
A framework for Web Applications Testing
through Object-Oriented approach and XUnit tools

Alessandro Marchetto and Andrea Trentini
Dipartimento di Informatica e Comunicazione,

Università degli Studi di Milano
Via Comelico 39, 20135 Milano, Italy

marchetto, trentini@dico.unimi.it

ABSTRACT
Nowadays Web applications quality, reliability and dependability
are important factors because software glitches could block en-
tire businesses and cause major embarrassment. Web applications
are complex and heterogeneous software, based on several com-
ponents, often written in many different languages and potentially
distributed over the Web. Thus, testing Web applications may be a
complex task. This paper presents the OO-based framework used
in our WAAT project (Web Applications Analysis and Testing) to
test traditional Web applications composed of Web documents, ob-
jects and server components (e.g., applications written in HTML,
Javascript, PHP4/5, etc.).

Our Web testing model named OTMW (OO Testing Model of
WAAT project) is inspired by the conventionalcategory partition
testing method applied to Web software through the use of a re-
verse engineered OO model used to describe the architecture of
existing applications. OTMW tests Web software using three dif-
ferent layers of test: unit, integration and system testing. This pa-
per describes the set of techniques used by OTMW in every testing
layer. To achieve this result this paper describes the OO model used
(based on UML class and state diagrams) and it defines the reverse
engineering techniques used to analyze software and to describe
them through the model. Moreover, the paper proposes a method to
identify software units and sequences of units to test applications
components and their interactions. Furthermore, it describes an
approach to define test cases using the reverse engineered models
with a technique based on the subdivision of input data in classes
of equivalence. Finally, this paper presents tools used to perform
some empirical experiments to evaluate the power, effectiveness
and flexibility of the OTMW approach.

Keywords
Web Applications,Object-Oriented, Testing

1. INTRODUCTION
Web applications have become the core business for many com-

panies in several market areas. The development, distribution and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web Maintenance and Reengineering 2006 (WMR 06).
March 24, 2006, Bari, Italy.

control of on-line services (on-line retail, on-line trading and so
on) can be the mean to and/or the object of business. The growth of
the World Wide Web led to the expansion of application areas for
new on-line services. For example, many businesses have at least
some Web presences with the relative e-commerce (buy/sell, CRM,
products information) functionalities. Web applications quality, re-
liability and functionality are important factors because any soft-
ware glitch could block an entire business and determine strong
embarrassments. These factors have increased the need for method-
ologies, tools and models to improve Web applications (e.g., ap-
plications design and development methodologies, documenting
tools, and development process and testing tools). Several pro-
posed methodologies to model and test Web applications are based
on existing Object-Oriented ones. For example, [8] and [7] model
Web applications from development point of view using OO; [13]
and [2] use OO model to represent reverse engineered information
extracted from existing Web applications; [14], [9], and [11] in-
troduce OO testing models; HTTPunit1, PHPUnit2 and Javascript
Assertion Unit3 are XUnit tools for functional Web testing inspired
to OO ones; and so on. Thus, the scientific community studies new
ad-hoc techniques or how to adapt existing OO techniques to use
them on Web software to improve the quality and dependability of
these software system.

Software testing is one the most important and effective approach
to verify software systems. Often, Web testing is performed travers-
ing the Web site to simulate navigation and user gestures in order to
verify possible executions (e.g., see [4], [14], [10]). Instead, the use
of OO approaches to design and describe (or implement) Web ap-
plications let us reuse the knowledge developed in the field of OO
testing in order to improve the quality of the implemented Web soft-
ware. Object-Oriented software systems are composed of a set of
objects collaborating through messages, and every object has fields
and methods thus, it has a set of states defining its evolution. More-
over, an OO language (e.g., Java) may support information hiding,
abstraction, inheritance, polymorphic calls, dynamic binding, ex-
ception calls, and concurrence, and so on. These specific assets
of OO software let the testers use some ad-hoc techniques to test
OO software. Often, in OO software the testing unit is the class
(or a group of strictly related classes) and the main testing levels
are: basic unit testing(the intra-method testing focused on meth-
ods behaviours);unit testing(the intra-class testing focused on the
test of isolated modules composing a software system);integration
testing(the inter-class testing focused on the test the correctness
of the interaction between software modules);system testing(the
testing of the entire system, for example, a system may be view as

1http://httpunit.sourceforge.net
2http://www.phpunit.de
3http://jsassertunit.sourceforge.net

black-box to test its functionalities). More generally, to test a class
(or a group of classes) we need to isolate it (them) from the soft-
ware system and we build the environment (scaffolding) needed to
perform the test for the class (or the group) and composed of test
cases, specific objects used in every test case, and oracles. In partic-
ular, we need to study its interactions with other classes (or groups)
and then, we need to build a set ofstubanddriver modules. Stub
is a (fictitious) module simulating the part of software called from
the object under test. While, a driver is a (guide) module simulat-
ing the pieces of program that invoke the object under test, and it
is used to prepare the environment needed to call the object under
test in order to execute a test case for it (a driver may instance new
objects, call methods, may define parameters and variables, and so
on). Therefore, a minimal test case for OO software is a set of
constructor calls, methods calls, parameters settings, inputs values
configurations, and so on.

This paper proposes a gray-box and OO-derived approach to test
existing Web software. The proposed approach named OTMW is
based on unit, integration and system testing. The starting point of
this approach is the use of reverse engineering techniques to ana-
lyze applications and describe them using a predefined OO model
composed of UML class and state diagrams. Thus, OTMW pro-
poses and approach to identify the set of units to test through a
method inspired by the conventional category partition method.
Moreover, to perform integration testing a testing order (i.e., se-
quence of units) is defined and then the clusters (i.e., group of units
of the order) are tested using the same partitions-based method.
Finally, system testing is performed (in terms of traditional Web
testing) traversing the Web site through sequences of URLs. How-
ever, this paper introduces the approach and shows how to apply it
on existing application through a detailed case study.

2. WEB MODELING
In literature several works suggest the use of OO models to de-

sign Web Applications in order to increase their dependability and
quality. Every technique (e.g., see Conallen [8]) maps OO and Web
concepts in order to define an OO-based logical point of view to de-
sign, describe and analyze Web systems. In our WAAT project an
OO model inspired to [8] has been developed using UML in order
to represent existing Web applications and in particular, legacy ap-
plications4. The main difference between the WAAT model and the
[8] is that the Conallen’s model aims at describing an application
from a logical point of view, as required when it is being designed.
On the other hand, the WAAT model focuses on the software im-
plementation, which is the starting point for the software analysis.
The WAAT model is based on UML class and state diagrams to
represent Web software. The class diagrams are used to describe
the structure and components of a Web application. E.g., forms,
frames, Java applets, HTML input fields, session elements, cook-
ies, scripts, and embedded objects. A specific asset of our WAAT
model is the definition of a fictitious function in a class represent-
ing a given Web page or object and containing code not wrapped
in functions or classes defined in the original source code. For ex-
ample, a fictitious method (e.g., “Main”) is added in a UML class
representing an HTML page to model the source code of the entire
HTML page. Furthermore, for a PHP4 page containing code with-
out the definition of functions, the page source code is wrapped

4Legacy applications are the kind of Web software where the busi-
ness logic is embedded into the Web pages, instead of more re-
cent and layered Web applications where the business logic is im-
plemented through server-side components. The analyzed applica-
tions are composed of Web documents (static, active or dynamic)
and Web objects.

in a “Main” fictitious method. From a logical point of view, this
(“Main”) method may be viewed as an implicit constructor of the
same class. Figure 1 shows the class diagram meta-model used in
the WAAT project. Every Web application model is an instance of
this meta model. Instead, state diagrams are used to represent be-
haviors and navigational structures of the elements described in the
applications class diagram. A navigational structure may be com-
posed of client and/or server pages, navigation links, frames sets,
form inputs, scripting code flow control, and other static and dy-
namic contents. The use of state diagrams let us model relevant
assets, such as an active document (i.e., composed by HTML and
client side scripting code). In particular, the state diagram of an
active document can define the function calls flow of the script-
ing code, and some relevant behaviors/navigation dynamic infor-
mation (e.g., dynamic links, frames, and so on).In our model, a
Web application is associated to a state diagram and Web docu-
ments are associated to substates (subdiagrams). A static document
is represented by a simple state, while an active document is rep-
resented by a composed state that may be concurrent if the page
contains client-side scripting code. Dynamic documents are mod-
eled by simple or composed state. If the document does not contain
some relevant navigation element, it is described with simple state,
with composed state otherwise. E.g., a dynamic page that builds
many client side HTML pages is modeled with a composed state
with many substates, one for every HTML page generated. In gen-
eral, the transitions are defined by links, function calls, and various
HTML form inputs. An HTML frame set is modeled via composed
concurrent state where every frame corresponds to a substate. See

Figure 1: Web Applications UML Meta-Model

[3] and [2] for more details and samples about the OO model used
in the WAAT to describe applications. To the aims of this paper,
we recall here that we introduce an approach to test Web software.
Nevertheless, the OO-based model used to represent Web applica-
tions is not really the focus of this paper because some existing
OO-based modeling techniques may be useful with the testing ap-
proach presented in this paper. Moreover, we use a set of reverse
engineering techniques ([2]) to recovery UML models from exist-
ing applications but OO-based models are often defined in a design
phase of the development life-cycle and the proposed approach may
be used too. The reverse-engineered model is based on static and
dynamic analysis. The technique uses static methods derived from
traditional source code analysis adapted to extract static and dy-

Figure 2: wTDG main rules

namic information from Web. Moreover a combined method based
on static and dynamic analysis is used to define navigational struc-
ture and application behavior. We have paid particular attention to
the server side dynamic aspects of Web applications, we analyzed it
with a dynamic method based on application execution and on mu-
tational analysis applied to source code [2]. This dynamic analysis
is performed with the generation of a set of source code mutants,
used into navigation simulation. Then, procedure results are an-
alyzed with static traditional source code techniques. The use of
mutation lowers user interactions in the reverse engineering phase
and let us defines a more detailed description.

To test an application we use its UML model composed of UML
class and state diagrams to extract several kinds of information us-
able to identify the units to test and/or to guide the test cases defini-
tion and/or to calculate the code coverage reached with a set of test
cases. In particular, using the class diagram we may build a graph
of the system components dependencies. While, using a UML state
diagram we may build an “extended function calls graph” (eFCG,
“extended” for the presence of the fictitious methods) for the en-
tire system (named class eFCG) and/or for every components (i.e.,
we may build a graph of the function calls for every system com-
ponent). In this case, for every software component that it is rep-
resented in the state diagram using a complex state (i.e., a state
grouping a set of sub-states) we build a eFCG where every node
is a sub-state and every edge is a state transition that exist among
states. In the case of our OO model, transitions between states may
be function calls (for both fictitious and not methods), link clicks,
specific user gestures needed to evolve the software, and so on.
Thus, a path in the eFCG represents a possible execution of the
software under analysis.

Several works studying the integration-orders problem use appli-
cation models (i.e., the class diagrams) as a basis to build a graph
representing dependencies among components. Then, this graph is
used in order to search the best integration order. In case of Web
software, we suggest to use the “Web Test Dependence Graph”
(wTDG). [12] presents an extended version of the original TDG
adapted for working with specific OO assets (polymorphic depen-
dencies, as well as the nature of the dependence such as aggrega-
tion, association, inheritance and so on). wTDG is a simplified ver-
sion of this TDG at classes-level. wTDG is a directed graph whose
vertices represent UML classes and directed edges represent de-
pendencies among them. A wTDG may contain loops because a
class may be directly or indirectly dependent from each other ones.
In the TDG, an arrow from B to A means that “B is test dependent
on A” thus, we need to test A before B. Figure 2 show four main
rules of the wTDG construction used to map UML class diagrams
in wTDG. Given two classes A and B:

1. If B extends A then A is test-dependent on B through an in-
heritance dependence and in wTGD the edge that connects A
to B is labeled “I”.

2. If A is a composition (or aggregation) of B, A is test-dependent
on B through an aggregation dependence and the A to B edge
is labeled “Ag”.

3. If A is associated or depends on B, A is test-dependent on
B through an association dependence and the A to B edge is
labeled “As”.

4. If A is associated to B through specific WAAT-model rela-
tionships defined using the UML stereotype “<<build>>”
(e.g., relationship existing between a server-side page and the
built one or more client-side pages) thus, B is test-dependent
on A through a specific association dependence and the A to
B edge is labeled “As-s”.

Through this set of rules we may build a wTDG from a reverse
engineered UML class diagram of Web applications.

3. OTMW-BASED WEB TESTING

3.1 Rationale
The testing performed in the OTMW model is inspired by the

category partition method (see [15] and [5]). This method is a spe-
cific sub-type of the functional testing method known as “equiva-
lence classes”-based testing (EC). The EC method, for every testing
layer (unit, integration, system) defines subdivisions of the applica-
tion input domain in equivalence classes which are used to derive
test cases. The main ideas are that a failure found by one value
in a class will be found by all values in the same class and that
all components of a class are treated in analogous mode by the
software (i.e., producing correlated results). The main goal of this
type of test is to define test data that may reveal possible classes
of errors/bugs. An equivalence class is represented using a set of
(valid and/or not valid) input data and a set of software states for
the output data produced through the class inputs. Thus, the cat-
egory partition approach may be viewed as composed of the fol-
lowing steps: software specification analysis to identify the func-
tional unit to test (and for every one, identification of its parameters
and the needed environments); classification of the identified units
in categories; subdivision of the categories in choices; definition
of constraints among the choices; definition and documentation of
tests. In more details, the OTMW model may be used to test an ap-
plication through a gray-box approach (i.e., a functional approach
that considers some interesting structural information to perform
the test) inspired by the category partition testing method and ap-
plied in six main steps to perform unit, integration and system test-
ing. These steps are the following:

• We need to build the OO model for the existing application
under testing.

• When the application under test is described through UML
class and state diagrams we use the class diagram to identify
software units to test in isolation.

• Then, we perform the unit testing and thus, for the current
unit under test, we use its state diagram to build its eFCG
(graph of function calls and actions) and we use eFCG as a
basis to define the test cases through the expected unit be-
havior shown in this eFCG (and using the idea of the “equiv-
alence class” to subdivide the input domain and to define the

set of representatives test cases). Then, we build the scaffold-
ing (i.e., stubs, drivers, oracles) needed to test unit through
the defined set of functional test cases. In particular, the scaf-
folding may be expressed in terms of fragments of code (i.e.,
scripting code) written using a set of XUnit tools. Thus, we
may execute every test case using these XUnit-based code.

• Then we need to identify the integration order of system units
needed to test the software components interactions (i.e., the
definition of the best user-adequate unit sequences). In this
phase, we use the wTDG graph, built from UML class di-
agram, to extract information about the components depen-
dencies and we use a genetic-based algorithm that analyzes
some coupling measurements among components in order to
devise the best set of sequences usable to test the components
integration.

• Then we test every cluster identified in the previous step
(a cluster is a group of software units collaborating among
them). In this case, we treat a cluster as a “big-unit” and we
use the merge of eFCGs for units in the same cluster to de-
fine the functional test cases and then to write scripting code
using the XUnit tools. Thus, we may test clusters using these
written classes of test.

• In the last step of OTMW we need to perform system test-
ing. In particular, we use the UML models to build a graph
considering only high level information in order to describe
the application as a graph composed of nodes representing
pages (considering client or server side and static or dynam-
ically generated pages) and edges representing links existing
among pages. Through this graph, we perform some ran-
dom walks paths to traverse the graph and to simulate user
navigations using a set of sequences of URLs randomly gen-
erated based on the graph coverage (i.e., nodes/edges/ paths
coverage).

The OTMW layered model lets us perform different kinds of test,
for example, in the unit testing we test every component of the
software architecture. A Web application may be written in sev-
eral languages and may be composed of some different components
collaborating among them. A component may be a client-side page
(e.g., composed of HTML and Javascript code), a server page (e.g.,
composed of PHP 4/5 code), and Web object and/or other compo-
nent (e.g., written in PHP, or ActiveX, or other server/client-side
scripting code, XML files and database, and so on). In particular,
for a complex page/object (such as written in PHP) we may test
its functionalities, or its main execution paths stressing several se-
quences of methods defined in the same page/object. On the other
hand, through the integration testing we test the integration (i.e.,
collaborations) of the software components. Thus, we treat a clus-
ter (i.e., group of software unit) as a unique unit with an interface
composed of the sum of the units interfaces, this let us test more and
more invoked sequences to stress methods of every unit in order to
analyze every state of the evolution and/or execution of every unit.
Finally, the system testing let us perform the conventional pages-
based testing in order to focus the test in the navigational system
and the structure of the application (i.e., sequences of pages). In
the following sub-sections we analyze and describe every step with
several details in order to guide the user (i.e., Web testers) to use
our OTMW to test Web applications.

3.2 Unit Testing
The main steps of the OTMW unit test are: identification of units

to test in isolation; test cases definition (using atesting tabledefined

through the analysis of the inputs and the eFCG for the current unit
under test); identification of the needed drivers and stubs; and test
script description using XUnit tools.

To test the elements composing the software we need to use the
UML class diagram used to describe it. We use this diagram to
identify the units that we may test in isolation. These kinds of units
may be:

• static HTML pages (with or without scripting codes)

• client side objects such as the scripting codes (e.g., fragments
of Javascript code)

• server side objects (e.g., objects written in PHP 4/5)

• server pages written in PHP 4/5 and their set of dynamically
generated HTML client-side pages (we consider a server side
page and its dynamically generated pages such as a unique
unit)

• client-side scripting code (e.g., Javascript) generating a set of
HTML pages (we consider as unique unit)

• Web objects and components (such as txt file, xml, database,
and so on)

• other components not previously classified.

However, the analysis of the dependencies (and their types) de-
scribed in the UML class diagram may be used to define compo-
nents representing units that may be tested in isolation and to iden-
tify they needed stubs. A Stub is a fictitious module simulating the
part of software called from the object under test. In particular,
dependencies such as: inheritances, compositions,<<build>>
are traditionally considered as “not breakable” while other such
as associations, aggregations,<<submit>>, and so on, may be
breakable. This information and the different kinds of elements
listed before may help us to identify units and stubs. For example,
a PHP server page that uses a PHP object to build a set of three
dynamically generated HTML pages may be viewed as composed
of two units. The first is the PHP object used by the server page
while the other is the server page with its three generated HTML
pages. Moreover, this last unit uses the PHP object and thus, this
unit needs a stub to execute it in the testing phase.

For every identified unit we build itstesting table(inspired by the
decision table defined in [5] for OO software and then refined in [9]
for Web software). This table is used to define a set of test cases
through our method inspired by the traditional category partition
approach. For the definition of a testing table for a unit: we need
to identify the input parameters of the unit (from our UML class
diagram); and then we need to describe the eFCG (the graph that
describes the unit executions in terms of function calls and actions
performed) for the modules composing the unit under test. We use
eFCGs to extract several paths (i.e., a path represents a possible
software execution at level of function calls and actions sequence)
through the traditional coverage criteria (such as: nodes, edges, n-
cycles path, couples of def-use, and so on coverage) applied to the
same graph. These paths are the basic information to define test
cases. For example, the eFCG for a PHP object may be a function
calls graph. Thus, traversing the graph through the coverage graph
criteria, we may extract several paths where every path is composed
of a sequence of methods (i.e., defined/used in/by PHP object) calls
and it represents a possible execution of the PHP object. Then, we
use these information as a basis to fill thetesting tablefor the unit
under test. Figure 1 shows the skeleton of a testing table composed

Input Output
Variables Actions State Expected [Expected State

Before Output Output After
Testing Actions] Testing

... ...

Table 1: skeleton of Testing Table

of two sections: the first for the input data and the other for output
(expected) data.

A table is composed of six sections as following:

• Variables: listing of the unit input. For example, for client-
side page the input fields of its HTML forms, for client-side
scripting functions the HTML DOM-tags, for server pages
the needed GET/POST variables, and so on.

• Actions: listing the actions (i.e., user gestures, function calls,
class instantiations, and so on) needed to perform the test-
ing. In particular, it represents a sequence of actions needed
to realize the unit execution extracted from the eFCG. For
example: link clicks, button press, method calls, class in-
stantiations, and so on.

• State Before Testing: containing the values assumed before
the test from specific application elements such as client-side
pages, cookies, tags, the state of used Web objects, session
variables, server objects, and so on.

• Expected Results: listing the expected output results when
the test is executed

• Expected Output Actions: describing the actions performed
by the pages/objects under test when the test case is executed
(i.e., the functionality performed with the test case, e.g., login
action, sending data, write files, and so on)

• State After Testing: describing the expected values assumed
after the test execution from specific application elements
such as the same described in the “State Before Testing” sec-
tion.

Notice that to fill theActionssection, the user (i.e., tester) needs
to identify the steps (user actions, method calls, objects instantia-
tion, etc.) useful to implement the execution path extracted from
the eFCG of the unit under test. Thus, the user may define more
than one sequence of steps usable to perform a single eFCG path.
In our testing table, the combination ofInput Variablesand Ac-
tions is used to identify the equivalence classes (EC) and thus, it
is used to subdivide the input domain of the application unit (com-
posed of input variables and states of the components under test)
in classes usable to derive several test cases of the same classes
(e.g., changing the input values). When the testing table is filled
we may proceed writing the scripting to execute test cases through
specific XUnit tools. For example, to test HTML-based pages we
may use tools such as: HTTPunit or HTMLUnit5 but also HTML
Tidy6, HTML validators7; to test server side objects written in PHP
4/5 we may use tools such as PHPUnit or PHP Assertion [1]; to
test objects based on Javascripts code we may use HTMLUnit or
JSUnit8 or Javascript Assertion Unit; to test components based on
5http://htmlunit.sourceforge.net
6http://www.w3.org/People/Raggett/tidy
7http://validator.w3.org
8http://www.edwardh.com/jsunit

more than one language (e.g., client side pages that send data to
server side pages we may use combination of this tools). In par-
ticular, every row of the table may represent a class of test cases
and may be converted in a testing script using these XUnit tools.
Then we may proceed with the test cases execution using the ad-
hoc written script code and repeating its execution using several
different input values.

Drivers and stubs modules are needed to test a given unit. A
driver is a (guide) module simulating the pieces of program that
invokes the object under test, and it is used to prepare the environ-
ment needed to call the object under test in order to execute a test
case (a driver may instance new objects, call methods, may define
parameters and variables, and so on). Typical Web driver may be
composed of fragments of code derived from pages or objects that
interacts with the unit under test, filling HTML forms, generating
events (e.g., to simulate user gestures), and so on. This type of code
may include scripting fragments (client/server side), Web objects,
DOM objects, and so on. Instead, a stub may be a client/server
page/object that it is used by the unit under analysis in order to
perform its task.

The main goals of this unit testing phase may be to test the
loading, in some different context, of every elements composing
the applications (e.g., pages, objects, page components such as
forms, scripts, tables, server components, and so on); the struc-
ture and navigational system of every component (e.g., elements
compositions, self links, submitting operations, etc.); the evolution
(in terms of states reached) of every complex components such as
client/server side code (e.g., using JSUnit and PHPUnit we may
test several different function calls sequences representing differ-
ent software executions); and the construction of the dynamically
generated pages (e.g., the HTML code generated by a server page).

3.3 Integration Testing
In the integration testing phase we test the interactions among

software components (i.e., units identified in the previous testing
step). In particular, we may test data or messages exchanged among
units. For example, we may test the following cases:

• the data/messages exchanged between an HTML page and
its Javascript code, such as function defined a Javascript frag-
ment and called in an HTML tag with mouse events, or HTML
tags filled with the returned value of a Javascript function.

• data/messages exchanged among PHP objects, such as func-
tions or data variables in a PHP5 class but defined in another
class.

• data/messages exchanged between an HTML page and a PHP
page that elaborates these data to generate outputs (e.g., HTML
form data submitted to PHP page, or PHP function called
from HTML code)

• the use of several kinds of files (e.g., TXT, database, XML)
to write, read, modify data from PHP or Javascript code

• the use of scripting code or server-side applications by a PHP
object

Therefore, in a Web application we need to test some different
types of interactions because every application may be written in
more than one software language (e.g., HTML, Javascript, PHP,
and so on). Thus, we need to test interactions such as among the
following elements: HTML code and Javascript; Javascript and
Javascript; Javascript and PHP; HTML and PHP; PHP and PHP;

Javascript, HTML and PHP; Javascript, HTML, PHP and other el-
ements (TXT, database, XML); and so on. To verify the interac-
tions among components we need to identify the sequence of units
to test. Then, we need to treat every integration cluster (group of
units in the sequence) as a single “unit” in order to fill itstesting
tableand to write its set of test cases.

Given a software system, to test its components and their re-
lationships, the first problem is to decide the integration order, be-
cause different orders may define some different complexity in terms
of effort. For OO-modelled software it may be very difficult to
choose the testing order because the system has specific assets (i.e.,
information hiding and abstraction, inheritance, and so on) and
because the architectures may be very complex and several com-
ponents may be strongly connected (i.e., cyclical dependencies).
Thus, to define the best integration order we need to use a method
studying the components dependencies and the scaffolding com-
plexity. For example, we may consider a small system composed
of four classes (A B C and D), and where “B uses C”, “C uses A”,
and “D uses A”. In this case, some possible integration orders may
be found defining a topological order9 of the class-usage graph, for
example A D C B or A C B D may be orders usable into integration
testing. Instead, if this system contains anotheruse relationship
such as “A uses B” the system contains a dependencies loop (com-
posed of the classes A B C), thus it is impossible to define a topo-
logical order, but we may define a partial order such as A D C B
(where A needs B as stub), or A C B D (where A needs B as stub).
In literature, there are several works that use class diagrams rep-
resenting OO systems (and defined during the analysis and design
phase or extracted from code using reverse engineering techniques)
as a basis to build graphs representing relationships among compo-
nents then analyzed through deterministic or random approaches to
find optimal integration orders. Most of the proposed strategies are
focused on the analysis of this dependencies-graph derived in order
to minimize the effort needed to test the application and (often) the
effort is expressed in terms of stubs number (or complexity) needed
to test using a specific integration order. In particular, the proposed
solutions “break” some dependencies in cycles contained in graph
to obtain an acyclic graph representing the dependencies of the en-
tire system. This approach implies that the modules related to the
broken relationships need to be stubbed in the integration testing.
However, there are several deterministic and random approaches
usable to define how to break cycles and devise orders, see [12]
for a review of existing techniques and for some empirical com-
parisons. These approaches may be grouped in four categories as
following:

• finding of the strictly connected components (SCC) of the
system (dependencies cycles); and to break some (one or
more) randomly-selected dependencies in SCC

• finding the strictly connected components (SCC) of the sys-
tem (dependencies cycles); to weigh every dependency in
SCC counting the parameters passing through this depen-
dency; and to break the dependency with the smaller weight

• finding the strictly connected components (SCC) of the sys-
tem (dependencies cycles); for every component in SCC count-
ing the number of cycles it belongs to; and to break the com-
ponent that is part of the highest cycles number

• finding the best orders using a genetic algorithm (i.e., a semi-
random approach, see [6]) that uses the permutation encod-

9A topological order is a node ordering for a direct graph such that
each predecessor node of a given node is listed before the same
node in the topological ordering

ing where every chromosome is a string of class labels and
that defines a chromosome as an integration order (i.e., a
sequence of system classes). Then to evolve the popula-
tion using a set of genetic operators (selection, mutation and
crossover) and a fitness function based on the stubbing com-
plexity (in terms of coupling measure between the current
test order and its needed stubs).

When the units order has been defined we may start the test of
every cluster composing this sequence. We test all clusters using
the same methods and tools used in the unit testing, because we
consider every cluster as a unique “unit” with an interface described
as the sum of all units-interfaces composing the cluster. This let us
define several invocation sequences to stress methods of all units
in cluster, in order to verify the cluster in every state it may reach.
Thus, for a cluster we need to identify its input variables, to define
its needed stubs and drivers and to fill its testing table. We use
eFCGs of units in cluster to define relationships existing among
components, and then we extract several paths from these graphs
through coverage criteria. Finally, we may filled testing table and
we may use it to extract a set of test cases and to write the testing
scripts using XUnit tools. Finally, we may execute them more than
ones time using several different values for input variables.

3.4 System Testing
The system testing for a Web application may be essentially

based on high level representation where the application is described
through a graph composed of nodes corresponding to Web pages
and edges corresponding to links. In our modeling approach, we
may extract this graph from the UML class diagram. Then, the
test consists in sequences of URLs requested to Web server with
their inputs values (if needed). This test let us verify the naviga-
tional system and the structure of Web application by traversing
the graph. [4] shows the approach used in our WAAT project and
implemented in TestUml tool. While, [14] describes another sim-
ilar approach. We recall here that the main goal of this paper is
to describe an approach to perform unit and integration testing of
Web software. However, to perform system testing we traverse a
given Web application simulating user (random) navigations and
gestures. In particular, we use the application graph to extract
several paths (sequences of URLs) selected through conventional
coverage measures such as nodes or edges, n-cycles paths, def-use
couples coverage, and so on. Then, these sequences (test cases)
are completed with the needed input values and executed (more
time) performing requests to the Web server. This testing method
is semi-automatic due to the fact that the user (tester) must com-
plete the inputs not randomly identified or extracted from log-files
analysis.

4. CASE STUDY
MiniLogin is a simple Web application we use to show how to

apply the OTMW approach to existing software systems. This ap-
plication is composed of some PHP5 and HTML files with Javascript,
and its main functionality is to control the access to a reserved Web
area through login and password. Through WebUml (see [3]), the
tool that implements our reverse engineering techniques, we per-
form static and dynamic analysis on this Web application in order to
extract information needed to build MiniLogin UML model com-
posed of UML class (Figure 3) and state diagrams. In the following
sub-sections we show how to apply our Web testing approach to
MiniLogin in case of unit and integration testing. Instead, for the
system testing (we would like to recall here that it is not the main
goal of this paper) see [4] for more information about techniques

Input Output
Variables Actions State Expected [Expected State

Before Output Output After
Testing Actions] Testing

Javascript1
(1) ptagUsername,
1.load script in HTML def(formMain.user) true login and ptagPassword ==
2.call controlData() def(formMain.psw) or password “is Number” or
3.read returned value def(ptagUsername) false verification “is String (with Number)”

def(ptagPassword) or “is String”
(2) ptagUsername ==
1.load script in HTML def(formMain.user) true login “is Number” or
2.call controlUsername() def(ptagPassword) or verification “is String (with Number)”
3.read returned value false or “is String”

control php
(3)

$user, $psw 1.class instantion new String $user.$psw
2.call setCombine() equal to strings
3.read returned value $user.$psw concatenation
(4)

$user, $psw 1.class instantion “one” or $user.$psw
2.call setCombine() “two” or” strings
3.call verify() “theree” or concatenation
using 2. result “error” and
4.read returned value verification

memberphp
(5)

$user, $psw 1.class instantion def($count) to control the $count+1
2.call counter() $count session or
3.read returned value variable $count=0...

Table 2: MiniLogin samples of testing table

Figure 3: MiniLogin UML Class Diagram

used in the WAAT project to perform system testing as briefly in-
troduced in the previous sections.

4.1 Unit Testing
We identify the unit to test considering different types of ele-

ments composing the application UML class diagram (HTML static
page, PHP page/object, HTML dynamically generated pages, etc.)
and the types of the relationships existing among elements (associa-
tions, aggregations, compositions, etc.). For example, there are two
Javascript objects (Javascript1/2), one PHP page (memberphp),
one PHP object (controlphp), several HTML pages, and so on. In
the case of unit testing, for every unit we need to define stubs and
drivers usable in the test phase. We identify these elements us-
ing the dependencies described in the class diagram. For example,
the PHP page named memberphp has (“use”) relationship with:
PHP object named controlphp and with an HTML page (named
accesshtml). Instead, the PHP object controlphp has no relation-
ship with other PHP elements but only one with a TXT file. Thus,
control php may be tested as a unit stubbing the TXT file, while
memberphp needs three stubs to be tested. Furthermore, to test a
Javascript code usually we need to stub the fragment of the HTML

Figure 4: MiniLogin samples of eFCGs

page that interacts with this scripting code (and its DOM too). In
our case, the object Javascript1 needs to stub the indexhtml page.

For every unit we need to fill its testing table as described in the
previous sections. In particular, we identify every method (con-
sidering also the fictitious methods “Main”), we identify the input
variables and the variables used by current unit but defined in other
ones. For example, Javascript1 contains a method namedalertMsg
that has four parameters as input. Furthermore, the same unit has a
method namedcontrolPswthat does not have input parameters but
that uses two variables defined in another unit such as an HTML
form field (i.e., formMain.password) and a HTML page tag (i.e.,
namedptagPasswordin index html).

Then through the state diagram of every unit we build its eFCG
(see Figure 4 for some Minilogin samples10). From this eFCG we

10In this figure, to semplify the readability, we have omitted some

<head>
<script src=’jsUnitCore.js’>
</script>

</head>...
<body>...
<script name=’test’ language=JavaScript>
function testcontrolData() {

document.all.ptagUsername.innerText=’’
document.all.ptagPassword.innerText=’’
document.formMain.username.innerText=’prova’
document.formMain.password.innerText=’prova’
assertTrue(controlData())

assertEquals(document.all.ptagUsername.innerText,
’Username is String’);

}
function testcontrolUsername() {

document.all.ptagUsername.innerText=’inizio’
document.formMain.username.innerText=’prova’
debug(document.all.ptagUsername.innerText);
assertTrue(controlUsername());
debug(document.all.ptagUsername.innerText);

assertEquals(document.all.ptagUsername.innerText,
’Username is String’);
}
</script>
</body>

Figure 5: Javascritp 1 test cases: (1),(2)

extract some paths using the conventional coverage criteria (i.e.,
nodes or edges coverage) in order to select several possible execu-
tions of the current unit (at funcion calls and actions level). For
example, considering the eFCGs in Figure 4 we may extract the
following execution paths:

• Javascript1: Main, controlData, ret; Main, controlData, con-
trolUser, ret; Main, falseSubmit, alertMsg, end; (1)Main,
controlData, alertMsg, ret; (2)Main, controlUser, ret; and so
on

• control php: (3)Main, setCombine, ret; Main, verify, fileRead,
ret; (4)Main, setCombine, verify; ret; Main, fileRead, fopen,ret,
and so on

• memberphp: Main, get, get, writefile, controlphp.setCombine,
sc, controlphp.verify, v; (5)Main, counter; Main, writeFile,
counter; and so on

Through this set of information and using our knowledge about
the MiniLogin application we may fill the testing table for every
unit. Table 2 show fragments of testing tables for three units of
the Minilogin application (i.e., Javascript1, controlphp, and mem-
ber php). Now, we may use the testing table with the XUnit tools
to write test cases, every row of the table may represent a class of
test cases that may be implemented in a testing script. For example,
the rows (1) and (2) of Table 2 may be implemented with JSUnit
tool as shown in Figure 5. Instead, the rows (3) and (4) may be
implemented using PHPUnit2 as shown in Figure 6. Moreover, the
row (5) may be also implemented through PHPUnit2 as shown in
Figure 7. In this last case, to treat the memberphp page as a unit
testable with XUnit tools we need to wrap the entire page code in a
fictitious “Class member ...” and the main code of the same page on
a fictitious method “function Main()...”. This lets us treat the PHP
page as a conventional OO class. In the set of written testing cases,
the only case that found a “bug” is for the controlphp object and it
is named “testsetCombineVerifyErrorInTest()”. In particular, for

information such as the label of the edges corresponding to actions
to perform

<?php
require once(’PHPUnit2/Framework/TestCase.php’);
require once(’control.php’);
class controlTest extends

PHPUnit2 Framework TestCase {
public function testsetCombine withStringValues(){

$control=new control();
$user="primo’;
$psw=’secondo’;
$expectedOutput=’primosecondo’;
$output=$control->setCombine($user,$psw);
$this->assertEquals($expectedOutput, $output);

}
public function testsetCombineVerify error(){

$control=new control();
$user=’primo’;
$psw=’secondo’;
$expectedOutput=’error’;
$output1=$control->setCombine($user,$psw);
$output2=$control->verify($output1);
$this->assertEquals($expectedOutput, $output2);

}
public function testsetCombineVerify ErrorInTest(){

$control=new control();
$user=’user’;
$psw=’one’;
$expectedOutput=’one’;
$output1=$control->setCombine($user,$psw);
$output2=$control->verify($output1);
$this->assertEquals($expectedOutput, $output2);

}
public function testsetCombineVerify correct(){

$control=new control();
$user=’User1’;
$psw=’One’;
$expectedOutput=’one’;
$output1=$control->setCombine($user,$psw);
$output2=$control->verify($output1);
$this->assertEquals($expectedOutput, $output2);

}
}
?>

Figure 6: control php test cases: (3),(4)

this test case we expect the string “one” as result but after the ex-
ecution we obtain “error”, this is due to the fact that the fragments
of PHP code written for this test case contains a mistake (i.e., not
the application).

4.2 Integration Testing
To do integration test among software units, identified in the pre-

vious step, we need to define an integration order among them (i.e.,
a sequence of units that helps us to define the order in which to test
the units). Thus, from the MiniLogin class diagram we extract the
wTDG and we use it to calculate some coupling measures among
units. Then, we use this measures in wJenInt, that is our ad-hoc
written tool implementing a genetic algorithm [6] usable to devise
an optimal testing order through a fitness function based on cou-
pling measure used to calculate the stubbing complexity (that is
expressed in terms of coupling measures between the current order
and its needed stubs). In the case of MiniLogin we have defined
the following integration order: Javascript1; psw txt; control php;
img; memberphp; input; form; Javascript2; indexhtml; error-
MoreTimehtml; errorhtml; accesshtml; clientPagephp; client-
Page1; clientPage2; clientPage3. Through this order we need to
cut only one dependency associating Javascript1 and indexhtml
elements. Therefore, we need to test every cluster defined in this
order and that contains units collaborating among them, for ex-
ample, we test: pswtxt -control php; (6)memberphp, controlphp
(7)Javascript1, input-form; Javascript1, memberphp, input, form,
index html; (8)memberphp, controlphp, clientPagephp, client-

Input Output
Variables Actions State Expected [Expected State

Before Output Output After
Testing Actions] Testing

Cluster 1
(7.2) ptagUsername,
1.load indexhtml def(formMain.user) ptagUsername== login and ptagUsername==
2.put user string def(formMain.psw) ’is String’ password “is String” and
3.onMouseOut activation def(indexhtml.ptagUsername) +alert(Number Sedning) verification ‘ptagPassword==
4.call controlUsername() def(indexhtml.ptagPassword) undef
5.click submit
6.onMouseClick activation
7.call controlData()

Cluster 2
(8)

$username 1.load indexhtml def(formMain.user) access OK + username and
$password 2.put real username def(ptagPassword) load accesshtml + password

3.put real password
4.click submit
5.load accesshtml
6.it contains gif and link
7.click link ...

Table 3: MiniLogin samples of Integration testing table

import com.gargoylesoftware.htmlunit. * ;
import java.net.URL;
import com.gargoylesoftware.htmlunit.html. * ;
import junit.framework.TestCase;
import java.util. * ;
public class SimpleHtmlUnitTest extends junit.framework.TestCase {
public void testHomePage1() throws Exception {

WebClient webClient = new WebClient();
java.net.URL url = new java.net.URL(’http://localhost:8080/ ãlex/logred2/index.html’);
HtmlPage page = (HtmlPage) webClient.getPage(url);
assertEquals(’Home Page’, page.getTitleText());
HtmlForm form = page.getFormByName(’formMain’);
HtmlTextInput textField=(HtmlTextInput)form.getInputByName(’username’);
textField.setValueAttribute(’prova’);

HtmlPage appWindow=(HtmlPage) page.executeJavaScriptIfPossible(
textField.getOnMouseOutAttribute(),’testCU’,false,textField).getNewPage();

assertEquals(’Home Page’, appWindow.getTitleText());
assertEquals(’Username is String’,

appWindow.getHtmlElementById(’ptagUsername’).getFirstChild().asText());
HtmlSubmitInput button = (HtmlSubmitInput)form.getInputByName(’Submit’);
List collectedAlerts = new ArrayList();
webClient.setAlertHandler(new CollectingAlertHandler(collectedAlerts));
HtmlPage newPage = (HtmlPage)button.click();

List expectedAlerts = Collections.singletonList(’Number sending’); [or ’Numbero sending’]
assertEquals(expectedAlerts, collectedAlerts);

}
}

Figure 8: cluste1 test case (7.2)

<?php
require once(’PHPUnit2/Framework/TestCase.php’);
require once(’member.php’);
class memberTest extends

PHPUnit2 Framework_TestCase {
public function testcounter 1(){

$mem=new member();
$mem->counter1();
$this->assertEquals(0, $ SESSION[’count’]);

}
public function testcounter_2(){

$mem=new member();
for($contatore=1;$contatore<=10;$contatore++){

$mem->counter1();}
$this->assertEquals(10, $_SESSION[’count’]);

}
}
?>

Figure 7: member php test case (5)

Page1, accesshtml; and so on.
For every cluster we use the eFCGs of its units identifying the in-

vocation sequences of methods/variables used among units to col-
laborate. For example, for (6) may be: (memberphp.Main & con-
trol php.Main), memberphp.wF, controlphp.setCombine, controlphp.verify.
While, for (7) possible sequences may be: (7.1) (indexhtml.Main
& Javacript1.Main & input.Main & form.Main), formMain.user,
input.onMouseOver, Javacript1.controlUser; (7.2) (indexhtml.Main
& Javacript1.Main & input.Main & form.Main), formMain.user,
input.onMouseOut, Javacript1.controlUser, formMain.submit, in-
put.onMouseClick, Javacript1.controlUser; and so on. While for
(8) a possible sequence may be: (memberphp.Main & controlphp.Main),
member.writeFile, controlphp.setCombine, controlphp.verify, client-
Page.Main, clientPage.cp1, cp1.Main, cp1.Main, cp1.gif, cp1.link,
index html.Main;

Then, we may fill the testing tables (see Table 3 for samples)
for clusters and, using XUnit tools we may write the scripting code
to test clusters. Tables 8 and 9 show the testing classes written in

import com.gargoylesoftware.htmlunit. * ;
import java.net.URL;
import com.gargoylesoftware.htmlunit.html. * ;
import junit.framework.TestCase;
import java.util. * ;
public class SimpleHtmlUnitTest extends junit.framework.TestCase {

public void testHomePage1() throws Exception {
WebClient webClient = new WebClient();
java.net.URL url = new java.net.URL(’http://localhost:8080/ ãlex/logred2/index.html’);
HtmlPage page = (HtmlPage) webClient.getPage(url);
assertEquals(’Home Page’, page.getTitleText());
HtmlForm form = page.getFormByName(’formMain’);
HtmlTextInput textField=(HtmlTextInput)form.getInputByName(’username’);
textField.setValueAttribute(’User1’);
HtmlTextInput textField2=(HtmlTextInput)form.getInputByName(’password’);
textField2.setValueAttribute(’One’);
HtmlPage appWindow1=(HtmlPage) page.executeJavaScriptIfPossible(textField.getOnMouseOutAttribute(),

’testCU’,false,textField).getNewPage();
assertEquals(’Home Page’, appWindow1.getTitleText());
assertEquals(’Username is String’,

appWindow1.getHtmlElementById(’ptagUsername’).getFirstChild().asText());
HtmlPage appWindow2=(HtmlPage) page.executeJavaScriptIfPossible(textField2.getOnMouseOutAttribute(),

’testCP’,false,textField2).getNewPage();
assertEquals(’Home Page’, appWindow2.getTitleText());
assertEquals(’Password is String’,

appWindow2.getHtmlElementById(’ptagPassword’).getFirstChild().asText());
HtmlSubmitInput button = (HtmlSubmitInput)form.getInputByName(’Submit’);
List collectedAlerts = new ArrayList();
webClient.setAlertHandler(new CollectingAlertHandler(collectedAlerts));
HtmlPage newPage = (HtmlPage)button.click();
List expectedAlerts = Collections.singletonList(’<username>User1</username><password>One<password>’);
assertEquals(expectedAlerts, collectedAlerts);
assertEquals(’ACCESS’, newPage.getTitleText());
HtmlElement root=newPage.getDocumentElement();
List imgs=root.getHtmlElementsByTagName(’img’);
assertEquals(1,imgs.size());
assertNotNull(newPage.getAnchorByHref(’index.html’));
HtmlAnchor link = newPage.getAnchorByHref(’index.html’);
HtmlPage page3 = (HtmlPage) link.click();
assertEquals(’Home Page’, page3.getTitleText());
}

}

Figure 9: cluste2 test case (8)

HTMLUnit and related to test cases (7.2) and (8).
When testing classes are written using the filled testing tables we

may perform the test by repeating the test cases execution changing
input values.

4.3 System Testing
We recall here that it is not the main goal of this paper, see [4]

for details about the system testing performed in our WAAT project.
Generally speaking, using TestUml tool from the class diagram we
build an high level graph of the application under test where nodes
are Minilogin Web pages and edges are links. Then we use cover-
age criteria and random walks analysis to extract some paths that
helps us to traverse the application graph and to simulate user nav-
igations and gestures. In this case of system testing, a test case
is a sequence of URLs (of the pages composing the defined se-
quence) and its input values. For example, in case of Minilogin ap-
plication the following sequences of URLs and inputs (expressed
in the form<page to load, [list of parameters values]>) may be a
set of test cases: (index.html), (member.php); (index.html), (mem-
ber.php, “username”, “password”), (access.html); (member.php, “user1”,
“psw1”), (errorTime.html); (member.php, “user2”, “psw2”), (er-
ror.html), (index.html); and so on.

5. CONCLUSIONS
In this paper we have presented our OTMW framework usable

to test Web applications through an OO approach. In OTMW we
use an OO model to describe applications from a logical point of
view and then we identify software units testable in isolation (such
as client and/or server Web pages, scripting code, Web objects, and
so on) and, for every one, we perform a category-partition derived
technique to test it at function call level. Then, we use an existing
technique to derive an integration order (i.e., sequence of units) and
we use it to select clusters (i.e., group of units of the order) to test
using the same functional-derived approach. Finally, we perform a
system testing using traditional Web testing in terms of sequences
of URLs. Through this OTMW framework we treat (i.e., design
and test) Web software as traditional OO software in order to test
several aspects such as navigational system, functionalities, struc-
ture and, in order to test every component in every state, in differ-
ent execution contexts, in isolation and in collaboration with other
components exchanging data or messages. Moreover, OTMW uses
tools developed in our laboratory for the WAAT project (such as
WebUml, TestUml, wJenInt) but to execute the test cases it uses
traditional XUnit testing for Web applications.

6. REFERENCES
[1] Php assertion.

http://jsassertunit.sourceforge.net/docs/phpassertunit.html.
[2] C. Bellettini, A. Marchetto, and A. Trentini. Dynamic

Extraction of Web Applications Models via Mutation

Analysis.Journal of Information -An International
Interdisciplinary Journal- Special Issue on Software
Engineering, 2005.

[3] C. Bellettini, A. Marchetto, and A. Trentini. WebUml:
Reverse Engineering of Web Applications.19th ACM
Symposium on Applied Computing (SAC 2004), Nicosia,
Cyprus. March 2004.

[4] C. Bellettini, A. Marchetto, and A. Trentini. TestUml:
User-Metrics Driver Web Applications Testing.20th ACM
Symposium on Applied Computing (SAC 2005), Santa Fe,
New Mexico, USA. March 2005.

[5] R. Binder.Testing Object-Oriented Systems.
Addison-Wesley, 1999.

[6] L. Briand, J. Feng, and L. Y. Using genetic algorithms and
coupling measures to devise optimal integration test orders.
14th international conference on Software engineering and
knowledge engineering, Italy. 2002.

[7] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling
Language (WebML): a modeling language for designing
Web sites.Ninth International World Wide Web Conference
(WWW9), Amsterdam, Netherlands. May, 2000.

[8] J. Conallen.Building Web Applications with UML.
Addison-Wesley, 2000.

[9] G. A. Di Lucca, A. Fasolino, F. Faralli, and U. De Carlini.
Testing Web Applications.International Conference on
Software Maintenance (ICSM’02), Montreal, Canada.
October 2002.

[10] C. Kallepalli and J. Tian. Measuring and Modeling Usage
and Reliability for Statistical Web Testing.Ieee Transactions
on Software Engineering, November 2001.

[11] D. C. Kung, C. H. Liu, and P. Hsia. An Object Oriented Web
Test Model for Testing Web Applications.24th International
Computer Software and Applications Conference
(COMPSAC 2000), Taipei, Taiwan. October 2000.

[12] V. Le Hanh, K. Akif, Y. Le Traon, and J. Jéźequel. Selecting
an Efficient OO Integration Testing Strategy: An
Experimental Comparison of Actual Strategies.15th
European Conference on Object-Oriented Programming
(ECOOP2001), 2001.

[13] F. Ricca and P. Tonella. Building a Tool for the Analysis and
Testing of Web Applications: Problems and Solutions.Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’200), Genova, Italy. April 2001.

[14] F. Ricca and P. Tonella. Analysis and Testing of Web
Applications.23th International Conference on Software
Engineering (ICSE’2001), Toronto, Canada. May 2001.

[15] M. Young and M. Pezz̀e. Software Testing and Analysis:
Process, Principles and Techniques.John Wiley and Sons
(WIE), 2004.

