Style-based Architectural Analysis for Migrating a
Web-based Regional Trade Information System

Simon Giesecke
Software Engineering Group
Carl von Ossietzky University
26111 Oldenburg, Germany

giesecke@informatik.uni-oldenburg.de

ABSTRACT

In this paper, we present the MIDARCH method for selecting a
middleware platform in Enterprise Application Integration (EAI)
and migration projects. Its specific contribution is the use of archi-
tectural styles (MINT Styles) as a vehicle for binding architectural
knowledge. In addition, an ongoing case study is presented which
applies the MIDARCH method to a web-based regional trade infor-
mation system. The project involves the integration of three subsys-
tems, which have been developed rather independently in the past,
two of which are already web-based. The major motivation for mi-
grating the system is to improve evolvability of the system and to
make it more apt for the supply to a larger number of customers.

Keywords
ArchiMate, Architectural Description Languages, Architectural
Style, Cocoon, Enterprise Application Integration, Java, Web Mi-
gration, XADL

1. INTRODUCTION

Software reengineering is concerned with the transformation of
legacy software systems. Many reengineering projects aim to mod-
ernise systems that are based on outdated technologies, e.g. main-
frame systems, that are no longer properly maintained. The trans-
formation target of many business information systems are web-
based platforms. Today, we are in the situation that reengineer-
ing projects are also concerned with systems that are already web-
based, but need to be transformed for a particular reason. Typical
reasons are:

e The employed implementation technologies are already out-
dated themselves.

e Requirements have changed and the chosen architecture is
no longer adequate.

e Multiple systems are to be integrated.

WMR 06 Bari, Italy

Johannes Bornhold
Software Engineering Group
Carl von Ossietzky University
26111 Oldenburg, Germany

johannes.bornhold@informatik.uni-
oldenburg.de

e The implementation technologies have been used in an inad-
equate way.

These reasons are not exclusive to web-based software systems.
In particular the latter reason appears like a generic maintainabil-
ity problem. However, in the case of implementation technologies
for web-based systems, such as Sun’s Java Server Pages [24] or
Apache Cocoon [1], many systems have been developed with only
a premature understanding of the architectural style endorsed by
these technologies.

The migration of such systems is often not possible without mod-
ifying the internal structure of the participating systems, because
they do not expose adequate interfaces. Migration projects there-
fore offer an opportunity to restructure the participating systems,
and enabling the integration using advanced middleware tech-
niques. Such approaches are also termed Enterprise Application
Integration (EAI), which is a special case of migration that involves
multiple, heterogeneous systems.

In this paper, we propose the MIDARCH method for supporting
the migration business information systems based on architectural
descriptions and architectural styles that are induced by the mid-
dleware used (Middleware INTegration Styles, MINT Styles). The
main feature of the method is the use of MINT Styles as a vehicle
for enabling reuse of architectural design knowledge across multi-
ple migration projects. In addition, we describe a case study of an
application of the method which involves a migration project con-
cerning a web-based regional trade information system, and present
first results of the case study.

1.1 MIDARCH Research Project

The major goal of the MIDARCH research project [10] is the de-
velopment and validation of a software engineering method for
migrating business information systems based on architectural de-
scriptions that exploit the benefits of architectural styles which
are endorsed by the middleware used. The method is called MI-
DARCH (MIDdleware style based ARCHitectural integration). Ar-
chitectural styles capture architectural knowledge and provide the
basis to reason about families of related software architectures. The
method supports the transfer of knowledge from one integration
project to another by creating and analysing architectural descrip-
tions that are explicitly based on some architectural style. Through
this, experiences from one integration project do not remain con-
strained to the specifics of the concrete architecture of the subject
system, but can be related to the MINT Style. Thus, integration



knowledge can be reused in other projects that consider the use of
the same style.

1.2 Overview

In the remainder of the paper, we provide the details of fundamental
topics that are required for the rest of the paper in Section 2. The
setting of the case study is described in Section 4. The research
approach taken is outlined in Section 5, which includes the outline
of the general procedure of the MIDARCH method. Preliminary
results of the ongoing case study are presented in Section 6. The
paper ends with a conclusion (Section 7).

2. FOUNDATIONS

In this section, we discuss some foundations we deem necessary
to understand the remainder of the paper. First, we introduce the
general research areas of Enterprise Application Integration (Sec-
tion 2.1) and Service-oriented Architectures (Section 2.2), which
form the conceptual basis of our approach. Afterwards, we discuss
the role of architectural styles for our research (Section 2.3) and
present the Architectural Description Languages we use for mod-
elling our case study (Section 2.4).

2.1 Enterprise Application Integration
Enterprise Application Integration (EAI) is a special form of soft-
ware reengineering, concerning the integration of legacy business
information systems. The term Enterprise Application Integration
is essentially used in two different meanings: In one view, EAI is
used in a restricted sense to denote a specific approach to the in-
tegration of information systems which employs off-the-shelf EAI
components and is non-invasive with respect to the subsystems to
be integrated [18]. EAI in this first view always leads to loosely
integrated systems. In this view, EAI is distinct to (invasive) mi-
gration.

The other view on EAI refers to any approach to the integration of
information systems at the application level as EAI [11], which is
the view we take as well. In this view, EAl is a special case of mi-
gration that involves multiple, heterogeneous systems. However,
in our work, we focus the aspect of the middleware that is used
for integration. We have a wide view of middleware, i.e. we re-
gard any software layer that it used for enabling communication of
(often, but not necessarily, remote) subsystems or components as a
middleware platform. In the case of web-based applications, e.g.
Apache Cocoon or Servlet containers are considered middleware
platforms.

In [11], three architectural levels are distinguished: Business archi-
tecture, application architecture and technology architecture. Inte-
gration at each of these levels is described as inter-organisational
processes, Enterprise Application Integration and middleware inte-
gration, respectively. We are concerned with the latter two levels:
The selection of a middleware platform provides the infrastructure
for the implementation of the application architecture, and thus for
achieving Enterprise Application Integration.

2.2 Service-oriented Architectures

Service-oriented Architectures (SOAs) [12, 20] can both be re-
garded on a concrete, technical and on an abstract, conceptual level.
The first possibility involves the realization of components using
specific technologies creating a service infrastructure as web ser-
vices and the use of technologies such as WSDL, SOAP, UDDI,
etc. [29]. The conceptual view generalises this approach and does

not necessarily require a specific service-oriented realization, but
uses services at the elements of architectural description. One op-
tion for implementing a conceptual service-oriented architecture is,
of course, using explicitly service-oriented technologies, but other
technologies may be used as well. In the latter case, a well-founded
mapping of service-oriented concepts to the concepts endorsed by
the implementation technology should be provided (cf., e.g., [17]).

2.3 Architectural Styles

Architectural styles [23] and architectural patterns [3] are similar
concepts, which we deem equivalent for the purposes of this paper
and only use the former term, in order to better distinguish them
from lower-level design patterns [7].

Classical general-purpose architectural styles are the pipe-and-
filter, blackboard, layered, and event-based styles [23], and variants
thereof. These styles are often used in an informal manner to estab-
lish a common vocabulary for architectural design elements. In the
context of ADLs, formal specifications of architectural styles are
used, which define families of architectures or impose constraints
on concrete architectural configurations. A special case of archi-
tectural styles are those induced or endorsed by an implementation
platform, especially by middleware platforms which make use of
high-level abstractions [6]. We refer to such architectural styles as
MINT Styles.

2.4 Architectural Description Languages

Over the last 15 years, many Architectural Description Languages
(ADLs) have been developed with different goals and approaches
[22]. There is no broad agreement on a definition of an ADL, for
example there have been some debates on whether UML qualifies
as an ADL — be it UML as such or a specific usage of UML [8,
21]. We do not intend to provide a rigorous definition here either.
However, we briefly describe two ADLs, which play some role in
our research project: xADL 2.0 and ArchiMate.

2.4.1 xADL

xADL 2.0 [5] (we will use the brief form xADL in the following)
is an ADL which evolved from a traditional line of ADLs at the
University of California at Irvine. xADL is a collection of exten-
sions to the xArch [4] core ADL, which is meant to be a “stan-
dard, extensible XML-based representation for software architec-
tures” [4]. XADL was designed in a modular and extensible fash-
ion which is based on the modularity and extensibility of XML
and XML-Schema [28]. Tool support is available on different lev-
els. On the syntactical level, XADL benefits from its XML basis.
Generic tools can be used out of the box, e.g. XML validators can
validate XADL and also custom extensions. Another example are
syntax-based editors, which can understand the schemas and adopt
to custom extensions automatically. Specific XADL tools [26] are a
data binding library and a generator which automatically generates
a custom data binding library from a XML-Schema. Additionally
some higher-level tools are available.

2.4.2 ArchiMate

ArchiMate [19] is not a traditional ADL, insofar as it does not focus
exclusively on software architectures, but is used to describe enter-
prise architectures, which place — in the definition of ArchiMate’s
developers — software architecture in the context of the organisa-
tion(s) using the software. An enterprise architecture is “a coherent
whole of principles, methods, and models that are used in the de-
sign and realisation of an enterprise’s organisational structure, busi-



ness processes, information systems, and infrastructure” [19, p. 3].
The language closely resembles the UML, and can be mapped onto
the UML, but it is not merely an extension of the UML meta-
model. ArchiMate supports a layered modelling approach in es-
sentially three layers: business, application and technology archi-
tecture (similar to [11]). It is based on the concepts of SOA, so
services play a central role on each of the layers.

3. MIDARCH-METHOD

In this section we describe the generic MIDARCH method. The
activities proposed by the generic MIDARCH method are shown in
Figure 1. The activities shown are quite coarse-grained and must
be described on a more fine-grained level to be effectively imple-
mentable. Furthermore, no backsteps that might be necessary are
indicated in the figure, but the application of the method will be
very iterative in practise.

The steps can be structured into four activities, which consist of
several subactivities:

Activity 1: Scoping and Goal Definition The first activity con-
sists of two subactivities: Scope Definition and Require-
ments Elicitation.

Define Scope Scope Definition involves creating a list of
(sub)systems to be integrated.

Determine Current and Future Requirements
Requirements Elicitation involves the determina-
tion of the future requirements on the system, which
motivate the need for the integration, in detail, as well
as the current requirements on the system. Current
requirements may already be documented, but it must
be ensured that they are documented in a form that can
be compared to the future requirements.

As part of the requirements delta, high-level goals of
the integration are identified, which are important for
the second activity.

The requirements elicitation process is influenced by
the scope determined in the previous step, e.g. because
current requirements can only be determined on the ba-
sis of a specific system scope.

Afterwards, it must be determined if the requirements match
the functionality of the systems to be integrated. In this
case, scoping must be reconsidered. There may either be
functionality missing, in which case it must be determined
whether another (internally or externally available) system
can be considered in the integration. If some functionality
is not available in an existing system, it must be planned to
be newly implemented. There may also be (sub)systems that
are not needed to fulfil the future requirements.

Activity 2: Preparation The second activity consists of two sub-
activities preparatory with respect to Activity 3.

Develop Project-Specific Quality Model A project-speci-
fic quality model is developed, which is focused on the
migration goals identified in the previous activity.

Model Current Architecture The current architecture is
modelled using a suitable modelling language/method.
One goal of the overall research project is to evaluate

the suitability of different architectural description lan-
guages for this purpose. While probably no single mod-
elling language is suited for modelling any system, we
contribute to the body of knowledge on the use of mod-
elling languages, and thus provide support for the se-
lection of modelling languages in the future. Suitability
here involves the ability to express distinctive features
of the current and future architectures (which should be
modelled using the same notation and method to ensure
commensurability) and to analyse the system or archi-
tecture characteristics that occur in the quality model.

Activitiy 3: Architecture Exploration The third activity models
and explores different architectural alternatives. It may be
considered the core of the method and consists of four sub-
activities.

Choose/Model MINT Style In each iteration of this activ-
ity, one or more MINT Style(s) may be considered. At
least in the first iteration, multiple styles should be con-
sidered to enable a meaningful assessment in the fourth
subactivity. In the method description, we assume that
only one style is considered for better readability.

The style description may be either taken from a tax-
onomy of styles or may be specifically created. One
goal of the research project is to provide a taxonomy of
MINT Styles and an initial body of knowledge which
supports the selection of styles with suitable quality
characteristics.

A further goal of the research project is to evaluate the
usefulness of different levels of rigour of style descrip-
tions, most importantly informal style descriptions that
may include example architectures as opposed to for-
mal style descriptions in an architectural description
language as a constraint for concrete architectures in
the same language.

Model Candidate Architecture The candidate architecture
is modelled on the basis of the chosen style and the
current architecture to reflect future requirements.

Evaluate Candidate Architecture The Candidate Archi-
tecture is evaluated against the quality model using a
scenario-based architectural evaluation method such as
ATAM [16].

Assess Evaluation Results The evaluation results of the
candidate architectures developed so far and the cur-
rent architectures are assessed. If the results are found
to sufficiently support the integration goals, the activity
ends, otherwise further styles and architectures must be
considered.

Activity 4: Architecture Selection and Adoption The last activ-
ity is not considered within the method in detail, but is in-
cluded here to make the method complete within the context
of its intended application.

Choose Target Architecture Based on the results of the
previous activity, a target architecture is chosen, which
is based on the best architecture(s) that were identified
in the last step of Activity 3. If necessary, details which
have been left out in the previous activity are amended.

Adopt Target Architecture The systems are integrated and
possibly modified according to the chosen target archi-
tecture.



Activity 1:
Definition

Define Scope

Activity 2:
Preparation

Develop

Project-

Specific
Quality Model

Determine
Current and
Future

Model Current
Architecture

Activity 3: Activity 4:
Exploration mplementatior
Choose/ Choose
Model MINT Target
Styles Architecture
Model
) Adopt Target
Carjdldate Architecture
Architectures

Requirements

Evaluate
Candidate
Architectures

Assess
Evaluation
Results

Figure 1: Activities of the MIDARCH method

Business Development ParticipatingCompany InterestedCompany
Department Agent Employee Employee
Desktop Management Query
Application Interface Interface

Figure 2: User roles and their relationships to the system’s in-
terfaces

4. CASE STUDY

In this section we give a brief overview of the regional trade infor-
mation system which is the subject of the case study (Section 4.1)
and the migration goals which shall be achieved (Section 4.2).

4.1 System Purpose

The trade information system is provided as a supporting tool for
sustainable regional development. The general idea behind this sys-
tem is to make information on the economic potential of a region
available to companies to increase regional business collaboration.

As indicated in the introduction, the subject system of the case
study is separated into three subsystems which have been devel-
oped rather independently in the past. Each of these subsystems
currently provides a distinct user interface. Two of these interfaces
are already web-based. There are three roles of users accessing
these interfaces. The relationships of user roles and interfaces are
shown shown in Figure 2. The business development departments

of the counties and municipalities in the covered region collectively
form the current customer, to which our cooperation partner pro-
vides the service.

First, an access-controlled web interface is used to collect and man-
age the data about the participating regional companies. It has two
main groups of users. The first group represents the agents at the
business development departments. These users can administrate
the data of their district’s companies and manage the users of the
second group, which represent the participating companies them-
selves.

Second, a web-based query interface is publicly available. It
presents information about companies which are located in the cov-
ered region. The ability to query this information by different filter
criteria facilitates finding potential collaboration partners among
regional companies, and thereby supports building regional busi-
ness networks. The data about each company consists of statistical
and address data as well as information on offered technologies,
special skills and cooperation interests.

As a kind of glue to the data-management interface the presentation
of each company’s data contains a hyperlink to edit it. Through this
link, new company users can use a registration mechanism to re-
quest a login to the system and the necessary rights to edit their data
records. In addition the business development department agents
have the ability to export their data in a spreadsheet file format.

The third user interface is provided by a desktop application which
goes back to a point in time before the development of the other
subsystems. Only part of the functionality offered via this inter-
face is still in use. It allows to manage private additions to the
data records, which are used only internally by the business devel-
opment departments. Currently, the new management subsystem
provides an export facility which allows the users of the desktop
application to manually download the up to date data in the desk-



top application’s proprietary file format and afterwards import it to
update their locally stored data.

The desktop application was originally also used to manage the
data, which is now managed through the web-based user interface.
Originally, the data was sent by the business development depart-
ments to the service provider by email and the service provider
manually combined the data fragments to feed the query subsys-
tem.

4.2 Migration Goals

There are three main migration goals: First, the system shall be
made ready for use by multiple customers. Second, it shall be made
more evolvable. Third, the availability of the system should be
improved.

The first goal must be seen in the context that this system was orig-
inally developed to be used in a single instance for a single region
and therefore no effort was made to support multi-customer capa-
bilities and customer-specific customisation needs. In the future,
this system shall be offered to multiple customers (i.e., other re-
gions). This means on the one hand that a greater effort must be
put on support the adaptability to special customer needs with a
manageable amount of human resources. On the other hand, spe-
cial care must be taken in the product development process to ei-
ther support hosting of multiple instances and a (semi)automated
update-mechanism to new releases of the product, or to add multi-
customer capabilities to a single instance of the system.

The second major goal is to increase the system’s evolvability [9,
ch. 2.2.5.2]. The system itself and its parts evolved over time.
Adoption to new requirements has become a challenging task
which requires involved developers to be familiar with many parts
of the current system. Evolvability is enabled at the architectural
level, which must be adequately reflected in the system’s imple-
mentation.

The third goal is to increase the availability of the system, e.g. by
introducing redundant components. Availability becomes more im-
portant when more customers are using the system.

S. APPROACH

In this section we describe the MIDARCH method’s adaptation to
the case study. This section is like section 3 structured according to
the activities of the MIDARCH method.

Activity 1: Scoping and Goal Definition

Define Scope In the case study we selected the three inter-
faces Querylnterface, Managementlnterface and Desk-
topApplication which are described in Section 4 and the
subsystems they depend on.

Determine Current and Future Requirements In the case
study, the requirements are elaborated on the basis of
different internal documents. These documents contain
information on the long-term vision for the software
system, non-functional requirements and use cases.

Activity 2: Preparation

Develop Project-Specific Quality Model We use an ap-
proach based on GQM (goal/question/metric) [27] to

create the quality model. Software quality has differ-
ent aspects: the internal (cf. [25]) and external (cf. [2])
quality of the software architecture description itself,
and the internal and external quality of the software sys-
tem it represents.

Model Current Architecture We plan to use ArchiMate
and xADL (see Section 2.4) to model both the current
and the candidate architecture in the case study. Archi-
Mate provides us with the ability to see the architecture
in an organisational context and to connect the applica-
tion domain with both the business and the technology
domain. With XADL, on the other hand, we are able
to model the architecture on the application level in de-
tail and to integrate the XADL architecture description
with the implementation artefacts. The connection be-
tween both languages is done on the application level,
enhanced with relations to the other levels (within the
ArchiMate description) and related to the development
artifacts (within the xADL description).

Activitiy 3: Architecture Exploration

Choose/Model MINT Style In the case study, we are ex-
ploring the suitability of xADL to describe architectural
styles.

Model Candidate Architecture This architecture shall be
modelled in XADL and ArchiMate analogously to the
model of the current architecture from Activity 2.

The last two steps of this activity Evaluate Candidate Ar-
chitecture and Assess Evaluation Results do not need any
special adaption to the case study.

Activity 4: Architecture Selection and Adoption

Choose Target Architecture In the case study, one detail
which must be added to the chosen target architecture
is the information which implementation artifacts cor-
respond to the architecture components, interfaces and
connectors. This shall be achieved through the Java ex-
tensions which are part of xADL.

Adopt Target Architecture A prototype of the chosen ar-
chitecture is created which shall show how the xADL
model of this architecture can be connected to the im-
plementation artifacts and thus be integrated with the
future steps in the development process. This is also
the last step taken in the case study. The adoption of
the examined systems to the target architecture is a task
out of the scope of the case study.

6. PRELIMINARY RESULTS

In this section we describe the current state of the case study. Ac-
tivity 1 has been virtually completed and we are currently in Ac-
tivity 2. The current architecture has been partially modelled, i.e.
coarse-grained components, their dependencies and the informa-
tion flow have been identified. These are described in Section 6.1.
An example of an ArchiMate model of a part of the system is pre-
sented in Section 6.2. In this model, the coarse-grained components
are refined and linked with information on the business and technol-
ogy levels. Finally, we describe the current middleware technolo-
gies and their usage in Section 6.3, and identify potential problems
with respect to the migration goals.



<<external>>
Web £]

Client
<<flow>> <<flow>>
Management <<flow>> Desktop 2] Query g
Interface Application Interface
<<flow>> Bl <<flow>>
Export
<<flow>> <<flow>>
Query £ ]
Database Dy

Figure 3: Component dependencies and information flow

6.1 Dependencies and Information Flow
An overview of the component structure and the information flow
of the subject system is shown in Figure 3. The two viewpoints are
combined in this diagram, because at this abstraction level there are
only few elements and the diagram can still be understood.

The different parts of the system have been developed at differ-
ent times. The oldest part is the desktop application which was
originally used to manage the data. The agents at the business de-
velopment departments used this system to collect the data of their
region. Periodically they sent their data to the Application Service
Provider (ASP) of the query interface where this data was merged
manually and fed into the query database. Now, the direction of
the information flow is inverted. The desktop application is up-
dated from the database of the management interface. It contains
an export facility which creates a snapshot of the data in the desk-
top application’s proprietary file format. The users can download
the file and use it to update their local application. This is shown
in Figure 3 by the flow lines from Database to Managementln-
terface and from there continued to DesktopApplication. Because
the Export is needed to create the file, there is a dependency from
DesktopApplication to Export.

The data management interface is the youngest part of the system.
It has a database of its own. Note the dependency from Manage-
mentlnterface to Database. The users (agents at the business devel-
opment departments and employees of the participating companies)
can update the data through its web-based interface. The collected
data is then transferred periodically into the QueryDatabase. This
results in a delay before updates of the data are reflected in query re-
sults. The information flow is shown by the bidirectional flow lines
between WebClient, Managementinterface and Managementlinter-
face, Database. The propagation to the Querylnterface, and thus to
the query results, can be read by the directed flows from Database
to Export continued to QueryDatabase and finally reaching Query-
Interface. There is no information flow in the reverse direction.

The last part is the query interface. For historical reasons it has
its own database and a slightly different database schema than the
management interface. As shown in Figure 3 it is only direct de-

pendent on the QueryDatabase. But as mentioned above, its data is
updated by the information provided by the Export, so to be useful
over a longer time, it needs the Export, this can be concluded from
the flow line between Export and QueryDatabase.

6.2 ArchiMate Model

Figure 4 shows an example excerpt from an ArchiMate model of
the current architecture, which shows the parts necessary for the
registration of new users. Its layout is based on an example given
in [14]. When a new company’s employee requests a login to man-
age the data about his company, he is in the role Company and uses
the RegistrationService to request his new login. This service is
realised on the business layer by the business process Registration
which depends on the PostOlfficeService. This service is realised
on the application layer by the PostOffice and responsible for in-
forming the right person in the BusinessDevelopmentDepartment
role (BDD) to Check and possibly Accept this request. In the bot-
tom part, this figure shows that the PostOffice component needs an
available EmailService which, in the current case, is realised by
a MailServer on the technology layer which is installed on some
device that in not further specified. This example demonstrates
ArchiMate’s ability to show the relations between the different ar-
chitectures on the business, application and technology layers.

6.3 Middleware Technologies and Their Us-
age

We focus on the subsystems of the regional trade information sys-

tem which already provide a web-based interface, i.e. the query

and management interfaces. Both subsystems are based on Apache

Cocoon [1] but use the technology in different ways.

Apache Cocoon is a “a web development framework built around
the concepts of separation of concerns and component-based web
development” [1]. Cocoon is designed as a Java Servlet. Requests
are processed in a pipeline in which several components (filters)
are hooked together, i.e. it uses a variant of the pipe-and-filter ar-
chitectural style. Within the pipeline, filters communicate via a
stream of SAX events. The entry to the pipelined processing is a
generator followed by an arbitrary number of transformers and fi-
nalised by a serialiser which typically serialises the SAX events
into an HTML output. Apart from this basic concept, Cocoon has
the facility to read from and to serialise to many data formats like
XML, graphic formats, etc. Many extension filters are provided
off-the-shelf, which can be integrated into the pipeline and further
support the development of web applications. With regard to the re-
gional trade information system the most important extensions are
a framework for form handling and extended control flow support
(CForms).

The query interface of the regional trade information system does
not use special extensions of Cocoon. Most of its functionality is
embedded in XSP documents (a Cocoon-specific language similar
to Java Server Pages) which allow Java code to be embedded into
XML documents. From these XSP documents, direct queries to
the underlying database are made and the results are written into
an XML representation of the query result which is then further
processed by the following filters. These filters transform the query
result into an appropriate HTML representation.

From a very abstract point of view, the management interface works
in a similar fashion. The first filters perform some operations on the
data and the following filters transform the result into a HTML rep-



Actors and Roles ‘

Participating BusinessDevelopment
CompanyEmployee DepartmentAgent

= e

External Busines/sfs/ervices ‘
Registration Userlnformation
Service Service
1 I
! |

=

Registration

External Application| Services ‘

PostOffice UserAdministration CompanyAdministration
Service Service Service

g] Companygj
PostOffice Userlknfo ‘ 7777777 3 Administration
Service !
i VAN
h

User

External Infrastiucture Services ‘

Email
Service

T
I
I
I
i
Infrastructure 1
|

i a
o 1

Mailserver

ApplicationO Servlet
Server

o WAR

Database

Figure 4: Partial ArchiMate Model of the Case Study System

resentation. Differences appear with a closer look to the first part
of the pipeline. The management interface makes use of Cocoon’s
form framework, which allows for better handling of form data and
constraints, and of Cocoon’s control flow framework, which allows
to send forms with a blocking function call and to formulate con-
trol flows in an explicit, closed form. This framework is realised
through a JavaScript API which provides access to underlying Java
objects. The second difference in comparison to the query interface
is the way, data is accessed. In the management interface, all data
queries and manipulations are performed with Java objects which
map to the underlying data storage (object-relational mapping us-
ing Hibernate [13]).

Potential Problem Areas

There are several problems with the current architecture with re-
spect to the migration goals. First, especially the query interface
is closely coupled to its underlying database, which is one of the
reasons why it still uses a database of its own with an old schema.
Because of this, it is technically hard to adopt new requirements
that have an impact the database schema, and the effort is difficult
to estimate.

Second, the mechanism which transforms the intermediate results
to a HTML representation has been identified as another difficulty
in practice. An own proprietary language has been developed for
the intermediate results which has grown over time and is nearly
unmaintainable now.

As a third problem area there are many tight couplings within the
Java implementation of the data model, so that requirement changes
often result in changes at many different places of the implemen-
tation which makes it harder to parallelise development tasks. For
this reason, it is not easy to isolate the data tier from the presen-
tation tier in the query and management subsystems, which is why
we did not split up the coarse-grained Querylnterface and Manage-
mentInterface components is Figure 3.

Part of the implementation of the query interface has been reused in
the management interface, but has been modified afterwards. Mod-
ifications must be ported manually in every case.

7. CONCLUSION

In this paper, we presented the MIDARCH method for integrating
heterogeneous business information systems on the architectural
level. Many integration projects are performed ad-hoc, i.e. without
using a systematic method specifically supporting the integration
process. Reuse of experience from other projects thus remains en-
tirely implicit. A few other methods for integration projects have
been proposed: Kazakov [15] proposed a semi-automated method
for software integration, which requires specifications of the in-
volved software components in the SHIQ description logic.

We do not specifically aim to automate integration efforts, but pri-
marily intend to make reuse of integration knowledge more effec-
tive. Tool support for this process is a subsidiary part of the overall
research project.

Methods for the development and composition of web services, e.g.
Semantic Web approaches, are not in the focus of our work, since
we are dealing with pre-web-service legacy applications.

We presented the current state of a case study which evaluates the
MIDARCH method. One of the next steps is the modelling of the



current and the endorsed usages of Cocoon explicitly as a MINT
Style. This and future case studies will provide feedback that will
be used to improve the method, and contribute to the knowledge
base on the quality characteristics of architectural styles that is nec-
essary for effective application of the method.

Additional future work includes the creation of a taxonomy of mid-
dleware platforms based on the MINT Styles they endorse. This
taxnomy would allow the stepwise refinement of integration tech-
niques within the exploration process (Activity 3 of the MIDARCH
method).

8. ACKNOWLEDGEMENTS

Thanks to Bernd Kramer and Kai Bruns at Regio GmbH, Olden-
burg. This work has been partially supported by the German Re-
search Foundation (DFG), grant GRK 1076/1.

9. REFERENCES

[1] Apache Foundation. Apache Cocoon.
http://cocoon.apache.org/, 2006.

[2] F. P. M. Biemans, M. M. Lankhorst, W. B. Teeuw, and R. G.
van de Wetering. Dealing with the complexity of business
systems architecting. Systems Engineering, 4(2):118-133,
2001.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, 1996.

[4] E. Dashofy, D. Garlan, A. van der Hoek, and B. Schmerl.
xArch, 2006. http:
//www.isr.uci.edu/architecture/xarch/.

[5] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A
comprehensive approach for the development of modular
software architecture description languages. ACM Trans.
Softw. Eng. Methodol., 14(2):199-245, 2005.

[6] E. Di Nitto and D. Rosenblum. Exploiting ADLSs to specify
architectural styles induced by middleware infrastructures. In
Proceedings of the 21st international conference on Software
engineering, pages 13-22. IEEE Computer Society Press,
1999.

[7]1 E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[8] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling
the needs of architectural description with object-modeling
notations. Sci. Comput. Program., 44(1):23-49, 2002.

[9] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of
Software Engineering. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2002.

[10] S. Giesecke. A method for integrating enterprise information
systems based on middleware styles. In International
Conference on Enterprise Information Systems (ICEIS’06)
Doctoral Symposium, 2006. Accepted for publication.

[11] W. Hasselbring. Information system integration. Commun.
ACM, 43(6):32-38, 2000.

[12] M. N. Huhns and M. P. Singh. Service-oriented computing:
Key concepts and principles. IEEE Internet Computing,
9(1):75-81, 2005.

[13] JBoss Labs. Hibernate, 2006.
http://www.hibernate.org/.

[14] H. Jonkers, M. M. Lankhorst, R. van Buuren,
S. Hoppenbrouwers, M. M. Bonsangue, and L. W. N. van der
Torre. Concepts for modeling enterprise architectures. Int. J.
Cooperative Inf. Syst., 13(3):257-287, 2004.

[15] M. Kazakov and H. Abdulrab. Semi-automated software
integration: An approach based on logical inference. In 3rd
International Conference on Enterprise Information Systems
(ICEIS), pages 527-530, 2004.

[16] R. Kazman, M. Klein, and P. Clements. Atam: A method for
architecture evaluation. Technical Report
CMU/SEI-2000-TR-004, Software Engineering Institute,
Carnegie Mellon University, 2000.

[17] 1. Kriiger and R. Mathew. Systematic development and
exploration of service-oriented software architectures. In
WICSA ’04: Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture (WICSA’04), pages
177-187. IEEE Computer Society Press, 2004.

[18] R. Land and I. Crnkovic. Software systems integration and
architectural analysis — a case study. In Proceedings of the
International Conference on Software Maintenance, pages
338—. IEEE Computer Society, 2003.

[19] M. Lankhorst et al. Enterprise architecture at work.
Springer, 2005.

[20] C. M. MacKenzie et al. Reference model for service oriented
architecture 1.0. Public Review Draft wd-soa-rm-cdl,
OASIS SOA Reference Model TC, Feb. 2006.
http://www.oasis-open.org/committees/
download.php/16628/wd-soa-rm-prl.p%df.

[21] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E.
Robbins. Modeling software architectures in the unified
modeling language. ACM Trans. Softw. Eng. Methodol.,
11(1):2-57, 2002.

[22] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Trans. Softw. Eng., 26(1):70-93, 2000.

[23] M. Shaw and D. Garlan. Software architecture: perspectives
on an emerging discipline. Prentice-Hall, Inc., 1996.

[24] Sun Microsystems. Java Server Pages Technology.
http://java.sun.com/products/jsp/, 2006.

[25] W. B. Teeuw and H. van den Berg. On the quality of
conceptual models. In S. W. Liddle, editor, Proc. ER’97
Workshop on Behavioral Models and Design
Transformations, 1997.

[26] University of California at Irvine. XADL 2.0 — A highly
extensible architecture description language for software and
systems. http://www.isr.uci.edu/projects/
xarchuci/index.html.



[27] R. van Solingen and E. Berghout. The goal/question/metric
method : a practical guide for quality improvement of
software development. McGraw-Hill, 1999.

[28] World Wide Web Consortium. Extensible markup language
(XML), 2006. http://www.w3.0org/XML/.

[29] O.Zimmermann, M. R. Tomlinson, and S. Peuser.
Perspectives on Web Services. Springer, 2005.



