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Abstract. In recent years the structure of transportation networks has become 

more complex as a result of the fast development of the social and economical 

infrastructure. When dealing with time dependent multimodal context, transport 

planning represents a fundamental problem and more specifically for hazardous 

materials. Several approaches have been proposed that strive to reduce the fi-

nancial costs, travel time and vehicle operating costs. Our work tends to focus 

on potential improvements related to resolve the shortest path problem. This 

paper handles the design and implementation issues of our monolithic approach 

solving the time dependent multimodal transportation problem aimed at calcu-

lating the shortest path from a source node to a destination node. The algorithm 

on which relies our approach is target oriented and focuses basically on the re-

duction of the search space by considering a virtual path from the source to the 

destination as well as a user defined constraint defining a dynamically extenda-

ble corridor-like restricted search zone that can be applied on either the Eucli-

dian distance or the travel cost function . The specification details of the algo-

rithm have been already presented in our previous work and will be out the 

scope of this paper. Especially, this work highlights the aspects related to the 

different dimensions of the search space, namely the time, the mode and the 

constraint parameter. 
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1 Introduction 

Travelers are often faced to a common route planning problem known in the public 

transport system as the scheduling decision. It involves the use of different public 
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transport means. The complexity relates in general to the specific schedule of each 

transport service, the connectivity level of the nodes defining the public transport 

network and the density of this later. This problem is formulated as the determination 

of the shortest path between the source and the destination regarding the traveler pre-

ferences in terms of travel costs and the transport infrastructure requirements. 

A transport network is called multimodal when at least two different means of 

transport are required to perform a travel between a source and a destination. To find 

the optimal route manually is not an easy task regarding the constraints mentioned 

above that’s why there is a need to compute the shortest path in a dynamic environ-

ment. 

2 Related works 

Several optimizations approaches have been proposed to improve the calculation of 

the shortest path in a time dependent multimodal transport network varying from 

classical solution relying on speed up techniques Bast et al. [1], to solutions introduc-

ing the time dependency component Cooke and Halsey [2], Pyrga et al. [3] and Baka-

lov et al. [4]. More developed approaches were introduced to extend a single mode to 

multimodal transport network Schultes et al. [5] and Pajor et al. [6]. Other relevant 

solutions relies on the graph techniques like the concept of the hypergraphs Bielli et 

al. [7], the transfer graph Ayed et al. [8] and the hierarchical graph Zhang et al. [9]. 

In this paper, we will focus on the design and implementation aspects based specif-

ically on our previous work that expresses a constraint based shortest path algorithm 

in a time dependent multimodal context Idri et al. [10]. This algorithm assumes a 

straightforward virtual path from the source to the destination and drives the search 

process in such a way that only the nodes within the corridor defined by a pre-

calculated constraint D and the virtual path will be considered for the final solution. 

When the algorithm needs extra nodes to converge to a solution, the search space will 

be expanded progressively by increasing the constraint D until a solution is found if it 

exists. 

3 Definitions 

In the following, a transport network is considered as a direct graph and is denoted 

as G = (V, E, M, T), where V = {v1,…,vk} is a set of vertices, E = {e1,…,em} is a set 

of edges, M = {m1,…,mk} is a set of modes and T = {t1,…,tn} is a set of travels. Each 

travel tj is represented with a couple (tjd, tja) specifying the departure and the arrival 

time. In a time-dependent multimodal context, an edge el can be defined as a tuple (vi, 

vj, mk) expressing that there is a connection between node ei and node ej using mode 

mk. To highlight time-dependency, an edge is mapped to a timetable that is defined as 

a set of travels involving all the possibilities of traveling from node ei to node ej using 

mode mk. This defines a cost function that is applied to the edge el at instant t Cel(t). 

Note that multiple modes can be applied to the same edge. A path is then a set of con-

nected edges from the start node to the target node P = {es ,…, et }. 



Table 1. Sample multimodal transport network 

Mode 1 Mode 2 

Edge Timetable Cost function Edge Timetable Cost function 

a  e 1  3 2 e  d 1  4 7 

3  4 4 12  15 3 

e  c 3  5 1 a  f 4  6 4 

4  8 1 7  9 1 

c  b 6  8 5 f  c 6  7 1 

7  10 2 8  9 5 

g  a 2  3 7 g  a 3  9 1 

9  11 6 8  11 10 

b  g 9  10 1 b  g 10  11 5 

10  11 1 13  15 8 

 

A sample transport network is given in Table 1. This network contains two modes 

and a set of edges related to their timetables and cost function which is considered as 

the travel time in our case. But it can represent the financial cost as well, or any other 

preferred variable and the same rules remain valid. Whenever we need to demonstrate 

specific aspects, we will refer to this sample network. 

4 Constraint based shortest path algorithm 

This section describes formally our approach by specifying the algorithm and its 

input parameters.   

Figure 1 shows a recursive version of the constraint based shortest path algorithm 

(CBSPA) as introduced in our previous work  [10]. When the algorithm is executed, it 

starts with a restricted search space defined by the user-defined constraint d which 

defines the threshold distance of the search space: the distance of a given node to the 

virtual path defined between the source and the target node. The constraint d is in-

creased with a step parameter Δd whenever no nodes can be captured within a given 

iteration until the overall maximal distance Dmax is reached. The function OneS-

tepMMTDSP(v,t) generates the next iteration candidates based on the timetable of the 

vertex v assumed Vs and Vt represent the start and the target nodes. The algorithm 

works on a time-dependent multimodal network G(V,E,M,T) as defined above. 



   

 

Fig. 1. CBSPA Algorithm 

5 Search process 

In this section, we present the details of the search process based on the different 

search dimensions expressed in terms of abstraction layers. It also handles the build-

ing process of the complete solution as well as that of the shortest path. 

 

Algorithm CBSPA (u, d, path ,Q , t) 

 Output: shortest path 

  // (VsVt): virtual path which is calculated based 

on the coordinates (Euclidean case: straight line 

between Vs and Vt) or the minimal/mean value of the 

cost function (in our case, the travel time)  

  // Q: the set of the neighbors of u satisfying 

the constraint control, a parameter needed to for-

ward the intermediate results 

  // t: start time; u: start node 

  // 𝑑 =  𝑑𝑖𝑠𝑡 𝑣𝑖 ,  𝑉𝑠𝑉𝑡  
𝑛
1 𝑛  : represents the mean dis-

tance(cost) from all nodes to the virtual path 

  // Dmax: represent the maximum value of d, that’s 

the distance (cost) to the farthest node of the 

network  

1  If u = Vt then 

2   Return path 

3  Else 

4   Let Q = {v ∈ Neighbors(u)/ dist(v,(VsVt)) ≤ d} 
   In  

5   if Q = Ø then 

6    If d < Dmax then 

7     CBSPA (u, d+Δd ,path,Q,t) 

8    Else 

9     Let w = predecessor(u) in 

10    CBSPA(w,d+Δd, path\{u},Q,t) 

11  Else 

12   Let Qnew =  𝑂𝑛𝑒𝑆𝑡𝑒𝑝𝑀𝑀𝑇𝐷𝑆𝑃(𝑣, 𝑡)𝑣⋲𝑄  in 

13   Let Q = {v ∈ Qnew/dist(v,(VsVt))<d} in 

14   ∀ v ∈ Q, CBSPA(v,d,path ∪ {v},Q\{v},t) 
     



5.1 Global view 

The search process is target oriented and is driven by three dimensions: the mode, 

the time and the user-defined constraint d. Each time we explore the possibilities of a 

given edge eij connecting the nodes vi and vj, we deal in fact with a three dimensional 

search space as illustrated in Figure 2. 

 

Fig. 2. Search dimensions 

The function fs generates instances of the edge eij from which some will belong the 

partial solution. Note that at the end of the search process, as the constraint d is in-

creased gradually during the search process, the last reached value will be taken into 

account and will substitute the intermediate values seen that it is the upper bound 

value of the verified constraints. 

Remark . Some criteria might be applied regarding one or more dimensions like a 

mode is only available up to a departure time t. 

5.2 Time dependency layer 

In a time dependent context, each edge is assigned a timetable indicating the dif-

ferent departure and arrival times relatively to this edge. An edge scenario which is a 

departure-arrival case derived from the timetable, can be considered then as an in-

stance of the original edge. Therefore, we will obtain at the end a set of edge instances 

equivalent to the set of the possible edge scenarios. Following this description, if an 

edge may be viewed as an abstraction, then to process it in this search space, we have 

to handle each one of its instances but then for every single mode and constraint as 

shown in Figure 3-(a). 
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Fig. 3. Search layers: (a) time layer (b) multimodality layer (c) constraint layer 

5.3 Multimodality layer 

The same way, a mode is considered as an abstraction having a set of instances 

represented by the different modes connecting the start and the end nodes of the edge, 

see Figure 3-(b). 

5.4 Constraint layer 

As for the constraint d (Figure 3-(c)), its instances are generated following the 

needs of the search process and the size of instances set is unknown in advance. 

5.5 Global solution 

The current version of our algorithm returns as result the first found shortest path if 

it exists. One can easily alter this algorithm to include all possible shortest paths. The 

complete search space based on the above reasoning is nothing more than the combi-

natorial superposition of the three mentioned layers.  

5.6 Building process of the complete solution 

The search process targets the first available solution and that’s why we adopted in 

our algorithm the DFS technique (Depth First Search) which relies on the par-

tial/complete solution approach: the solution is build up progressively from its com-

ponents mentioned above. Each element is defined by a three dimension edge instance 

emi, ti , di as seen before. Figure 4 describes the building process as the algorithm ex-

plores the search space. 
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Fig. 4. Building process of the solution 

To implement this concept, we used a backtracking mechanism, but then we were 

faced to the optimization process while reducing the search space by the elimination 

of the visited edge instances in a search scenario. 

Again, to mark and unmark an edge instance is an action that has to be performed 

in the three dimensional space and this is a complex task: a visited edge means in our 

context a visited three dimensional instance issued from the combined layers de-

scribed earlier. It is clear that in neither way a whole physical edge can be marked as 

visited or unvisited like in the classical approach. This leads us to assign the manage-

ment of this optimization issue to a whole software component accordingly to the 

backtracking search process. 

5.7 Building the shortest path 

   The building process of the solution is based on the partial/complete solution 

technique that needs a container. In our context it is simply a temporary queue that is 

build up of solution component similarly to an edge instance satisfying the search 

criteria: the departure time, the available mode and the constraint d. Such an instance 

is pushed in the queue to be handled following the algorithm logic. The next iteration, 

the edge instance at the top of the BFS queue is substituted with its successors verify-

ing the search criteria. 

The search process stops when it reaches the end node or when all possibilities are 

tried out. If a solution is found, it is stored in the temporary queue with some residues 

edge instances that couldn’t be tried out because we are interested in the first found 

solution. To build up the shortest path we need to reconstruct the path backward start-

ing with the end edge instance. Then the next predecessor is the instance edge having 

as end node the start node of the end edge instance and an arrival time less or equal to 

the departure time of the end edge instance and so forth until the start edge instance is 

reached. Overall, it should be noted that during this process the global cost of the 

shortest path can be calculated by totaling its elementary edge costs. 

em1, t1 , d1 em2, t2 , d2 ….. emi, ti , di emi+1, ti+1 , di+1 

 

Step k 

em1, t1 , d1 ….. emi, ti , di emi+1, ti+1 , di+1 

 

Step k+1 

Add next solution element 

and update BFS queue 

Remove dead end solution element 

and update BFS queue 



6 Class diagram of the proposed solution 

In this section, a class diagram is given to show how the solution can be imple-

mented based on the concepts introduced earlier. 

 

 

Figure 5 exposes a class diagram model of our proposal based on the fundamental 

classes participating in the building process of the solution. 

 

Fig. 5. MMTDSP Class diagram 

This model supports either classical multimodal transport graphs based on the Euc-

lidian distance (MMG) or time-dependent multimodal graphs that manipulate time-

tables (TDMMG). In this context, we are using the second model. The time dimen-

sion is captured within the Travel class and a path is modeled as a list of PathElement 

which is composed of travel (dimension time), mode and Edge (or TDEdge). The 

virtual path class VPath serves as a reference container of virtual paths. 



7 Example 

This section explains the whole process from the specification step to the genera-

tion of the shortest path by mean of an example based on the same data given in Table 

1. 

From the point of view of the concepts handled in the previous sections, we will 

focus on the performance of our implementation techniques instead of presenting the 

profiling and the benchmarking related to the business aspects of the approach which 

were evaluated in our previous work for both the monolithic and the distributed ver-

sions. We adopted in this experimentation a cost function defined as travel time and 

we measured then the behavior of the constraint fluctuation in terms of the necessary 

iteration to converge to a solution. Also we give hereafter in Figure 6 a result model 

based on the example of Table 1 to show how we performed our tests. We calculate 

the proper travel cost and the waiting delay is ignored in these tests. The label “Final 

D” is the final value of the constraint reached to find the shortest path. In our imple-

mentation, the nodes are expressed in numbers respecting in this example the alpha-

betical order: node A has number 1 and so forth. 

 

Fig. 6. CBSPA result models 

Figure 7 shows how the search process behaves regarding the constraint parameter 

d and the network density expressed in the total nodes number. The final constraint 

value reached within a search process reflects the iteration number performed to 

achieve the next node. It is clear that the iteration number refers to the level of the 

search space reduction. That’s, as long as the maximal value of the constraint parame-

Path to find :[ [ Node id: 3 

]======>[ Node id: 7 ] ] 

[  

[ start node: [ Node id: 3 ]] 

[ end node: [ Node id: 2 ]] 

[ travel : 6 ===> 8 ===> 5] 

[ mode : 1] 

[ start node: [ Node id: 2 ]] 

[ end node: [ Node id: 7 ]] 

[ travel : 9 ===> 10 ===> 1] 

[ mode : 1] 

[ Total cost : 6] 

] 

time :0 s 

Final D: 5 

Path to find :[ [ Node id: 1 

]======>[ Node id: 2 ] ] 

[  

[ start node: [ Node id: 1 ]] 

[ end node: [ Node id: 5 ]] 

[ travel : 1 ===> 3 ===> 2] 

[ mode : 1] 

[ start node: [ Node id: 5 ]] 

[ end node: [ Node id: 3 ]] 

[ travel : 3 ===> 5 ===> 1] 

[ mode : 1] 

[ start node: [ Node id: 3 ]] 

[ end node: [ Node id: 2 ]] 

[ travel : 6 ===> 8 ===> 5] 

[ mode : 1] 

[ Total cost : 8] 

] 

time :0 s 

Final D: 10 



ter is not reached; this means the search space is restricted accordingly 

to the number of iterations. Figure 7 shows also that there is an impact of the network 

size on the iteration number at least with the samples used in these tests. 

  
 

Fig. 7. Impact of the network density on the constraint parameter iterations 

8 Large scale networks 

Our approach to deal with large scale networks is based on parallel distributed ar-

chitecture that relies on a Manager/Agent model. This model fits well with our needs 

as it is scalable and each agent runs in an independent way (parallel). Multiple agents 

cooperate to deliver partial solutions which are gathered by the manager that builds up 

the complete solution. Figure 8 exposes a distributed architecture relying on a 

CORBA framework as it offers object-oriented facilities and distributed event man-

agement that supports Asynchronous Method Invocation (AMI). A model based on 

Map/Reduce architecture may also give similar results. 

 

Fig. 8. CORBA Architecture 

AMI Router 
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AMI Router 
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Each agent is assigned the task to compute elementary paths starting from a given 

intermediate node Vi (initially the start node). These paths are represented by the set 

of the next nodes directly connected to Vi and satisfying the algorithm constraints. 

The manager is responsible for dispatching the tasks, collecting the elementary re-

sults, building the complete solution as well as covering the communication issues 

with the agents. 

9 Conclusion 

In this paper we treated some design and implementation aspects regarding our ap-

proach dealing with the time-dependant multimodal transport problem expressed as 

finding the shortest path algorithm. Especially, we focused on the design techniques 

to solve the problem in the context of the different search dimensions including the 

user defined constraint that influences the search process and the final results. To 

address the big data issue in this context, we adopted a parallel distributed architec-

ture that guarantees the scalability and improves the performance of the algorithm. 

We intend in our future work to investigate deeply the behavior of existing algo-

rithms when embedding this approach within these algorithms in a parallel distributed 

architecture. 
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