
The Core NSP Type System

Dirk Draheim
Institute of Computer Science

Freie Universität Berlin

draheim@acm.org

Gerald Weber
Department of Computer Science

University of Auckland

g.weber@cs.auckland.ac.nz

ABSTRACT
A good deal of software development and maintenance costs
for Web applications stem from the fact that the untyped,
flat message concept of the CGI interface has its footprint
in the commonly used Web programming models and Web
development technologies. Still it is necessary to reengi-
neer large legacy Web applications that have been developed
without the help of an improved Web technology. Current
web application frameworks offer support to deal with client
page type errors dynamically, however, no static type checks
are provided by these tools. Furthermore, they do not al-
low for detecting potential web page description errors at
compile time. In this paper, the static semantics of a new
typed server pages approach is defined as an algorithmic,
equi-recursive type system with respect to an amalgama-
tion with a minimal imperative programming language and
a collection of sufficiently complex programming language
types.

1. INTRODUCTION
In [6] a strongly typed server pages technology NSP (Next
Server Pages) has been proposed. The NSP type system has
also been exploited in the design and implementation of the
reverse engineering tool JSPick [5]. JSPick can recover the
design and type structure of a web presentation layer that
is based on server pages technology.

In this paper the type system of NSP is defined formally.
Server pages technologies are widely used in the implemen-
tation of ultra-thin client applications. Unfortunately the
low-level CGI programming model shines through in these
technologies, especially user data is gathered in a completely
untyped manner. The NSP contributions target stability
and reusability of server pages based systems. The findings
are programming language independent.

Important contributions of NSP has been the following:

Parameterized server pages. A server page possesses a spec-

ified signature that consists of formal parameters, which are
native typed with respect to a type system of a high-level
programming language. A server page signature is termed
web signature in the sequel.

Statically ensured client page type and description safety.

The type correct interplay of dynamically generated forms
and targeted server pages is checked at compile-time. It is
checked at compile-time if generated page descriptions are
always valid with respect to a defined client page description
language.

Support for complex types in writing forms. New structured
tags are offered for gathering arrays and objects of user de-
fined types.

Functional decomposition of server pages In NSP a server-
side call to a server page is designed as a parameter-passing
procedure call, too. This helps decoupling architectural is-
sues and implementing design patterns.

Higher order server pages. Server pages may be actual form
parameters. This enables improved web-based application
architecture and design.

Exchange of objects across the web user agent. Server side
programmed objects may be actual form parameters and
therefore passed to client pages and back, either as messages
or virtually as objects.

The NSP concepts are reusable, programming language in-
dependent results. They must be amalgamated with a con-
crete programming language. The NSP concepts are de-
signed in a way that concrete amalgamations are conserva-
tive with respect to the programming language. That is the
semantics of the programming language and especially its
type system remain unchanged in the resulting technology.
In [6] the NSP concepts are explained through a concrete
amalgamation with the programming language Java. As a
result of conservative amalgamation the NSP approach does
not restrict the potentials of the considered programming
language in any way, for example in the case of Java the
Servlet session facility for state handling is available as a
matter of course.

The NSP coding rules [6] give an informal explanation of
NSP type correctness. They are easy to learn and will help
in everyday programming tasks, but may give rise to am-

biguity. This paper formally defines the type system of
Core NSP, which is the amalgamation of NSP concepts with
a minimal imperative programming language. This enables
precise reasoning about the NSP concepts.

2. CORE NSP GRAMMAR
In this section the abstract syntax of Core NSP programs is
specified1. A Core NSP program is a whole closed system of
several server pages. A page is a parameterized core docu-
ment and may be a complete web server page or an include
server page:

system ::= page | system system

page ::= <nsp name="id"> websig-core </nsp>

websig-core ::= param websig-core

param ::= <param name="id" type="param-type"/>

websig-core ::= webcall | include

webcall ::= <html> head body </html>

head ::= <head><title> strings </title></head>

strings ::= ε | string strings

body ::= <body> dynamic </body>

include ::= <include> dynamic </include>

param-type ::= t ∈ T ∪ P

supported-type ::= t ∈ Bsupported

There are some basic syntactic categories. The category id
is a set of labels. The category string consists of character
strings. The category parameter-type consists of the pos-
sible formal parameter types, i.e. programming language
types plus page types. The category supported-type con-
tains each type for which a direct manipulation input capa-
bility exists. The respective Core NSP types are specified in
section 4.

Parameterized server pages are based on a dynamic markup
language, which combines static client page description parts
with active code parts. The static parts encompass lists, ta-
bles, server side calls, and forms with direct input capabili-
ties, namely check boxes, select lists, and hidden parameters
together with the object element for record construction.

dynamic ::= dynamic dynamic | ε | string | ul

| li | table | tr | td | call | form | object

| hidden | submit | input | checkbox | select

| option | expression | code

Core NSP comprises list and table structures for document
layout. All the XML elements of the dynamic markup lan-
guage are direct subcategories of the category dynamic, which
means that the grammar does not constrain arbitrary nest-
ing of these elements. Instead of that the manner of use of
a document fragment is maintained by the type system. We
delve on this in section 3.

ul ::= dynamic

li ::= dynamic

table ::= <table> dynamic </table>

1Nonterminals are underlined. Terminals are not empha-
sized. Every nonterminal corresponds to a syntactic cate-
gory. In the grammar a syntactic category is depicted in
bold face.

tr ::= <tr> dynamic </tr>

td ::= <td> dynamic </td>

The rest of the static language parts address server side
page calls, client side page calls and user interaction. A call
may contain actual parameters only. The call element may
contain no element, denoted by εact.

call ::= <call callee="id"> actualparams </call>

actualparams ::= εact | actualparam actualparams

actualparam ::=

<actualparam param="id"> expr </actualparam>

form ::= <form callee="id"> dynamic </form>

object ::= <object param="id"> dynamic </object>

hidden ::= <hidden param="id"> expr </hidden>

submit ::= <submit/>

input ::=

<input type="supported-type" param="id"/>

checkbox ::= <checkbox param="id"/>

select ::= <select param="id"> dynamic </select>

option ::= <option> <value> expr </value>

<label> expr </label> </option>

Core NSP comprises expression tags for direct writing to
the output and code tags in order to express the integration
of active code parts with layout parts. The possibility to
integrate layout code into active parts is needed. It is given
by reversing the code tags. This way all Core NSP programs
can be easily related to a convenient concrete syntax.

expression ::= <expr> expr </expr>

code ::= <code> com </code>

com ::= </code> dynamic <code>

The imperative sublanguage of Core NSP comprises state-
ments, command sequences, an if-then-else construct and a
while loop.

com ::= stat | com ; com

| if expr then com else com | while expr do com

The only statement is assignment. Expressions are just vari-
able values or deconstructions of complex variable values, i.e.
arrays or user defined typed objects.

stat ::= id := expr

expr ::= id | expr.id | expr[expr]

Core NSP is not a working programming language. It pos-
seses only a set of most interesting features to model all
the complexity of NSP technologies. Core NSP, in contrast,
aims to specify the typed interplay of server pages, the inter-
play of static and active server page parts and the non-trivial
interplay of the several complex types, i.e. user defined types
and arrays, which arise during dynamically generating user
interface descriptions.

3. CORE NSP TYPE SYSTEM STRENGTH
The grammar given in section 2 does not prevent arbitrary
nestings of the several Core NSP dynamic tag elements. In-
stead necessary constraints on nesting are guaranteed by the
type system. Therefore the type of a server page fragment
comprises information about the manner of use of itself as
part of an encompassing document.

As a result some context free properties are dealt with in
static semantics. There are pragmatic reasons for this. Con-
sider an obvious example. In HTML forms must not contain
other forms. Furthermore some elements like the ones for
input capabilities may only occur inside a form. If one wants
to take such constraints into account in a context free gram-
mar, one must create a nonterminal for document fragments
inside forms and duplicate and appropriately modify all the
relevant production rules found so far. If there exist sev-
eral such constraints the resulting grammar would quickly
become unmaintainable. For that reason the Standard Gen-
eralized Markup Language (SGML) supports the notions of
exclusion and inclusion exception. Indeed the SGML ex-
ception notation does not add to the expressive power of
SGML [26], because an SGML expression that includes ex-
ceptions can be translated into an extended context free
grammar [10]. The transformation algorithm given in [10]

produces 22|N| nonterminals in the worst case. This shows: if
one does not have the exception notation at hand then one
needs another way to manage complexity. The Core NSP
way is to integrate necessary information into types.

Furthermore in NSP the syntax of the static parts is or-
thogonal to the syntax of the active parts, nevertheless both
syntactic structures must regard each other. Again exclud-
ing wrong documents already by abstract syntax amounts
to duplicate production rules for the static parts that may
be contained in dynamic parts.

4. CORE NSP TYPES
In this section the types of Core NSP and the subtype rela-
tion between types are introduced simultanously. There are
types for modeling programming language types, and spe-
cial types for server pages and server page fragments. The
Core NSP types are given by a family of recursively defined
type sets. Every type represents an infinite labeled regular
tree.

The subtype relation formalizes the relationship of actual
client page parameters and formal server page parameters
by adopting the Barbara Liskov principle [11]. A type A is
subtype of another type B if every actual parameter of type
A may be used in server page contexts requiring elements of
type B. The subtype relation is defined as the greatest fix
point of a generating function. The generating function is
presented by a set of convenient judgment rules for deriving
judgements of the form ⊢ S < T .

4.1 Programming Language Types
In order to model the complexity of current high-level pro-
gramming language type systems, the Core NSP types com-
prise basic types Bprimitive and Bsupported, array types A,
record types R, and recursive types Y. Bprimitive models
types, for which no null object is provided automatically on

submit. Bsupported models types, for which a direct manipu-
lation input capability exists. The set of all basic types B is
made of the union of Bprimitive and Bsupported. Record types
and recursive types play the role of user defined form mes-
sage types. The recursive types allow for modeling cyclic
user defined data types. The types introduced so far and
the type variables V together form the set of programming
language types T.

T = B ∪ V ∪ A ∪ R ∪ Y

B = Bprimitive ∪ Bsupported

Bprimitive = {int, float, boolean}

Bsupported = {int, Integer, String}

V = {X, Y, Z, . . .} ∪ {Person, Customer, Article, . . .}

For every programming language type, there is an array
type. According to subtyping rule 1 every type is subtype of
its immediate array type. In commonly typed programming
languages it is not possible to use a value as an array of the
value’s type. But the Core NSP subtype relation formal-
izes the relationship between actual client page and formal
server page parameters. It is used in the NSP typing rules
very targeted to constrain data submission. A single value
may be used as an array if it is submitted to a server page.
Judgment rule 2 is the preserving subtyping2 rule for array
types.

A = { array of T | T ∈ T \ A}

⊢ T < array of T
(1)

⊢ S < T

⊢ array of S < array of T
(2)

The usage of some Z Notation [20] for record types will ease
writing type operator definitions and typing rules later on:
a record type is a finite partial function from a set of labels
to the set of programming language types.

R = Label ||−→ T

Tj /∈ Bprimitive j ∈ 1 . . . n

⊢ {li 7→ Ti}i∈1...j−1,j+1...n < {li 7→ Ti}i∈1...n
(3)

⊢ S1 < T1 . . . ⊢ Sn < Tn

⊢ {li 7→ Si}i∈1...n < {li 7→ Ti}i∈1...n
(4)

Rule 4 is just the necessary preserving subtyping rule for
records. The establishing subtyping rule 3 states that a
shorter record type is subtype of a longer record type, pro-
vided the types are equal with respect to labeled type vari-
ables. At a first site this contradicts the well-known rules for
subtyping records [3] or objects [1]. But there is no contra-
diction, because these rules describe hierarchies of feature
support and we just specify another phenomenon: rule 3

2We informally distinguish between establishing subtyping
rules and preserving subtyping rules. The establishing sub-
typing rules introduce initial NSP specific subtypings. The
preserving subtyping rules are just the common judgements
that deal with defining the effects of the various type con-
structors on the subtype relation.

models that an actual record parameter is automatically
filled with null objects for the fields of non-primitive types
that are not provided by the actual parameter, but expected
by the formal parameter.

The Core NSP type system encompasses recursive types for
modeling the complexity of cyclic user defined data types.
Type variables may be bound by the recursive type construc-
tor µ. Overall free type variables, that is type variables free
in an entire Core NSP system resp. complete Core NSP
program, represent opaque object reference types.

Y = { µ X . R | X ∈ V , R ∈ R }

⊢ S[µX.S/X] < T

⊢ µX.S < T

⊢ S < T [µX.T/X]

⊢ S < µX.T
(5)

We have chosen to handle recursive types in an equi-recursive
way [7]. Core NSP types represent finite trees or possibly in-
finite regular trees [4]. Type equivalence is not explicitly de-
fined, it is given implicitly by the subtype relation. The sub-
type relation is defined as the greatest fixpoint of a monotone
generating function on the universe of type trees [7]. The
Core NSP subtyping rules provide an intuitive description
of this generating function. Thereby the subtyping rules for
left folding and right folding (5) provide the desired recur-
sive subtyping. Beyond this only one further subtyping rule
is needed, namely the rule 6 for introducing reflexivity.

⊢ T < T
(6)

4.2 Server Page Types
In order to formalize the NSP coding rules the type system of
Core NSP comprises server page types P, web signatures W,
a single complete web page type 2∈C, document fragment
types D, layout types L, tag element types E, form occurence
types F and system types S. A server page type is a func-
tional type, that has a web signature as argument type. An
include server page has a dynamic document fragment type
as result type, and a web server page the unique complete
web page type.

P = { w → r | w ∈ W , r ∈ C ∪ D }

W = Label ||−→ (T ∪ P) C = {2}

A web signature is a record. This time a labeled component
of a record type is either a programming language type or
a server page type, that is the type system supports higher
order server pages. Noteworthy a clean separation between
the programming language types and the additional NSP
specific types is kept. Server page types may be formal
parameter types, but these formal parameters can be used
only by specific NSP tags. Server pages deliberately be-
come no first class citizens, because this way the Core NSP
models conservative amalgamation of NSP concepts with a
high-level programming language. The preserving subtyp-
ing rule 4 for records equally applies to web signatures. The
establishing subtyping rule 3 must be slightly modified re-
sulting in rule 7, because formal parameters of server page
type must always be provided, too.

Subtyping rule 8 is standard and states, that server page
types are contravariant in the argument type and covariant
in the result type.

Tj /∈ Bprimitive ∪ P j ∈ 1 . . . n

⊢ {li 7→ Ti}i∈1...j−1,j+1...n < {li 7→ Ti}i∈1...n
(7)

⊢ w′ < w ⊢ R < R′

⊢ w → R < w′ → R′
(8)

A part of a core document has a document fragment type.
Such a type consists of a layout type and a web signature.
The web signature is the type of the data, which is eventually
provided by the document fragment as part of an actual form
parameter. If a web signature plays part of a document
fragment type it is also called form type. The layout type
constrains the usability of the document fragment as part of
an encompassing document. It consists of an element type
and a form occurence type.

D = L × W L = E × F

⊢ S1 < T1 ⊢ S2 < T2

⊢ (S1, S2) < (T1, T2)
(9)

Subtyping rule 9 is standard for products and applies both
to layout and tag element types. An element type partly de-
scribes where a document fragment may be used. Document
fragment that are sure to produce no output have the neu-
tral document type ◦. Examples for such neutral document
parts are hidden parameters and pure Java code. Document
fragments that may produce visible data like string data or
controls have the output type •. Document fragments that
may produce list elements, table data, table rows or select
list options have type LI,TD, TR and OP. They may be
used in contexts where the respective element is demanded.
Neutral code can be used everywhere. This is expressed by
rule 10.

E = { ◦, •,TR,TD,LI,OP}

T ∈ E

⊢ ◦ < T
(10)

The form occurrence types further constrain the usability of
document fragments. Fragments that must be used inside
a form, because they generate client page parts containing
controls, have the inside form type ⇓. Fragments that must
be used outside a form, because they generate client page
fragments that already contain forms, have the outside form
type ⇑. Fragments that may be used inside or outside forms
have the neutral form type m. Rule 11 specifies, that such
fragments can play the role of both fragments of outside
form and fragments of inside form type.

F = { ⇓,⇑,m } S = { 3,
√ }

T ∈ F

⊢ m < T
(11)

An NSP system is a collection of NSP server pages. NSP
systems that are type correct receive the well type 3. The
complete type

√
is used for complete systems. A complete

system is a well typed system where all used server page
names are defined, i.e. are assigned to a server page of the
system, and no server page names are used as variables.

5. TYPE OPERATORS
In the NSP typing rules in section 7 a central type operation,
termed form type composition ⊙ in the sequel, is used that
describes the composition of form content fragments with
respect to the provided actual superparameter type. First
an auxiliary operator ∗ is defined. If applied to an array
the operater lets the type unchanged, otherwise it yields the
respective array type.

T∗ ≡DEF

array of T , T /∈ A

T , else

The form type composition ⊙ is the corner stone of the NSP
type system. Form content provides direct input capabili-
ties, data selection capabilities and hidden parameters. On
submit an actual superparameter is transmitted. The type
of this superparameter can be determined statically in NSP,
it is called the form type (section 4.2) of the form content.
Equally document fragments, which dynamically may gener-
ate form content, have a form type. Form type composition
is applied to form parameter types and describes the ef-
fect of sequencing document parts. Consequently form type
composition is used to specify typing with respect to pro-
gramming language sequencing, loops and document com-
position.

w1 ⊙ w2 ≡DEF

⊥ , if ∃(l1 7→T1)∈w1 • ∃(l2 7→T2)∈w2•

l1 = l2 ∧ P1∈P ∧ P2∈P

⊥ , if ∃(l1 7→T1)∈w1 • ∃(l2 7→T2)∈w2•

l1 = l2 ∧ T1⊔ T2 undefined

(dom w2)−�w1 ∪ (dom w1)−�w2

∪ l 7→ (T1 ⊔ T2)∗ |

(l 7→T1)∈w1 ∧ (l 7→T2)∈w2

, else

If a document fragment targets a formal parameter of a cer-
tain type and another document fragment does not target
this formal parameter, then and only then the document
resulting from sequencing the document parts targets the
given formal parameter with unchanged type. That is, with
respect to non-overlapping parts of form types, form type
composition is just union. With antidomain restriction no-
tation [20] this is specified succinctly in the ⊙ operator de-
finition.

Two document fragments that target the same formal pa-
rameters may be sequenced, if the targeted formal parame-
ter types are compatible for each formal parameter. NSP
types are compatible if they have a supertype in common.

The NSP subtype relation formalizes when an actual para-
meter may be submitted to a server page: if its type is a
subtype of the targeted formal parameter. So if two doc-
uments have targeted parameters with compatible types in
common only, the joined document may target every server
page that fulfills the following: formal parameters that are
targeted by both document parts have an array type, be-
cause of sequencing a single data transmission cannot be
ensured in neither case, thereby the array items’ type must
be a common supertype of the targeting actual parameters.
This is formalized in the ⊙ operator definition: for every
shared formal parameter a formal array parameter of the
least common supertype belongs to the result form type.
The least common supertype of two types is given as least
upper bound of the two types, which is unique up to the
equality induced by recursive subtyping itself.

The error cases in the ⊙ operator definition are equally im-
portant. The ⊙ operator is a partial function. If two docu-
ment fragments target a same formal parameter with non-
compatible types, they simply cannot be sequenced. The ⊙
operator is undefined for the respective form types. More
interestingly, two document fragments that should be com-
posed must not target a formal server page parameter. This
would result in an actual server page parameter array which
would contradict the overall principle of conservative lan-
guage amalgamation.

Form type composition can be characterized algebraically.
The web signatures form a monoid (W , ⊙ , ∅) with the ⊙
operator as monoid operation and the empty web signature
as neutral element. The operation (λv.v⊙w)w is idempotent
for every arbitrary fixed web signature w, which explains
why the typing rule 23 for loop-structures is adequate.

6. ENVIRONMENTS AND JUDGEMENTS
In the NSP type system two environments are used. The
first environment Γ is the usual type environment. The
second environment ∆ is used for binding names to server
pages, i.e. as a definition environment. It follows from their
declaration that environments are web signatures. All defi-
nitions coined for web signatures immediately apply to the
environments. This is exploited for example in the system
parts typing rule 45.

Γ : Label ||−→ (T ∪ P) = W

∆ : Label ||−→ P ⊂ W

The Core NSP identifiers are used for basic programming
language expressions, namely variables and constants, and
for page identifiers, namely formal page parameters and
server pages names belonging to the complete system. In
some contexts, e.g. in hidden parameters or in select menu
option values, both page identifiers and arbitrary program-
ming language expressions are allowed. Therefore initially
page identifiers are treated syntactically as programming
language expressions. However a clean cut between page
identifiers and the programming language is maintained, be-
cause the modeling of conservative amalgamation is an ob-
jective. The cut is provided by the premises of typing rules
concerning such elements where only a certain kind of en-

tity is allowed; e.g. in the statement typing rule 15 it is
prevented that page identifiers may become program parts.
The Core NSP type system relies on several typing judge-
ments:

Γ ⊢ e : T ∪ P e ∈ expr
Γ ⊢ n : D n ∈ com ∪ dynamic
Γ ⊢ c : P c ∈ websig-core
Γ ⊢ a : W a ∈ actualparams
Γ, ∆ ⊢ s : S s ∈ system

Eventually the judgment that a system has complete type
is targeted. In order to achieve this, different kinds of types
must be derived for entities of different syntactic categories.
Expressions have programming language types or page types.
Both programming language code and user interface descrip-
tions have document fragment types, because they can be
interlaced arbitrarily and therefore belong conceptually to
the same kind of document. Parameterized core documents
have page types. The actual parameters of a call element
together provide an actual superparameter, the type of this
is a web signature and is termed a call type. All the kinds of
judgements so far work with respect to a given type environ-
ment. If documents are considered as parts of a system they
must mutually respect defined server page names. Therefore
subsystem judgements have to be given additionally with re-
spect to the defintion environment.

7. TYPING RULES
The notion of Core NSP type correctness is specified as an
algorithmic type system. Compared to a declarative version
extra premises are needed in some of the typing rules, in
some premises slightly bit more complex type patterns have
to be used. However in the Core NSP type system these ex-
tra complexity fosters understandability. The typing rule 12
allows for extraction of an identifier typing assumption from
the typing environment. Rules 13 and 14 give the types of
selected record fields respectively indexed array elements.

(v 7→ T) ∈ Γ

Γ ⊢ v : T
(12)

Γ ⊢ e : {li 7→ Ti}i∈1...n j ∈ 1 . . . n

Γ ⊢ e.lj : Tj

(13)

Γ ⊢ e : array of T Γ ⊢ i : int

Γ ⊢ e[i] : T
(14)

Typing rule 15 introduces programming language statements,
namely assignments. Only programming language variables
and expression may be used, i.e. expressions must not con-
tain page identifiers. The resulting statement is sure not
to produce any output. It is possible to write an assign-
ment inside forms and outside forms. If it is used inside a
form it will not contribute to the submitted superparameter.
Therefore a statement has a document fragment type which
is composed out of the neutral document type, the neutral
form type and the empty web signature. The empty string,
which is explicitly allowed as content in NSP, obtains the
same type by rule 16.

Γ ⊢ x : T Γ ⊢ e : T T ∈ T

Γ ⊢ x := e : ((◦,m), ∅) (15)

Γ ⊢ ε : ((◦,m), ∅) (16)

Actually in Core NSP programming language and user in-
terface description language are interlaced tightly by the
abstract syntax. The code tags are just a means to relate
the syntax to common concrete server pages syntax. The
code tags are used to switch explicitly between program-
ming language and user interface description and back. For
the latter the tags may be read in reverse order. However
this switching does not affect the document fragment type
and therefore the rules 17 and 18 do not, too.

Γ ⊢ c : D

Γ ⊢ < code > c < /code > : D
(17)

Γ ⊢ d : D

Γ ⊢ < /code > d < code > : D
(18)

Rule 19 introduces character strings as well typed user in-
terface descriptions. A string’s type consists of the output
type, the neutral form type and the empty web signature.
Another way to produce output is by means of expression
elements, which support all basic types and get by rule 20
the same type as character strings.

d ∈ string

Γ ⊢ d : ((•,m), ∅) (19)

Γ ⊢ e : T T ∈ B

Γ ⊢ < expr > e < /expr > : ((•,m), ∅) (20)

Composing user descriptions parts and sequencing program-
ming language parts must follow essentially the same typing
rule. In both rule 21 and rule 22 premises ensure that the
document fragment types of both document parts are com-
patible. If the parts have a common layout supertype, they
may be used together in server pages contexts of that type.
If in addition to that the composition of the parts’ form
types is defined, the composition becomes the resulting form
type. Form composition has been explained in section 5.

d1, d2 ∈ dynamic
Γ ⊢ d1 : (L1, w1) Γ ⊢ d2 : (L2, w2)

L1 ⊔ L2 ↓ w1⊙w2 ↓
Γ ⊢ d1 d2 : (L1 ⊔ L2, w1 ⊙ w2)

(21)

Γ ⊢ c1 : (L1, w1) Γ ⊢ c2 : (L2, w2)
L1⊔ L2 ↓ w1⊙ w2 ↓

Γ ⊢ c1; c2 : (L1⊔ L2, w1⊙ w2)
(22)

The loop is a means of dynamically sequencing. From the
type system’s point of view it suffices to regard it as a se-
quence of twice the loop body as expressed by typing rule 23.
For an if-then-else-structure the types of both branches must
be compatible in order to yield a well-typed structure. Ei-
ther one or the other branch is executed, so the least upper
bound of the layout types and least upper bound of the form
types establish the adequate new document fragment type.

Γ ⊢ e : boolean Γ ⊢ c : (L, w)

Γ ⊢ while e do c : (L, w ⊙ w)
(23)

Γ ⊢ e : boolean Γ ⊢ c1 : D1 Γ ⊢ c2 : D2 D1⊔ D2 ↓
Γ ⊢ if e then c1else c2 : D1⊔ D2

(24)

Next the typing rules for controls are considered. The sub-
mit button is a visible control and must not occur outside
a form, in Core NSP it is an empty element. It obtains the
output type, the inside form type, and the empty web signa-
ture as document fragment type. Similarly an input control
obtains the output type and the inside form type. But an
input control introduces a form type. The type of the in-
put control is syntactically fixed to be a widget supported
type. The param-attribute of the control is mapped to the
control’s type. This pair becomes the form type in the con-
trol’s document fragment type. Check boxes are similar. In
Core NSP check boxes are only used to gather boolean data.

Γ ⊢ < submit/ > : ((•,⇓), ∅) (25)

T ∈ Bsupported

Γ⊢ < input type = ”T” param = ”l”/ > :
((•,⇓), {(l 7→ T)})

(26)

Γ ⊢ < checkbox param = ”l”/ > :
((•,m), {(l 7→ boolean)})

(27)

Hidden parameters are not visible. They get the neutral
form type as part of their fragment type. The value of the
hidden parameter may be a programming language expres-
sion of arbitrary type or an identifier of page type.

Γ ⊢ e : T

Γ ⊢ < hidden param = ”l” > e < /hidden > :
((◦,⇓), {(l 7→ T)})

(28)

The select element may only contain code that generates
option elements. Therefore an option element obtains the
option type OP by rule 30 and the select element typing
rule 29 requires this option type from its content. An op-
tion element has not an own param-element. The interesting
type information concerning the option value is wrapped as
an array type that is assigned to an arbitrary label. The
type information is used by rule 29 to construct the correct
form type.

Γ ⊢ d : (OP,m), {(l 7→ array of T)}

Γ ⊢ < select param = ”l” > d
< /select > : ((•,⇓), {(l 7→ array of T)})

(29)

Γ ⊢ v : T Γ ⊢ e : S S ∈ B l ∈ Label

Γ ⊢
< option >

< value > v < /value >
< label > e < /label >

< /option > : ((OP,m), {(l 7→ array of T)})

(30)

The object element is a record construction facility. The
enclosed document fragment’s layout type lasts after appli-
cation of typing rule 31, whereas the fragment’s form type is
assigned to the object element’s param-attribute. This way
the superparameter provided by the enclosed document be-
comes a named object attribute.

Γ ⊢ d : (L, w)

Γ ⊢ < object param = ”l” > d < /object > :
(L, {(l 7→ w)})

(31)

The form typing rule 32 requires that a form may target
only a server page that yields a complete web page if it is
called. Furthermore the form type of the form content must
be a subtype of the targeted web signature, because the
Core NSP subtype relations specifies when a form parame-
ter may be submitted to a server page of given signature.
Furthermore the form content’s must be allowed to occur
inside a form. Then the rule 32 specifies that the form is a
vizible element that must not contain inside another form.

Γ ⊢ l : w → 2 Γ ⊢ d : ((e,⇓), v) ⊢ v < w

Γ ⊢ < form callee = ”l” > d < /form > : ((e,⇑), ∅)
(32)

Now the layout structuring elements, i.e. lists and tables,
are investigated. The corresponding typing rules 33 to 37 do
not affect the form types and form occurrence types of con-
tained elements. Only document parts that have no specific
layout type, i.e. are either neutral or merely vizible, are al-
lowed to become list items by rule 33. Only documents with
list layout type may become part of a list. A well-typed list
is a vizible element. The rules 35 to 37 work analogously for
tables.

Γ ⊢ d : ((• ∨ ◦, F), w)

Γ ⊢ < li > d < /li > : ((LI, F), w)
(33)

Γ ⊢ d : ((LI ∨ ◦, F), w)

Γ ⊢ < ul > d < /ul > : ((•, F), w)
(34)

Γ ⊢ d : ((• ∨ ◦, F), w)

Γ ⊢ < td > d < /td > : ((TD, F), w)
(35)

Γ ⊢ d : ((TD ∨ ◦, F), w)

Γ ⊢ < tr > d < /tr > : ((TR, F), w)
(36)

Γ ⊢ d : ((TR ∨ ◦, F), w)

Γ ⊢ < table > d < /table > : ((•, F), w)
(37)

As the last core document element the server side call is
treated. A call element may only contain actual parameter
elements. This is ensured syntactically. The special sign
εact acts as an empty parameter list if necessary. It has the
empty web signature as call type. Typing rule 40 makes
it possible that several actual parameter elements uniquely
provide the parameters for a server side call. Rule 38 speci-
fies, that a server call can target an include server page only.
The call element inherits the targeted include server page’s
document fragment type, because this page will replace the
call element if it is called.

Γ ⊢ l : w→D Γ ⊢ as : v ⊢ v < w

Γ ⊢ < call callee = ”l” > as < /call > : D
(38)

Γ ⊢ εact : ∅ (39)

Γ ⊢ as : w Γ ⊢ e : T l /∈ (dom w)

Γ ⊢ < actualparam param = ”l” > e
< /actualparam > as : w ∪ {(l 7→ T)}

(40)

With the typing rule 41 and 44 arbitrary document fragment
may become an include server page, thereby the document
fragment’s type becomes the server page’s result type. A
document fragment may become a complete web page by
typing rules 42 and 44 if it has no specific layout type, i.e.
is neutral or merely visible, and furthermore is not intended
to be used inside forms. The resulting server page obtains
the complete type as result type. Both include server page
cores and web server page cores start with no formal para-
meters initially. With rule 43 parameters can be added to
server page cores. The rule’s premises ensure that a new for-
mal parameter must have another name than all the other
parameters and that the formal parameter is used in the
core document type-correctly. A binding of a type to a new
formal parameter’s name is erased from the type environ-
ment.

Γ ⊢ d : D d ∈ dynamic

Γ ⊢ < include > d < /include > : ∅ → D
(41)

Γ ⊢ d : ((• ∨ ◦,m ∨ ⇑), ∅) t∈strings d∈dynamic

Γ ⊢

< html >
< head >

< title > t < /title >
< /head >
< body > d < /body >

< /html > : ∅ → 2

(42)

Γ ⊢ l : T Γ ⊢ c : w → D l /∈ (dom w)

Γ\(l 7→ T) ⊢
< param name = ”l” type = ”T”/ >
c : (w ∪ {(l 7→ T)}) → D

(43)

Γ ⊢ l : P Γ ⊢ c : P c ∈ websig-core

Γ\(l 7→ P), {(l 7→ P)} ⊢
< nsp name = ”l” > c < /nsp > : 3

(44)

A server page core can become a well-typed server page by
rule 44. The new server page name and the type bound to
it are taken from the type environment and become the de-
finition environment. An NSP system is a collection of NSP
server pages. A single well-typed server page is already a
system. Rule 45 specifies system compatibility. Rule 46
specifies system completeness. Two systems are compatible
if they have no overlapping server page definitions. Further-
more the server pages that are defined in one system and
used in the other must be able to process the data they
receive from the other system, therefore the types of the
server pages defined in the one system must be subtypes of
the ones bound to their names in the other’s system type
environment.

s1, s2 ∈ system (dom ∆1) ∩ (dom ∆2) = ∅
((dom Γ2) � ∆1) < ((dom ∆1) � Γ2)
((dom Γ1) � ∆2) < ((dom ∆2) � Γ1)

Γ1, ∆1 ⊢ s1 : 3 Γ2, ∆2 ⊢ s2 : 3

((dom ∆2)−�Γ1) ∪ ((dom ∆1)−�Γ2) , ∆1 ∪ ∆2 ⊢
s1s2 : 3

(45)

(dom ∆) ∩ bound(s) = ∅
Γ, ∆ ⊢ s : 3 Γ ∈ R

Γ, ∆ ⊢ s :
√ (46)

Typing rule 46 specifies when a well-typed system is com-
plete. First, all of the used server pages must be defined,
that is the type environment is a pure record type. Second
server page definitions may not occur as bound variables
somewhere in the system.

Theorem 7.1. Core NSP type checking is decidable.

Proof(7.1): Core NSP is explicitly typed. The Core NSP
type system is algorithmic. Recursive subtyping is decid-
able. The least upper bound can be considered as a union
operation during type checking - as a result a form con-
tent is considered to have a finite collection of types, which
are checked each against a targeted server page if rule 32 is
applied.2

8. RELATED WORK
WASH/HTML is a embedded domain specific language for
dynamic XML coding in the functional programming lan-
guage Haskell, which is given by combinator libraries [23][24].
In [24] four levels of XML validity are defined. Well-formedness
is the property of correct block structure, i.e. correct match-
ing of opening and closing tags. Weak validity and ele-
mentary validity are both certain limited conformances to
a given document type definition (DTD). Full validity is
full conformance to a given DTD. The WASH/HTML ap-
proach can guarantee full validity of generated XML. It
only guarantees weak validity with respect to the HTML
SGML DTD under an immediate understanding of the de-
fined XML validity levels for SGML documents. In the
XHTML DTD [21] exceptions only occur as comments - in
XML DTDs no exception mechanism is available - however
these comments become normative status in the correspond-
ing XHMTL standard [22]; they are called element prohi-
bitions. In [18][2] it is shown that the normative element
prohibitions of the XHMTL standard [22] can be statically
checked by employing flow analysis [15][17][16].

There are a couple of other projects for dynamic XML gen-
eration, that garuantee some level of user interface descrip-
tion language safety, e.g. [8][9][12]. We delve on some fur-
ther representative examples. In [25] two approaches are
investigated. The first provides a library for XML process-
ing arbitrary documents, thereby ensuring well-formedness.
The second is a type-based translation framework for XML
documents with respect to a given DTD, which garuantees
full XML validity. Haskell Server Pages [14] garuantee well-
formedness of XML documents. The small functional pro-
gramming language XMλ [19] is based on XML documents
as basic datatypes and is designed to ensure full XML va-
lidity [13].

9. CONCLUSION
The best practice of the proven 3GL programming languages
– to define a programming system as the interplay of stati-
cally typed components – has not yet been adopted to the

development of Web interfaces. With respect to Software
design, this problem is tackled by the introduction of pro-
prietary concepts in several commercial Web technologies,
like the concept of object wrappers for the form data in the
SAP technology BSP (Business Server Pages). Dealing with
type errors is supported by web applications frameworks like
Struts or IBM Websphere, too, however, only dynamic con-
cepts are offered.

There are several initiatives that propose a statically typed
approach to web application development. With NSP, web
development with server pages is addressed. A precise de-
scription of the type system of NSP is desired, because it
(i) can be used as the specification for implementations of
NSP concepts, (ii) allows for precise reasoning about web
interaction and therefore (iii) deepens the understanding of
the interplay between web pages, forms and Web scripts.
Therefore, in this paper the core type system of NSP has
been given as a Per Martin-Löf style type system.

10. REFERENCES
[1] M. Abadi and L. Cardelli. A Theory of Primitive Objects -

Untyped and First-Order Systems. Information and
Computation, 125(2):78–102, 1996. Earlier version
appeared in TACS ’94 proceedings, LNCS 789.

[2] C. Brabrand, A. Møller, and M. I. Schwartzbach. Static
validation of dynamically generated HTML. In Proceedings
of Workshop on Program Analysis for Software Tools and
Engineering. ACM, 2001.

[3] L. Cardelli. Type systems. In Handbook of Computer
Science and Engineering. CRC Press, 1997.

[4] B. Courcelle. Fundamental Properties of Infinite Trees.
Theoretical Computer Science, 25:95–169, 1983.

[5] D. Draheim, E. Fehr, and G. Weber. JSPick - A Server
Pages Design Recovery Tool. In Proceedings of CSMR 2003
- 7th European Conference on Software Maintenance and
Reengineering. IEEE Press, 2003.

[6] D. Draheim and G. Weber. Strongly Typed Server Pages.
In Proceedings of The Fifth Workshop on Next Generation
Information Technologies and Systems, LNCS, pages
29–44. Springer, June 2002.

[7] V. Gapayev, M. Y. Levin, and B. C. Pierce. Recursive
Subtyping Revealed. In International Conference on
Functional Programming, 2000. To appear in Journal of
Functional Programming.

[8] A. Gill. HTML combinators, version 2.0. 2002.
http://www.cse.ogi.edu/ andy/html/intro.htm.

[9] M. Hanus. Server side Web scripting in Curry. In
Workshop on (Constraint) Logic Programming and
Software Engineering (LPSE2000), July 2000.

[10] P. Kilpeläinen and D. Wood. SGML and Exceptions.
Technical Report HKUST-CS96-03, Department of
Computer Science, University of Helsinki, 1996.

[11] B. Liskov. Data Abstraction and Hierarchy. SIGPLAN
Notices, 23(5), May 1988.

[12] E. Meijer. Server-side Scripting in Haskell. Journal of
Functional Programming, 2000.

[13] E. Meijer and M. Shields. XMλ - A Functional Language
for Constructing and Manipulating XML Documents. 2000.
http://www.cse.ogi.edu/∼mbs, Draft.

[14] E. Meijer and D. van Velzen. Haskell Server Pages -
Functional Programming and the Battle for the Middle
Tier. Electronic Notes in Theoretical Computer Science,
41(1), 2001.

[15] F. Nielson, H. Nielson, and C. Hankin. Principles of
Program Analysis. Springer, 1999.

[16] J. Palsberg and P. O’Keefe. A type system equivalent to
flow analysis. In Proceedings of the ACM SIGPLAN ’95
Conference on Principles of Programming Languages,
pages 367–378, 1995.

[17] J. Palsberg and M. I. Schwartzbach. Safety analysis versus
type inference. Information and Computation,
118(1):128–141, 1995.

[18] A. Sandholm and M. Schwartzbach. A type system for
dynamic web documents. In T. Reps, editor, Proc. 27th
Annual ACM Symposium on Principles of Programming
Languages, pages 290–301. ACM Press, 2000.

[19] M. Shields and E. Meijer. Type-indexed rows. In
Proceedings of the 28th Annual ACM SIGPLANSIGACT
Symposium on Principles of Programming Languages
(POPL’01), pages 261–275. ACM Press, 2001.

[20] J. Spivey. The Z Notation. Prentice Hall, 1992.
[21] The W3C HTML working group. Extensible HTML

version 1.0 Strict DTD. W3C, 2000.
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd.

[22] The W3C HTML working group. XHTML 1.0 The
Extensible HyperText Markup Language. W3C, 2000.
http://www.w3.org/TR/xhtml1/.

[23] P. Thiemann. Modeling HTML in Haskell. In Practical
Applications of Declarative Programming (PADL ’00),
LNCS, January 2000.

[24] P. Thiemann. A typed representation for HTML and XML
documents in Haskell. Journal of Functional Programming,
12(4):435–468, July 2002.

[25] M. Wallace and C. Runciman. Haskell and XML: Generic
combinators or typebased translation? ACM SIGPLAN
Notices, 34(9):148–159, September 1999. Proceedings of
ICFP’99.

[26] D. Wood. Standard generalized markup language:
Mathematical and philosophical issues. In J. van Leeuwen,
editor, Computer Science Today. Recent Trends and
Developments, LNCS, pages 344–365. Springer, 1995.

