ri, j ) (2)

where j is the last item of the current session s for which we want

to predict the successor and AR is the set of rules and their weights

as determined based on the training data. �e indicator function

1AR (ri, j ) = 1 when AR contains ri, j and 0 otherwise.

3.1.5 Simple Sequential Rules – sr. �e sr method is a variant of

ar, which aims to take the order of the events into account. Similar

to the ar method, we create a sequential rule for the co-occurrence

of every two items p and q as rp,q in the training data. �is time,

however, we consider the distance between p and q in the session

when computing the weight of the rules. In our implementation,

we use the multiplicative inverse as a weight function and set

wp,q = 1/x , where x is the number of items that appear between p
and q in a session. Other heuristics such as a linear or a logarithmic

function can also be used. In case that those two items appear

together in another session in the training data, the weight of the

rule in that session will be added to the current weight. We �nally

normalize the weight and divide it by the total number of sessions

that contributed to the weight. Given the current session s , the sr

score of a target item i is then computed as

scoresr(i, s) = w j,i × 1SR (r j,i ) (3)

Table 1: Dataset characteristics.

RSC TMall #nowplaying 30Music AotM 8tracks

Sessions 8M 4.6M 95K 170K 83K 500K

Events 32M 46M 1M 2.9M 1.2M 5.8M

Items 38K 620K 115K 450K 140K 600K

Avg. E/S 3.97 9.77 10.37 17.03 14.12 11.40

Avg. I/S 3.17 6.92 9.62 14.20 14.11 11.38

where j is the last item of session s and SR is the set of sequential

rules. �e indicator function 1SR (r j,i ) = 1 when SR contains r j,i
and 0 otherwise.

3.1.6 Hybrid Approaches. We made additional experiments with

several hybrids that combine di�erent algorithms. At the end, a

weighted combination of the two normalized prediction scores of

the algorithms led to the best results in our experiments.

3.2 Datasets and Evaluation Protocol
We performed experiments using datasets from two di�erent do-

mains in which session-based recommendation is relevant, namely

e-commerce and next-track music recommendation. �e source

code and the public datasets can be found online.
2

3.2.1 E-commerce Datasets. For the e-commerce domain, we

chose the ACM RecSys 2015 Challenge dataset (RSC) as used in

[16]. �e RSC dataset is a collection of sequences of click events

in shopping sessions. �e second e-commerce dataset is a public

dataset published for the TMall competition. �is dataset contains

shopping logs of the users on the Tmall.com website.

3.2.2 Music Datasets. We used (a) two datasets that contain

listening logs of several thousand users and (b) two datasets that

comprise thousands of manually created playlists.
Listening logs: �ese used datasets are (almost one-year-long)

sub-samples of two public datasets. First, we created a subset of

the #nowplaying dataset [48], which contains music-related tweets

on Twi�er. Second, we used the recent 30Music dataset [41], which

contains listening sessions retrieved from Internet radio stations

through the Last.fm API.

Playlists: Generally, music playlists are di�erent in nature from

listening logs and e-commerce user logs in various ways. Nonethe-

less, they are designed to be consumed in a listening session and the

tracks are o�en arranged in a speci�c sequence. �e used playlist

datasets come from two di�erent music platforms. �e Art-of-the-
Mix dataset (AotM) was published by [31] and contains playlists

by music enthusiasts. �e 8tracks dataset was shared with us by

the 8tracks platform. A particularity of the 8tracks dataset is that

each public playlist can only contain two tracks per artist.

�e dataset statistics are shown in Table 1. �e total number

of sessions is larger for the e-commerce datasets. However, the

number of unique items in the music datasets, which corresponds

to the number of tracks included in the playlists or the number of

played tracks in the listening sessions, is higher than the number

of items in e-commerce datasets.

2
h�p://ls13-www.cs.tu-dortmund.de/homepage/rectemp2017

http://ls13-www.cs.tu-dortmund.de/homepage/rectemp2017


�e music sessions are on average longer than the e-commerce

sessions.
3

�e last row of Table 1 shows the average number of

unique items in each session (“Avg. I/S”). Comparing this value

with the average session length (“Avg. E/S”) indicates what we call

the item repetition rate in each dataset. Including the same track

more than once in a playlist is comparably uncommon. Listening

to a track more than once during a listening session is, however,

common. �e di�erence between the average session length and

the average number of items in each session for the e-commerce

dataset indicates that re-occurring of the same item in a session is

common in the e-commerce domain.

3.2.3 Evaluation Protocol. �e general task of the session-based

recommendation techniques in our experiment is to predict the next-

item view event in a shopping session or to predict the next track

that is played in a listening session or is included in a playlist. To

evaluate the session-based algorithms, we use the same evaluation

scheme as in [16]. We incrementally add events to the sessions in

the test set and report the average hit rate (HR), which corresponds

to recall in this evaluation se�ing, and the mean reciprocal rank

(MRR), which takes the position of the hit into account. We tested

list lengths of 1, 2, 3, 5, 7, 10, 15, and 20. While the experiments

in [16] are done without cross-validation, we additionally apply a

�vefold sliding-window validation protocol as in [24] to minimize

the risk that the obtained results are speci�c to the single train-test

split. We, therefore, created �ve train-test splits for each dataset.

For the listening logs, we used 3 months of training data and the

next 5 days as the test data and randomized splits for the playlists

as they have no timestamps assigned.

4 RESULTS
4.1 Accuracy Results
Our �rst experiment used the exact same setup as described in [16],

i.e., we use only one training-test split when comparing gru4rec

with our methods. As done in [16], we trained the algorithms using

6 months of data containing 7,966,257 sessions of 31,637,239 clicks

on 37,483 items and tested them on the sessions of the next day.

In the subsequent sections, we then report the results of our

comparison using the sliding-window validation scheme described

above with recommendation list lengths varying from 1 to 20. In all

experiments, we tuned the parameters for the di�erent algorithms

using grid search and optimized for HR@20 on validation sets

(subsets of the training sets). gru4rec was only optimized with

100 layers as done in [16] due to the computational complexity of

the method. To test for statistical signi�cance, we use Wilcoxon

signed-rank test with α = 0.05.

4.1.1 Results Using the Original Evaluation Setup. Table 2 shows

the results ordered by the hit rate (HR@20) when using the origi-

nal setup. We could reproduce the hit rate and MRR results from

[16] (using their optimal parameters) for gru4rec(1000,bpr) and

gru4rec(1000,top1), which use 1000 hidden units and the TOP1 and

BPR’s pairwise ranking loss functions, respectively. In Table 2, we

additionally report the results for recommendation list length ten,

which might be more important for di�erent application domains.

3
Note that each session in the TMall dataset is de�ned as the sequence of actions of a

user during one day which results in relatively larger average session length.

Table 2: Results when using the evaluation scheme of [16].

Method HR@10 MRR@10 HR@20 MRR@20

sr 0.568 0.290 0.672 0.297
tknn 0.545 0.251 0.670 0.260

ar 0.543 0.273 0.655 0.280

knn 0.521 0.242 0.641 0.250

gru4rec(1000,bpr) 0.517 0.235 0.636 0.243

gru4rec(1000,top1) 0.517 0.261 0.623 0.268

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20 

RSC

SR AR KNN TKNN GRU4REC(1000,TOP1) GRU4REC(1000,BPR)

*

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20 

TMall

SR AR KNN TKNN GRU4REC(1000,TOP1) GRU4REC(1000,BPR)

*

0.12

Figure 1: MRR results for the e-commerce datasets (* indi-
cates statistical signi�cance).

�e best accuracy results were achieved by the sr method both

for the hit rate and MRR and for both list lengths. In terms of the hit

rate, every single frequent pa�ern method used in the experiment

was be�er than the gru4rec methods. A similar observation can be

made also for the MRR, with the exception that the knn-based meth-

ods consistently performed worse than the gru4rec(1000,top1)

method on this measure.

4.1.2 E-commerce Datasets. Figure 1 shows the MRR results for

the algorithms on the two e-commerce datasets, RSC and TMall.

For both datasets, we can observe that most of the frequent pa�ern

methods lead to higher or at least similar MRR values as gru4rec.

�ere is, however, no clear “winner” across both datasets. �e sr

method works best for the RSC dataset. On the TMALL dataset,

the knn method outperforms the others, an e�ect which might be

caused by the longer list session lengths for this dataset.
4

In both

cases, however, the di�erence between the winning method and the

best-performing gru4rec con�guration is statistically signi�cant.

�is is indicated by a star symbol in Figure 1.

4.1.3 Listening Logs Datasets. Figure 2 shows the accuracy per-

formance of the algorithms on two selected listening logs datasets.

4
Remember that the sessions of the TMALL dataset cover the events of one day, as the

time stamps in this dataset are given only in the granularity of days.



SR AR KNN TKNN GRU4REC(1000,TOP1) GRU4REC(1000,BPR)

0.02

0.04

0.06

0.08

0.1

0.12

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20 

#nowplaying

SR AR KNN TKNN GRU4REC(100,TOP1) GRU4REC(100,BPR)

*

0

0.05

0.1

0.15

0.2

0.25

0.3

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20 

30Music

SR AR KNN TKNN GRU4REC(100,TOP1) GRU4REC(100,BPR)

*

Figure 2: MRR results for the listening log datasets.

Similar to the e-commerce datasets, in all measurements, a frequent

pa�ern approach, namely the sr method, outperforms gru4rec.

Here again, for MRR@20, the recommendations of sr are sig-

ni�cantly more accurate than the recommendations of gru4rec.

Note that on the music datasets, we apply gru4rec(100,top1) and

gru4rec(100,bpr), which use 100 hidden units and the TOP1 and

BPR’s pairwise ranking loss function, respectively.
5

�e tknn method – the time-aware extension of knn– works

always signi�cantly be�er than the knn method on the listening

logs datasets. tknn also outperforms both gru4rec con�gurations

on the #nowplaying dataset for list lengths larger than 1.

Another observation on the listening logs datasets is that the

sequence-based approaches (sr, tknn and gru4rec) work signif-

icantly be�er than methods that do not consider the temporal

information in data (knn and ar).

4.1.4 Playlists Datasets. Figure 3 shows the MRR results of the

algorithms on the playlists datasets. On both datasets, the temporal

extension of kNN, tknn, leads to the best results across all recom-

mendation list sizes and signi�cantly outperforms both variants of

gru4rec. �e performance of all other methods, however, seems

to depend on the speci�cs of the datset. �e sr method works

well on both datasets. �e relative performance of the ar method,

however, depends on the dataset and the list length at which the

measurement is made.

One interesting observation that we made for the music datasets

is that the relative performance of knn strongly improves in terms

of the hit rate
6

when the recommendation list length is increased.

�is can, for example, be seen in Figure 4, which shows the hit rate

results for the #nowplaying dataset. �e hit rate of knn on the

#nowplaying dataset that is about 3% for list length one increases

5
Repeating the experiments with 1000 hidden layers for the gru4rec methods did not

lead to any be�er results on the music datasets.

6
Generally, the hit rate results for the experiments, which we do not include here for

space reasons, are similar to the MRR results.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20 

AotM

SR AR KNN TKNN GRU4REC(100,TOP1) GRU4REC(100,BPR)

*

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20 

8tracks

SR AR KNN TKNN GRU4REC(100,TOP1) GRU4REC(100,BPR)

*

Figure 3: MRR results for the playlist datasets.

0

0.05

0.1

0.15

0.2

0.25

0.3

HR@1 HR@2 HR@3 HR@5 HR@7 HR@10 HR@15 HR@20 

#nowplaying

SR AR KNN TKNN GRU4REC(100,TOP1) GRU4REC(100,BPR)

*

Figure 4: HR results for the #nowplaying dataset.

to 24% for list length 20. At the same time, the hit rate of some of

the other methods only slightly increases, e.g., from 6% to 15%. As a

result, across all four investigated music datasets, knn outperforms

all other algorithms in terms of HR@20. A similar trend can also

be seen for ar, the other non-sequential approach.

4.1.5 Aggregated Ranking of Algorithms. To determine the rank-

ing of di�erent algorithms based on their accuracy results (MRR@20)

across all six datasets, we applied the Borda Count (BC) rank aggre-

gation strategy [10]. �e results show that sr and tknn are both

ranked �rst (30 points), followed by ar as the second best algorithm

(20 points). �e gru4rec method with TOP1 ranking loss is ranked

third (18 points). Finally, knn and gru4rec with BPR ranking loss

are ranked fourth (15 points) and ��h (13 points), respectively.

4.1.6 Hybrid Approaches. We conducted a variety of additional

experiments with di�erent hybridization methods as described in

Section 3.1.6 to analyze the e�ect of combining the algorithms. In

general, a weighted combination of the two normalized prediction

scores of a neighborhood-based and a sequence-based method led

to the best results in our experiments. For instance, the combination

of knn and sr with a weight ratio of 3 to 7, wh(knn,sr:0.3,0.7), out-

performed all other individual algorithms on the 30Music dataset.



Table 3: Results of the hybrid methods for 30Music.

Method HR@5 MRR@5 HR@20 MRR@20

sr 0.285 0.233 0.332 0.238

knn 0.142 0.069 0.342 0.089

gru 0.275 0.222 0.315 0.226

wh(knn,sr:0.3,0.7) 0.298 0.243 0.386 0.252
wh(knn,gru:0.6,0.4) 0.261 0.144 0.396 0.159

Another example is combining the normalized score of knn and

gru4rec(100,top1), which can outperform other algorithms in

terms of HR@20. �e di�erences between the winning hybrid

approaches (printed in bold face in Table 3) and the best perform-

ing individual methods in each measurement were statistically

signi�cant. Similar results were also achieved for the other datasets,

which we do not include here for space reasons.

4.2 Additional Analyses
Since prediction accuracy might not be the only possible relevant

quality criterion in a domain [19], we made a number of additional

analyses as shown in Figure 5.

4.2.1 Popularity Bias and Catalog Coverage. As in [22], we �rst

measured the average popularity of the top-20 recommendations

of the algorithms to assess possible recommendation biases. �e

popularity of an item is computed based on its number of occur-

rences in the training dataset. Overall, the recommendations of

non-sequential approaches (knn and ar) shows the highest bias

towards popular items. �e sequence-based approaches (sr and

gru4rec), in contrast, recommend comparably less popular items.

Additionally, we analyzed the catalog coverage of each algorithm

by counting the number of di�erent items that appear in the top-20

recommendation lists of all sessions in the test set. Overall, the rec-

ommendation lists of gru4rec and sr include more di�erent items

than the other algorithms. �e recommendations of neighborhood

methods, knn and tknn, on the other hand, focus on smaller sets of

items and show a higher concentration bias. �is can be explained

by considering the sampling strategy of knn which focuses on a

smaller subset of the sessions, e.g., those of the last few days.

4.2.2 Computational Complexity and Memory Usage. We mea-

sured the training time as well as the needed memory and time

to generate recommendations for each algorithm. On a desktop

computer with an Intel i7-4790k processor, training gru4rec on

one split of the RSC dataset with almost 4 million sessions and in

its best con�guration takes more than 12 hours. �is time can be

reduced to 4 hours when calculations are performed by the GPU

(Nvidia GeForce GTX 960).
7

�e knn method needs about 27 sec-

onds to build the needed in-memory maps, see Section 3.1.2. �e

well-performing sr method needs about 48 seconds to determine

the rule weights. A speci�c advantage of the la�er two methods

is that they support incremental updates, i.e., new events can be

immediately incorporated into the algorithms. Creating one rec-

ommendation list with gru4rec needed, on average, about 12 ms.

knn needs about 26 ms for this task and sr only 3 ms.

7
Training the model for 6 month of data using the GPU lasts about 8 hours.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

8tracks #nowplaying RSC

Popularity@20

SR AR KNN TKNN GRU4REC(TOP1) GRU4REC(BPR)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AotM #nowplaying TMall

Coverage@20

SR AR KNN TKNN GRU4REC(TOP1) GRU4REC(BPR)

Figure 5: Popularity biases and catalog coverages of the al-
gorithms on three sample datasets.

�e raw data used for training the algorithms in this speci�c

experiment (one split of the RSC dataset) occupies about 540 MB

of main memory. �e data structures used for training sr and knn

occupy about 50 MB and 3.2 GB, respectively. �e model created

by gru4rec needs about 510 MB. Note that memory demand of

gru4rec depends on the algorithm parameters and signi�cantly in-

creases with the number of items. For the music and Tmall datasets,

the memory demand of gru4rec exceeded the capacity of our

graphics card. Running gru4rec using the CPU is multiple times

slower than when a graphics card is used.

5 CONCLUSION AND FUTUREWORKS
Our work indicates that comparably simple frequent-pa�ern-based

approaches can represent a comparably strong baseline when eval-

uating session-based recommendation problems. At the end, we

could �nd at least one pa�ern-based approach that was signi�cantly

be�er than a recent RNN-based method. In particular the sr method

was surprisingly e�ective, despite the fact that both learning and

applying the rules is very fast.

Our results also indicates that the “winning” strategy seems to

strongly depend on the characteristics of the data sets like average

session lengths or repetition rates. Further research is still required

to understand this relationship. In our future work, we will investi-

gate the performance of additional session-based algorithms. �ese

algorithms include both ones that are based on Markov models, e.g.,

Rendle et al.’s factorized Markov chains [34], as well as recently

proposed improvements to gru4rec, e.g., by Tan et al. [38]. We

expect that continuously improved RNN-based methods will be

able to outperform the frequent pa�ern based baselines used in the

evaluation reported in this paper. �ese methods can, however, be

computationally quite expensive. From a practical perspective, one

has therefore to assess depending on the application domain if the

obtained gains in accuracy justify the usage of these complex mod-

els, which cannot be easily updated online and whose predictions

can be di�cult to explain.



REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association

Rules between Sets of Items in Large Databases. In SIGMOD ’93. 207–216.

[2] Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining Sequential Pa�erns.

In ICDE ’95. 3–14.

[3] Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU:

Multi-task Learning for Deep Text Recommendations. In RecSys ’16. 107–114.

[4] Geo�ray Bonnin and Dietmar Jannach. 2014. Automated Generation of Music

Playlists: Survey and Experiments. ACM Computing Surveys 47, 2 (2014), 26:1–

26:35.

[5] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.

CoRR abs/1412.3555 (2014).

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for

YouTube Recommendations. In RecSys ’16. 191–198.

[7] Sander Dieleman. 2016. Deep Learning for Audio-Based Music Recommendation.

In DLRS ’16 Workshop. 1–1.

[8] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A Multi-View

Deep Learning Approach for Cross Domain User Modeling in Recommendation

Systems. In WWW ’15. 278–288.

[9] Je�rey L. Elman. 1990. Finding Structure in Time. Cognitive Science 14, 2 (1990),

179 – 211.

[10] Peter Emerson. 2013. �e Original Borda Count and Partial Voting. Social Choice
and Welfare 40, 2 (2013), 353–358.

[11] Alex Graves. 2013. Generating Sequences With Recurrent Neural Networks.

CoRR abs/1308.0850 (2013). h�p://arxiv.org/abs/1308.0850

[12] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing Machines.

CoRR abs/1410.5401 (2014).

[13] Yupeng Gu, Bo Zhao, David Hardtke, and Yizhou Sun. 2016. Learning Global

Term Weights for Content-based Recommender Systems. In WWW ’16. 391–400.

[14] Jiawei Han and Micheline Kamber. 2006. Data Mining: Concepts and Techniques
(Second Edition). Morgan Kaufmann.

[15] Negar Hariri, Bamshad Mobasher, and Robin Burke. 2012. Context-Aware Music

Recommendation Based on Latent Topic Sequential Pa�erns. In RecSys ’12. 131–

138.

[16] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2015. Session-based Recommendations with Recurrent Neural Networks. CoRR
abs/1511.06939 (2015).

[17] Balázs Hidasi, Massimo �adrana, Alexandros Karatzoglou, and Domonkos

Tikk. 2016. Parallel Recurrent Neural Network Architectures for Feature-rich

Session-based Recommendations. In RecSys ’16. 241–248.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9, 8 (Nov. 1997), 1735–1780.

[19] Dietmar Jannach and Gedas Adomavicius. 2016. Recommendations with a

Purpose. In RecSys ’16. 7–10.

[20] Dietmar Jannach, Lukas Lerche, and Michael Jugovac. 2015. Adaptation and

Evaluation of Recommendations for Short-term Shopping Goals. In RecSys ’15.

211–218.

[21] Dietmar Jannach, Lukas Lerche, and Iman Kamehkhosh. 2015. Beyond “Hi�ing

the Hits”: Generating Coherent Music Playlist Continuations with the Right

Tracks. In RecSys ’15. 187–194.

[22] Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac. 2015.

What recommenders recommend: an analysis of recommendation biases and

possible countermeasures. User Modeling and User-Adapted Interaction (2015),

1–65.

[23] Dietmar Jannach and Malte Ludewig. 2017. Determining Characteristics of

Successful Recommendations from Log Data – A Case Study. In SAC ’17.

[24] Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Networks

meet the Neighborhood for Session-Based Recommendation. In RecSys 2017.

(forthcoming).

[25] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.

2016. Convolutional Matrix Factorization for Document Context-Aware Recom-

mendation. In RecSys ’16. 233–240.

[26] Lukas Lerche, Dietmar Jannach, and Malte Ludewig. 2016. On the Value of

Reminders within E-Commerce Recommendations. In UMAP ’16. 27–25.

[27] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep Collaborative Filtering via

Marginalized Denoising Auto-encoder. In CIKM ’15. 811–820.

[28] Zachary Chase Lipton. 2015. A Critical Review of Recurrent Neural Networks

for Sequence Learning. CoRR abs/1506.00019 (2015).

[29] Julian McAuley, Christopher Targe�, Qinfeng Shi, and Anton van den Hengel.

2015. Image-Based Recommendations on Styles and Substitutes. In SIGIR ’15.

43–52.

[30] Brian McFee and Gert R. G. Lanckriet. 2011. �e Natural Language of Playlists.

In ISMIR ’11. 537–542.

[31] Brian McFee and Gert R. G. Lanckriet. 2012. Hypergraph Models of Playlist

Dialects. In ISMIR ’12. 343–348.

[32] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. 2002. Using

Sequential and Non-Sequential Pa�erns in Predictive Web Usage Mining Tasks.

In ICDM ’02. 669–672.

[33] Ozlem Ozgobek, Jon A. Gulla, and Riza C. Erdur. 2014. A Survey on Challenges

and Methods in News Recommendation. In WEBIST ’14. 278–285.

[34] Ste�en Rendle, Christoph Freudenthaler, and Lars Schmidt-�ieme. 2010. Factor-

izing Personalized Markov Chains for Next-basket Recommendation. In WWW
’10. 811–820.

[35] Guy Shani, David Heckerman, and Ronen I. Brafman. 2005. An MDP-Based

Recommender System. �e Journal of Machine Learning Research 6 (Dec. 2005),

1265–1295.

[36] Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. 2016. Multi-Rate Deep

Learning for Temporal Recommendation. In SIGIR ’16. 909–912.

[37] Florian Strub, Romaric Gaudel, and Jérémie Mary. 2016. Hybrid Recommender

System based on Autoencoders. In DLRS ’16 Workshop. 11–16.

[38] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved Recurrent Neural

Networks for Session-based Recommendations. In Proceedings of the 1stWorkshop
on Deep Learning for Recommender Systems (DLRS ’16). ACM, 17–22.

[39] Maryam Tavakol and Ulf Brefeld. 2014. Factored MDPs for Detecting Topics of

User Sessions. In RecSys ’14. 33–40.

[40] Roberto Turrin, Andrea Condorelli, Paolo Cremonesi, Roberto Pagano, and

Massimo �adrana. 2015. Large Scale Music Recommendation. In LSRS 2015
Workshop at ACM RecSys.

[41] Roberto Turrin, Massimo �adrana, Andrea Condorelli, Roberto Pagano, and

Paolo Cremonesi. 2015. 30Music Listening and Playlists Dataset. In Poster Pro-
ceedings RecSys ’15.

[42] Bart lomiej Twardowski. 2016. Modelling Contextual Information in Session-

Aware Recommender Systems with Neural Networks. In RecSys ’16. 273–276.

[43] Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec:

Product Embeddings Using Side-Information for Recommendation. In RecSys ’16.

225–232.

[44] Koen Verstrepen and Bart Goethals. 2014. Unifying Nearest Neighbors Collabo-

rative Filtering. In RecSys ’14. 177–184.

[45] Jeroen B. P. Vuurens, Martha Larson, and Arjen P. de Vries. 2016. Exploring

Deep Space: Learning Personalized Ranking in a Semantic Space. In DLRS ’16
Workshop. 23–28.

[46] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning

for Recommender Systems. In KDD ’15. 1235–1244.

[47] Ghim-Eng Yap, Xiao-Li Li, and Philip S. Yu. 2012. E�ective Next-items Recom-

mendation via Personalized Sequential Pa�ern Mining. In DASFAA’12. Berlin,

Heidelberg, 48–64.

[48] Eva Zangerle, Martin Pichl, Wolfgang Gassler, and Günther Specht. 2014. #Now-

playing Music Dataset: Extracting Listening Behavior from Twi�er. In WISMM
’14 Workshop at MM ’14. 21–26.

[49] Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin

Wang, and Tie-Yan Liu. 2014. Sequential Click Prediction for Sponsored Search

with Recurrent Neural Networks. In AAAI ’14. 1369–1375.

http://arxiv.org/abs/1308.0850

	Abstract
	1 Introduction
	2 Previous Works
	3 Experiment Configurations
	3.1 Algorithms
	3.2 Datasets and Evaluation Protocol

	4 Results
	4.1 Accuracy Results
	4.2 Additional Analyses

	5 Conclusion and Future Works
	References

