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Abstract
In this paper, we introduce a corpus comprising re-
quests for objects in physical spaces, and responses
given by people to these requests. We generated
two datasets based on this corpus: a manually-tagged
dataset, and a dataset which includes features that are
automatically extracted from the output of a Spoken
Language Understanding module. These datasets are
used in a classification-based approach for generating
responses to spoken requests. Our results show that,
surprisingly, classifiers trained on the second dataset
outperform those trained on the first, and produce ac-
ceptable levels of performance.

1 Introduction
In recent times, there have been significant improvements
in Automatic Speech Recognition (ASR) [Chorowski et al.,
2015; Bahdanau et al., 2016]. For example, a research proto-
type of a spoken slot-filling dialogue system reported a Word
Error Rate (WER) of 13.8% when using “a generic dictation
ASR system” [Mesnil et al., 2015], and Google reported an
8% WER for its ASR API.1 However, this API had a WER
of 54.6% when applied to the Let’s Go corpus [Lange and
Suendermann-Oeft, 2014].

ASR errors not only produce wrongly recognized entities
or actions, but may also yield ungrammatical utterances that
cannot be processed by a Spoken Language Understanding
(SLU) system (e.g., “the plate inside the microwave” being
mis-heard as “of plating sight the microwave”), or yield in-
correct results when processed by an SLU system (e.g., due
to fillers such as “hmm” being mis-heard as “and” or “on”).

The problems caused by ASR errors are exacerbated by the
fact that people often express themselves ambiguously or in-
accurately [Trafton et al., 2005; Moratz and Tenbrink, 2006;
Funakoshi et al., 2012; Zukerman et al., 2015]. An ambigu-
ous reference to an object matches several objects well, while
an inaccurate reference matches one or more objects partially.
For instance, in a household domain, a reference to a “big
blue mug” is ambiguous if there is more than one big blue
mug in the room, and inaccurate if there are two mugs in the

1
venturebeat.com/2015/05/28/google-says-its-speech-

recognition-technology-now-has-only-an-8-word-error-rate.

room, one big and red, and one small and blue. Further, am-
biguous or inaccurate references may occur as a result of dif-
ferences in parse trees (e.g., due to variants in prepositional
attachments).

In addition to improving ASR and SLU modules, Spo-
ken Dialogue Systems (SDSs) must be able to cope with
these problems by generating appropriate responses to users’
spoken utterances. Recently, deep-learning algorithms have
been used for response generation [Serban et al., 2016;
Yang et al., 2016]. However, these algorithms rely solely on
requests and responses, without taking into account the (ex-
tra linguistic) context, and typically require large amounts of
data, which may not be available in some applications. In this
paper, we offer a supervised-learning approach to response-
generation that is suitable for smaller datasets. Our approach
harnesses the properties of utterances, dialogue history and
context to choose response types for users’ requests.

To obtain an upper bound for classifier performance, we
trained a classifier using human-observable features of spo-
ken requests and response types selected by participants for
these requests. We then trained a second classifier using fea-
tures that were automatically extracted from the output pro-
duced by our SLU system (Section 5). Surprisingly, the sec-
ond classifier produced significantly better results than the
first one.

The rest of this paper is organized as follows. In the next
section, we discuss related work. Our corpus is described
in Section 3. In Section 4, we detail the human-observable
features and the response-classification results obtained with
them. We then offer a brief account of our SLU system, fol-
lowed by a description of the features that are automatically
extracted from its output and the resultant classification per-
formance. Concluding remarks appear in Section 7.

2 Related Work
Decision-theoretic approaches have been the accepted stan-
dard for response generation in dialogue systems for some
time [Carlson, 1983]. These approaches were initially imple-
mented in SDSs in the form of Influence Diagrams that make
myopic (one-shot) decisions regarding dialogue acts [Paek
and Horvitz, 2000], procedures that optimize responses [In-
ouye and Biermann, 2005; Sugiura et al., 2009], and Dy-
namic Decision Networks that make decisions about dia-
logue acts over time [Horvitz et al., 2003; Liao et al., 2006].
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Later on, reinforcement learning was employed to learn op-
timal policies over time [Lemon, 2010], with particular at-
tention being paid to Partially Observable Markov Decision
Processes [Williams and Young, 2007; Young et al., 2013;
Gašić and Young, 2014], and their extension Hidden Infor-
mation State [Young et al., 2007; Young et al., 2013]. Ow-
ing to the complexity of these formalisms, they have been
used mainly in slot-filling applications, e.g., making airline
and restaurant reservations [Young et al., 2013].

Recently, deep learning has been applied to various aspects
of SDSs [Wen et al., 2015; Li et al., 2016; Mrkšic et al., 2016;
Prakash et al., 2016; Serban et al., 2016; Yang et al., 2016].
Wen et al. [2015] focused on the generation of linguisti-
cally varied responses, and Mrkšic et al. [2016] proposed a
dialogue-state tracking framework. The generation of dia-
logue contributions was studied in [Li et al., 2016; Prakash et
al., 2016] for chatbots; in [Serban et al., 2016] for help-desk
responses and Twitter follow-up statements; and in [Yang
et al., 2016] for slot tagging, and user-intent and system-
action prediction in slot-filling applications. A combination
of deep learning and reinforcement learning has been used
in end-to-end dialogue systems that query a knowledge-base,
where user utterances are mapped to a clarification ques-
tion or a knowledge-base query [Williams and Zweig, 2016;
Zhao and Eskenazi, 2016; Dhingra et al., 2017]. All these
systems learn to generate complete responses from large cor-
pora comprising request-response pairs.

Our work follows this supervised-learning trend in a setting
where the appropriateness of a response depends both on the
request and on the physical context. Further, our dataset is
significantly smaller than those used by neural mechanisms.

3 The Corpus
Our corpus, which was gathered in two experiments, com-
prises requests to fetch or move household objects, and re-
sponses to these requests.

Experiment 1 – This experiment replicates the experiment
described in [Zukerman et al., 2015] using the Google ASR
API, instead of Microsoft Speech SDK 6.1 — the WER of
the Google API was 13% for our corpus. 35 participants were
asked to describe 12 designated objects (labelled A to L) in
the scenarios depicted in Figure 1. Each scenario contains be-
tween 8 and 16 household objects varying in size, colour and
position. The participants were allowed to repeat a descrip-
tion up to two times. In total, they recorded 478 descriptions
such as the following: “the computer under the table”, “the
picture on the wall”, “the green plate next to the screwdriver
at the top of the table”, “the plate in the corner of the table”,
and “the large pink ball in the middle of the room”.

Experiment 2 – This experiment took the form of an online
survey where participants had to indicate how they would re-
spond to a (potentially mis-heard) request. Each participant
was shown the top four ASR outputs for the request versions
of 12 descriptions generated by one participant in the first ex-
periment, along with the images in Figure 1. For instance,
“the pot plant on the table”, uttered in the context of Fig-
ure 1(a), was converted to “get the pot plant on the table”; and

“the green bookcase”, uttered in the context of Figure 1(d),
was presented as “move the green bookcase”.

Each participant was then asked to choose a response for
each request from the following four response types (partici-
pants were given a description of each response type):
• DO: suitable when the addressee is sure about which ob-

ject the request refers to.
• CONFIRM: suitable when the addressee feels the need to

confirm the requested object before taking action.
• CHOOSE: suitable when the addressee hesitates between

several objects.
• REPHRASE: suitable when part or all of a request is so

unintelligible that the addressee cannot understand it.
These choices were made under two cost settings: low-cost

– where participants were told that the requested object must
be delivered to someone in the same room; and high-cost –
where they were told that the object must be delivered to a far-
away location. These settings were designed to discriminate
between situations where mistakes are fairly inconsequential
and situations where mistakes are costly.

40 people took part in this experiment (six of them also par-
ticipated in the first experiment); half of the participants were
native English speakers, and half were male. Thirteen peo-
ple participated in an initial version of the experiment where
they first chose response types for all the requests under the
low-cost setting, and then chose response types for the same
requests under the high-cost setting. We modified the ex-
periment on the basis of the participants’ feedback, so that
the remaining 27 participants considered each request under
the low-cost setting, and were immediately asked how their
response would differ under the high-cost setting. This ex-
perimental variation had no effect on response-classification
performance (Sections 4.1 and 6.1).

To determine the effect of personal variations on classifi-
cation performance, one of the authors, who is familiar with
the system, selected response types for all the requests.

3.1 Analysis and Post Processing
In total, we collected 960 request-response pairs (=
12 requests×2 cost factors×40 participants). 24.2% of these
requests had an unintelligible semantic role in at least one
ASR output, with the vast majority occurring in the OBJECT
of the descriptions; 17.9% were ambiguous (i.e., they had
more than one reasonable referent); and only 3.8% were in-
accurate (i.e., they did not match perfectly any referent).

In order to train both classifiers on the same corpus, we
removed requests that don’t fit the requirements of the au-
tomatic feature-extraction process (Section 6). Specifically,
we excluded 62 descriptions (13%) that had more than one
prepositional phrase, and 43 descriptions (9%) that could not
be processed by our SLU module [Zukerman et al., 2015]
(Section 5). As a result, our corpus contains 375 descrip-
tions, which yield a total of 750 requests for both cost set-
tings. The responses to these requests were distributed as fol-
lows: 51.9% DO (majority class), 21.6% CHOOSE, 14.1%
REPHRASE, and 12.4% CONFIRM.

It is worth noting that the response types chosen for the
excluded requests were included in the dataset as features in
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(a) Positional relations in a room (b) Colour, size and positional relations on a table

(c) Projective and positional relations on a table (d) Colour, size and positional relations in a room

Figure 1: Household scenes used in our experiments

order to enable us to determine the effect of dialogue his-
tory on performance (Sections 4 and 6). Clearly, removing
requests disrupts the actual sequence of events, which has
an adverse effect on the performance of sequence classifiers
(Section 4.2). In the near future, we will address this problem
by including a feature set for all the requests in a sequence.

4 Classification with Manually-Tagged
Features

Two team members annotated each description obtained from
the first experiment with the following features, which are in-
dicative of inaccuracy and ambiguity, and were deemed rel-
evant to a person’s decision regarding how to respond to a
request (the first annotator labelled the features, and the sec-
ond annotator verified the annotations; disagreements were
resolved by consensus).

1. Unintelligible role – This is the semantic role of a gar-
bled portion of a description, where the possible values
are {NONE, ALL, OBJECT, LANDMARK, OTHER}. For
example, “the hottest under the table” has an unintelligi-
ble OBJECT, and “the green plate on the left of the Blues
play” has an unintelligible LANDMARK.

2. # of reasonable interpretations – How many objects are
reasonable referents for a description? For instance, the
first of the above requests has two reasonable referents in
the context of Figure 1(a), as there are only two objects
under the table. Similarly, the two green plates on the

table in Figure 1(b) are reasonable interpretations for the
second request.
People often compensate for mis-heard utterances by pos-
tulating reasonable words that sound similar to what was
heard. We take this behaviour into account by splitting
this feature into two sub-features: (2a) With phonetic sim-
ilarity and (2b) Without phonetic similarity. For exam-
ple, when considering phonetic similarity in the context
of Figure 1(b), “blue plate” is a sensible replacement for
“Blues play”, yielding one reasonable interpretation for
the second request (the green plate labeled E).

3. Do the reasonable interpretations include fewer than all
the objects in the context? (YES, NO) – This feature indi-
cates how much information can be extracted from a de-
scription, e.g., the value of this feature is NO for “the blue
plate on the table” in the context of Figure 1(c), since all
the objects on the table are reasonable referents for this
description. As above, this feature is split into two sub-
features: (3a) With phonetic similarity and (3b) Without
phonetic similarity.

4. # of perfect interpretations – How many objects match
perfectly a description? For example, the two balls in Fig-
ure 1(d) match perfectly the description “the ball”. Note
that the difference between # of reasonable interpreta-
tions and # of perfect interpretations indicates the accu-
racy of a description.

5. Do the perfect interpretations include fewer than all the
objects in the context? (YES, NO) – This feature is similar
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to Feature #3. However, since we are considering only
interpretations that match a request perfectly, there is no
need to take into account phonetic similarity.

4.1 Response Classification
We experimented with several classification algorithms, in-
cluding Naı̈ve Bayes, Support Vector Machines, Decision
Trees (DT) and Random Forests (RF), to learn response types
from the data collected in our experiments. Here we report on
the results obtained with DT and RF, which had the best per-
formance.2 We used the above features to determine baseline
performance, and experimented with four additional features:
Gender; English nativeness – whether the participant is a na-
tive English speaker; 3-Back responses (vector of length 4) –
the counts of the response types provided by an Experiment 2
participant for the three preceding requests;3 and Cost – high
or low. This feature worsened performance in all cases, and
was removed.

We performed 10-fold cross-validation to evaluate classi-
fier performance; statistical significance was computed using
the Wilcoxon signed-ranked test. Rows 2-4 in Table 1 display
the best results obtained by our classifiers for each feature
configuration.

RF yielded the best results for the manually-tagged fea-
tures alone, and for these features plus Gender and English
nativeness; while DT produced the best results overall when
3-Back responses were added (statistically significant with p-
value=0.05). The most influential features in the decision tree
were # of perfect interpretations, # of reasonable interpreta-
tions with phonetic similarity, and # of rephrases in 3-Back
responses. The per-class performance of DT appears in the
second and third columns of Table 5. Note the poor precision
and recall obtained for CONFIRM, which was often confused
with DO. DT’s deficient performance for REPHRASE may be
attributed to the fact that requests that had the same features,
in particular those with partially or completely unintelligible
ASR outputs, elicited the different responses from the partic-
ipants.

As mentioned in Section 3, we also trained and tested the
classifiers using response types selected by only one per-
son – the first author. The best performance was achieved
with an RF classifier that includes 3-Back responses, denoted
RF1P. This performance was much better than of the classi-
fiers trained with the response types of 40 participants, which
indicates that personal attributes affect people’s responses.4

4.2 Sequence Classification
In order to investigate the influence of a sequence of request-
response pairs on future responses, we trained and tested a

2We used over- and under-sampling to try to deal with the large
majority class, but neither affected the classifiers’ performance.

3We experimented with several sequence lengths, of which 3-
Back yielded the best results. We also investigated a setting where
the counts of the response types chosen for all the other 23 requests
were used as features. This setting, which is clearly unfeasible, gave
the best results, achieving 0.70 precision and 0.68 recall.

4We tried to address this issue by clustering users based on the
number of times they chose each response type, but didn’t get good
clusters for k < 10.

Table 1: Performance with manually-tagged features

Classifier Manually- Precision Recall
tagged Features

RF 0.58 0.65
RF + Gender & English nat. 0.62 0.67

DT + Gender & English nat.
+ 3-Back responses 0.63 0.68

RNN + entire previous sequence 0.55 0.62
RF1P + 3-Back responses 0.81 0.82

Figure 2: RNN for response-type selection

Recurrent Neural Network (RNN) as a sequence classifier.
Our RNN model is based on the Long-Short-Term-Memory

(LSTM) architecture [Hochreiter and Schmidhuber, 1997],
which can capture long-range dependencies. If we denote
the features of the t-th utterance as ft, the hidden state of the
RNN at time step t+1 is calculated as a function of the input
at time step t + 1, ft+1, and the previous hidden state, ht:
ht+1 = LSTM(ht, ft+1). With this mechanism, the model
maps the sequence of features to a sequence of hidden vec-
tors, which are decoded into a sequence of labels by a linear
neural net layer: yt ∼ softmax(Wht + b).

A natural extension of this model is to stack the LSTM lay-
ers, i.e., the outputs of the first LSTM layer are given as input
to the second layer, and so on; our model stacks 15 layers of
LSTMs. This model was implemented with Keras [Chollet,
2017] and Theano [Theano Development Team, 2016], and
was trained to minimize categorical cross-entropy loss using
the Adam SGD learner [Kingma and Ba, 2014].

Owing to time limitations, we performed only 5-fold cross-
validation. The results of the RNN appear in the penultimate
row of Table 1. The RNN’s disappointing performance may
be attributed to the relatively small dataset combined with the
disruption of several sequences due to the removal of request-
response pairs (in order to reduce sequence disruption, we
retained the 43 pairs corresponding to descriptions that could
not be processed by our SLU system).

5 The SLU System Scusi?
Scusi? [Zukerman et al., 2015] is a system that implements
an anytime, numerical mechanism for the interpretation of
spoken descriptions, focusing on a household context. It has
four processing stages, where (intermediate) interpretations
in each stage can have multiple parents in the previous stage,
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Figure 3: Scusi?’s workflow and UCG-to-ICG relations

and can produce multiple children in the next stage; early pro-
cessing stages may be probabilistically revisited; and only the
most promising options in each stage are explored further.
Scusi’s workflow – The system takes as input a speech signal,
and uses an ASR to produce candidate texts. Each text is as-
signed a score given the speech wave, and passed to an error-
detection module that postulates which words were correctly
or wrongly recognized by the ASR [Zukerman and Partovi,
2017] — this component is required, as in real life we don’t
have access to transcriptions. Next, Scusi? applies Charniak’s
probabilistic parser (bllip.cs.brown.edu/resources.
shtml#software) to syntactically analyze the texts, yield-
ing at most 50 parse trees per text. The third stage applies
mapping rules to the parse trees to generate Uninstantiated
Concept Graphs (UCGs) [Sowa, 1984] that represent the se-
mantics of the descriptions. The final stage instantiates the
UCGs with objects and relations from the current context, and
returns candidate Instantiated Concept Graphs (ICGs) ranked
in descending order of merit (score).

Figure 3 illustrates this process for the description “the
brown stool near the table” in the context of Figure 1(d). All
stages produce several outputs, but we show only two outputs
for each of three stages (ASR, UCG and ICG). In addition,
in this example, both UCGs are parents of the two ICGs, but
only the match with ICG-1 is shown in Figure 3. The first
ASR output is correct, and the second has “blown store” in-
stead of “brown stool”. Each of these outputs yields one UCG
(via a parse tree), where the object in the second UCG has
an unknown attribute, as Scusi? doesn’t recognize the modi-
fier “blown” (unknown attributes occur when a user employs
out-of-vocabulary noun modifiers or the ASR mis-recognizes
noun modifiers).

The score of each ICG depends on two factors: (1) how
well the concepts and relations in it match the corresponding
concepts and relations in its parent UCGs, and (2) how well
the relations in the ICG match the context. For example, ICG-
1 matches UCG-1 well, as stool-L can be called “stool” and
it is brown, and table-1 can be called “table”; but its match-
score with UCG-2 is lower, as stool-L cannot be called
“store” and doesn’t match the unknown attribute specified in

Table 2: Features obtained from the word-error detector
Is there an ASR output with all correct words?
% of wrong words in the top ASR output
% of wrong words in all ASR outputs
% of ASR outputs with all correct words

Table 3: Features extracted from the top-10 ICGs

Number of top-ranked ICGs with similar scores (×1)
Location match score between an ICG and the context (×10)
Per-node features for an ICG in relation to its parent UCGs
Best colour-match score for a content node (×20)
Best size-match score for a content node (×20)
Maximum # of unknowns for a content node (×20)
For a content node, % of UCG parents with corresponding node

• with a colour match for this node (×20)
• with a size match for this node (×20)
• that have unknowns (×20)

For a node, % of UCG parents with corresponding node
• that lexically match this node (×30)

UCG-2. ICG-1 matches the context well, as stool-L is near
table-1. The details of the calculation of the scores are de-
scribed in [Zukerman et al., 2015]. The aspects that are most
relevant to this paper are that scores are represented on a log-
arithmic scale in order to avoid underflow, and scores of value
0 are smoothed to a low value ε in order not to invalidate any
interpretation.

6 Classification with Automatically-Extracted
Features

We automatically extracted features from the top-10 ICGs
generated by Scusi? for each description (the correct inter-
pretation is in the top-10 ICGs in about 90% of the cases)
— these features appear in Tables 2 and 3. The features in
Table 2, extracted from the output of Scusi?’s word-error de-
tector, pertain to the intelligibility of the descriptions. The
second and third feature in Table 2 are among the most in-
fluential ones.5 The last feature is noteworthy because, even
though only one ASR output is correct, the error-detection
component may decide that several ASR outputs are correct,
e.g., “the flower on the table” and “the flour on the table”.

The first feature in Table 3 represents the ambiguity of a
description through the similarity between the scores of suc-
cessive top-ranked ICGs, which is encoded as the ratio be-
tween the (logarithmic) score of the i+1-th ICG and the score
of the i-th ICG. When this ratio between neighbouring ICGs
is below an empirically-derived threshold, they are deemed
similar. This feature is among the most influential ones.

The remaining features in Table 3 pertain to the accuracy
of a description, which is represented by the goodness of the
match between an ICG and its parent UCGs, and between
an ICG and the context. The second feature, which repre-
sents the accuracy of the location specified in a description,
is among the most influential ones (for ICGs ranked 4th, 6th
and 9th).

5The frequency of features in the top-two levels of 100 trees gen-
erated by RF was used as a proxy for their importance.
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As seen in Figure 3, content nodes (objects and landmarks)
in UCGs may have colour and size descriptors, as well as un-
known attributes. The first six per-node features in Table 3
represent the goodness of attribute matches between the con-
tent nodes (object and landmark) of an ICG and the corre-
sponding nodes in its parent UCGs. Two size-match features,
one colour-match feature and one unknown feature for ob-
jects of ICGs at various ranks are among the most influential
features.

The last row in Table 3 represents the goodness of lexical
matches between the nodes in an ICG and the corresponding
nodes in its parent UCGs. This feature is among the most
influential for the objects of most of the top-10 ICGs.

To illustrate these features, let’s return to the UCG-ICG
matches in Figure 3 for the request “move the brown stool
near the table” in the context of Figure 1(d). The score of the
top-ranked ICG, viz ICG-1, is significantly higher than that
of ICG-2. Hence, the value of the first feature in Table 3 is
1. As mentioned above, stool-L is near table-1, yielding
a high location match score for ICG-1. 50% of the UCG par-
ents have a lexical match with the object in ICG-1, as “store”
doesn’t match any designation of stool-L; but 100% of the
UCG parents have a lexical match with the landmark in ICG-
1 (table-1). Due to the unknown attribute in the object of
UCG-2, the maximum number of unknowns for the ICG-1
object is 1, and the percentage of UCG parents that have un-
knowns for the ICG-1 object is 50%; while 0% of UCG par-
ents have unknowns for the ICG-1 landmark. Since the colour
specified in UCG-1 matches the colour of stool-L, the max-
imum colour match for the object of ICG-1 is 1, but the per-
centage of UCG parents with a colour match for the ICG-1
object is 50%, as UCG-2 doesn’t have a colour attribute.

6.1 Response Classification
We experimented with the classifiers considered in Sec-
tion 4.1, except the RNN, using the 165 features described
in Tables 2 and 3, instead of the manually-obtained ones.6
The RNN was omitted due to the above-described removal
of requests, which disrupts the sequence. As before, we per-
formed 10-fold cross-validation.

Table 4 displays our results. The classifier with the
best performance for a particular configuration of manually-
tagged features also had the best performance for the cor-
responding configuration of automatically-extracted features.
Surprisingly, overall performance with these features was sig-
nificantly better (with p-value=0.01) than the performance
obtained with the manually-tagged features, both for the re-
sponses given by 40 participants and for the responses pro-
vided by one person. In the former case, 3-Back responses
had an adverse effect on performance, and in the latter case,
it had no effect. The best performance for the 40-participant
dataset was obtained with RF plus Gender and English na-
tiveness, but the differences between the classifiers were not
statistically significant. The per-class performance of this
classifier appears in the fourth and fifth columns of Table 5.
As for the manually-tagged features, the worst precision and

6Applying Principal Components Analysis to reduce the number
of features had no effect on the classifiers’ performance.

Table 4: Performance with automatically-extracted Features

Classifier Automatically- Precision Recall
extracted Features

RF 0.73 0.74
RF + Gender & English nat. 0.74 0.74

DT + Gender & English nat.
+ 3-Back responses 0.72 0.72

RF1P 0.93 0.92

Table 5: Per-class performance of the best classifier for
manually- and automatically-extracted features

Class Manually- Automatically-
tagged Features extracted Features

Precision Recall Precision Recall
DO 0.72 0.93 0.82 0.83
CONFIRM 0.28 0.10 0.42 0.38
CHOOSE 0.70 0.64 0.74 0.76
REPHRASE 0.54 0.31 0.70 0.70

recall were obtained for CONFIRM, but the performance for
REPHRASE was only slightly worse than for the other classes.

7 Conclusion and Future Work
We have offered a corpus comprising requests for objects in
physical spaces, and the responses given by people for these
requests. We generated two datasets based on this corpus: a
manually-tagged dataset, and a dataset which includes fea-
tures that are automatically extracted from the output of an
SLU module. These datasets were used in a classification-
based approach for generating responses to spoken requests.

Our results show that, surprisingly, classifiers trained on
the second dataset outperformed those trained on the first.
As mentioned in Section 4, analysis of the data reveals that
different users often provide different responses for requests
that have identical manually-tagged features. For instance,
three participants who were shown the following ASR out-
puts responded with DO, CONFIRM and REPHRASE (the op-
tion chosen by our classifier): (1) “get a blade in the rights of
the disabled”, (2) “get I played in the rights of the disabled”,
(3) “get I played in the right of the devil”, and (4) “get a blade
in the right of the devil”. This discrepancy may be partially
due to a mixture of individual ability to compensate for mis-
heard utterances combined with risk-taking attitude — traits
that may be related to the English nativeness and Gender fea-
tures respectively, which improve performance. In light of
this, we posit that additional features that reflect personal dis-
position could yield further improvements. This notion is re-
inforced by the significantly better classification performance
for the responses obtained from a single user (albeit one fa-
miliar with the system) compared with the performance for
the responses of 40 participants.

A complementary explanation for the worse classification
performance obtained for the manually-tagged dataset is that
this dataset encodes intelligibility, ambiguity and accuracy
of descriptions in a general way, while the specific infor-
mation encoded in the automatically-extracted dataset (i.e.,
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lexical, colour, size and location match for each of the top-
10 ICGs) is important for classification. The only aspect
where the manual encoding is more informative than the au-
tomatic encoding pertains to phonetic similarity, which is one
of the most influential features for this dataset. In the future,
we will incorporate specific features about lexical, colour,
size and location match and out-of-vocabulary words into
the manually-generated tags, and phonetic-similarity into the
automatically-extracted features.

In terms of dialogue history, our results are inconclu-
sive. Our hypothesis that dialogue history affects users’
choices was confirmed (for three preceding requests) for
the manually-tagged requests, but not for the automatically-
tagged ones.

Finally, as noted in [Inouye and Biermann, 2005; Singh
et al., 2002], users may be satisfied with responses that dif-
fer from those provided by human consultants. To test this
idea, we propose to conduct a follow-up experiment, where
participants will be asked to rate the suitability of responses
generated by our best classifier.
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B. Thomson, and S.J. Young. Neural belief tracker: Data-driven
dialogue state tracking. arXiv preprint arXiv:1606.03777v1,
2016.

[Paek and Horvitz, 2000] T. Paek and E. Horvitz. Conversation as
action under uncertainty. In Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence, pages 455–464, Stan-
ford, California, 2000.

[Prakash et al., 2016] A. Prakash, C. Brockett, and P. Agrawal. Em-
ulating human conversations using convolutional neural network-
based IR. In Proceedings of the Neu-IR16 SIGIR Workshop on
Neural Information Retrieval, Pisa, Italy, 2016.

[Serban et al., 2016] I.V. Serban, T. Klinger, G. Tesauro, K. Tala-
madupula, B. Zhou, Y. Bengio, and A. Courville. Multiresolution
recurrent neural networks: An application to dialogue response
generation. arXiv preprint arXiv:1606.00776v1, 2016.

[Singh et al., 2002] S. Singh, D. Litman, M. Kearns, and
M. Walker. Optimizing dialogue management with reinforce-
ment learning: Experiments with the NJFun system. Artificial
Intelligence Research, 16:105–133, 2002.

[Sowa, 1984] J.F. Sowa. Conceptual Structures: Information Pro-
cessing in Mind and Machine. Addison-Wesley, Reading, MA,
1984.

26

https://github.com/fchollet/keras
https://github.com/fchollet/keras


[Sugiura et al., 2009] K. Sugiura, N. Iwahashi, H. Kashioka, and
S. Nakamura. Bayesian learning of confidence measure function
for generation of utterances and motions in object manipulation
dialogue task. In Proceedings of Interspeech 2009, pages 2483–
2486, Brighton, United Kingdom, 2009.

[Theano Development Team, 2016] Theano Development Team.
Theano: A Python framework for fast computation of mathemat-
ical expressions. arXiv e-prints, abs/1605.02688, 2016.

[Trafton et al., 2005] J.G. Trafton, N.L. Cassimatis, M.D. Buga-
jska, D.P. Brock, F.E. Mintz, and A.C. Schultz. Enabling effec-
tive human-robot interaction using perspective-taking in robots.
IEEE Transactions on Systems, Man and Cybernetics – Part A:
Systems and Humans, 35(4):460–470, 2005.

[Wen et al., 2015] T.H. Wen, M. Gašić, N. Mrkšic, P. Hao Su,
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