
Supporting the Evolution of Service Oriented Web
Applications using Design Patterns

Manolis Tzagarakis
Computer Technology Institute

26500 Rion
Greece

+30 2610 960482

tzagara@cti.gr

Michalis Vaitis
University of the Aegean

University Hill, GR-811 00 Mytilene
Greece

+30 22510 36433

vaitis@aegean.gr

Nikos Karousos
University of Patras

26500 Rion
Greece

+30 2610 960482

karousos@cti.gr

ABSTRACT
Web applications make increasingly use of services that are
provided by external information systems to deliver advanced
functionalities to end users. However, many issues regarding how
these services are integrated into web applications and how
service oriented web applications evolve, are reengineered and
refactored are still addressed in an ad hoc manner. In this paper,
we present how design patterns can lessen the efforts required to
integrate hypermedia services into web applications. In particular
we present how evolution and maintenance issues are addressed
within Callimachus, a CB-OHS that web applications need to
integrate in order to provide hypertext functionality to end users.

.

Categories and Subject Descriptors
D.3.3 [Programming Languages]:

General Terms
.

Keywords
Web application, service oriented architectures, hypertext.

1. INTRODUCTION
The term “web application” characterizes a particular class of
applications that make use of internet technology to deliver
content and services such as HTTP, HTML, XML and Web
Services [1]. One particular class of Web applications deals with
integrating information systems into web applications.

Web applications are still developed in an ad hoc manner,
resulting in applications that fail to fulfill several importand
requirements including:

1. User needs, meaning that the web application is not
what the user wanted

2. Easy maintenace and evolution

3. Long useful life

4. Performance and security.

 As already pointed out in [13]

"Web systems that are kept running via continual stream of
Patches or upgrades developed without systematic approaches”

The problems are even more complicated, when web applications
are built upon service oriented architectures (SOA) that differ
greatly fom traditional client server architectures. SOA exhibit
great flexibility with respect to services and require new
approaches to service integration. Within the hypermedia field,
Component-Based Hypermedia Systems (CB-OHS)[15] have
emerged, consisting of an underlying set of infrastructure services
that support the development and operation of an open set of
components (called structure servers), providing structure services
for specific application domains. The theoretical and practical
aspects of this promotion of structure from implicit relationship
among data-items to a first-class entity constitute the subject of
the field of structural computing [5]. Attempts to integrate
services provided by CB-OHS with web applications are already
underway [14].

CB-OHS are among the forerunners of a trend for service-
oriented computing (SOC) [8]; the computing paradigm that
utilizes services as fundamental elements for developing
applications [2] and relies on a layered SOA. A SOA combines
the ability to invoke remote objects and functions (called
“services”) with tools for dynamic service discovery, placing
emphasis on interoperability issues [3]. As both hypermedia
applications and the class of web applications categorized as
informational [1] are content-intensive, the employment of
structure services (following the SOC paradigm) would improve
efficiency and convenience [9].

Unfortunately, today’s developers of hypermedia and web
applications face various problems when attempting to integrate
services offered by CB-OHS into web applications. This is in
particular true when considering evolution and maintenance
issues. Currently, such concerns are addressed by developing
structure services from scratch [4] redesigning appropriately the
provided services. We argue that one of the reasons for this
situation is the lack of both an adequate software engineering
framework for CB-OHS construction, integration, and
maintenance and the appropriate tools to support it. This results in
ad-hoc integration methodologies which produce systems missing
certain essential characteristics including difficulty to evolve and
maintain.

In this paper, we present how design patterns can lessen the
efforts required to integrate hypermedia services provided by
service oriented systems into web applications. In particular we

present how evolution and maintenance issues are addressed
within Callimachus, a CB-OHS that web applications need to
integrate in order to provide hypertext functionality to end users.

The paper is structured as follows: first we outline aspsects of
SOA that makes integration into web applications difficult and
error prone. We then present Callimachus and how the services
provided are integrated into web applications. Next, we present
and analyse the design patterns that are used to address evolution
and maintenance concerns. Finally, future work concludes the
paper.

2. Service Oriented Architectures (SOA)
Traditionally, hypermedia systems have been built according to
client server (or point-to-point) architectures that provided an
adequate framework for bringing hypertext functionality to web
applications. However, the design and development of these
hypermedia systems were based on assumptions that reflect the
architecture upon which they were developed. Moving
hypermedia systems to service oriented architecture requires these
assumptions to be re-examined and adjusted. This is because
service oriented archtectures differ greatly from client server
architectures. Table 1 summarizes the main differences between
service oriented and client server architectures.

In service oriented architectures, bindings to services (i.e.
references to operations provided by services) are established
dynamically and during runtime which is completely
incompatible with client server based hypermedia systems where
such binding of clients to services happen very early in the
development process (in particular during design or compile
time). At run time, changing bindings is impossible.

Table 1. Comparison of Client Server vs Service-Oriented
Architectures

Client Server Architectures Service Oriented
Architectures

Early binding
(compile/development time)

Late binding (run time)

Domestic (evolve smoothly and
planned)

Feral (evolve abrupt and
uncontrolled)

Location dependent Location independent and
transparent

Single interface (protocol) Set of interfaces
(protocols)

Development oriented Integration oriented
Tightly coupled Loosely coupled
Monolithic Composable
Stable Unstable due to ad hoc

nature

While client server architecture evolves in a controlled and
disciplined fashion, service oriented evolves in a rather feral way.
This is mainly due to the autonomous nature of services that
implies an autonomous evolution path as well. As a result client-
side bindings to hypermedia services can easily be invalidated. In
addition, it is evident that while client server architectures exhibit
location dependence thus forbidding changes in location
information (e.g. in terms of host and port) service oriented

architectures are location independent making conventional
clients unable to operate in such an environment. With respect to
the supported interfaces, in client servers systems only a small,
bound number of interfaces are supported whereas in service
oriented systems an unbound number of interfaces exists. Thus
while in client server systems it is enough for all software entities
(e.g. client application) to be reactive when considering interfaces
to hypermedia services, in service oriented architectures all
software entities need to be proactive. Furthermore, client server
systems are tightly coupled systems, meaning that design changes
in the service are followed by design changes on the client side.
This is not the case in service oriented characterizing this
architecture as loosely coupled. Finally, while in client server
systems the main task during development is to extend the client
and the server respectively, in service oriented architectures the
main task of a developer is to integrate services.

From the above discussion it is clear that service oriented
architectures represent an environment where all software entities
need to exhibit flexibility, autonomy, and adaptability in order to
function correctly and take advantage of the plethora of services
that are presented. Within such an agile environment, web
developers require new tools and infrastructures that will enable
smooth evolution as well as seamless integration of the provided
services into web applications.

2.1 The Callimachus Component Based
Hypermedia System.
Callimachus is an open hypermedia system [6, 7] that aims at
providing hypertext functionality to an open set of applications. It
provides support for wide range of domain specific abstractions
thus addressing a broad range of hypertext domains [5]. Such
domains include navigation, allowing the interlinking of
information and taxonomic reasoning to develop for example
directory services on the world wide web [14].

Callimachus follows a component-based architecture as depicted
in figure 1. Each component provides a number of services
through which clients can request domain specific hypertext
functionality. Its primary architectural elements are client
applications, structure servers and infrastructure. Client
applications can be either native or third-party applications, such
the MS Office Suite and Emacs, or even web servers and entire
web applications. Client applications (clients for short) request
services from structure servers using a well defined protocol.
Structure servers provide the domain specific abstractions of a
particular hypermedia domain by offering a consistent set of
services. The infrastructure provides services across hypermedia
domains such as storage, naming and notification.

The on-the-wire messages sent between clients and structure
servers are encoded using XML and transferred using HTTP
tunneling. The adoption of this technique has been imposed
mainly by the need to overcome the access restrictions to non
WWW services enforced by firewalls. HTTP is used as a
transport protocol to tunnel client requests. The Content-Type
parameter specifies the protocol that is being used.

All client-side aspects of the protocol come in the form of a
library that implements an API. Different structure servers require
different protocols to communicate with client applications. The

construction of the client-side API takes place during the
development of the structure server. In Callumachus, all structure
servers have the form of a TCP/IP daemon listening on a specific
port for incomming requsts. Each structure server can serve
concurrently many clients that can be of different types (e.g. web
application, Emacs etc).

Figure 1: The conceptual architecture of Callimachus and
how it is integrated with web applications

Being clients, web applications request structuring services from
Callimachus and content services form other information systems.
For example, in case the web application provides directory
services, it invokes structuring services such as openCategory or
getPathOfCategory from Callimachus, and it resolves the
returned content identifiers using the content services. At the web
application layer, the outcome of both service invokations are
merged and transformed to the appropriate format (e.g. html or
XML). The result is then sent back to be displayed to end users.

The development of structure servers and the integration
mechanisms (i.e. APIs) follows an evolutionary rapid prototyping
approach with short iterations and many releases. This means that
there is a constant evolution of services with which the entire
framework has to cope with.

Design and development is split into tasks, each one dealing with
a particular aspect of the structure server. Three main tasks are
carried out, each producing a prototype subsystem. The
integration of developed subsystems results in a working structure
server. The specification, design and implementation of each
subsystem does not follow a particular process model, because of
their tightly coupled nature and their “small” size as software
artifacts. These tasks are described more detailed below.

Server shell development: During server shell development, the
structure server’s interface is built. In this task, the emphasis is on
the design of the exact procedure the structure services are
invoked. More precicely, all aspects of the structure server when
viewed as the receivers of client requests are addressed. Such
aspects include listening to, parsing and validating incoming
requests, as well as preparing and passing these requests to the
domain model for execution.

Domain model development: During this task, the syntactic and
behavioral aspects of the domain-specific abstractions (including
their relationships) are designed and developed. The syntactic and

behavioral specifications originate from the scenario and are
defined in terms of the Callimachus Abstract Structural Element.

Integrator development: The aim of this task is the development
of the necessary software modules that will enable integration of
clients with the structure server. These modules come in the form
of a client-side API. Specifically, a wrapper container and a
communicator are developed [52] so that client applications are
able to request structure services.

The prototyping phase starts with the development of an initial
domain model prototype. Consequently, the server shell and the
integrator prototypes are developed. After an initial cycle, each
prototype is refined by constantly iterating through the tasks until
an acceptable structure server prototype has been completed. The
prototype structure server is tested by end-users aiming to assess
its accordance to the scenario.

These challenges include both non-functional and functional
aspects of structure servers:

Incremental service (and operation) formalization: During
prototyping, the set of the provided services (and operations that
clients can request) is initially unknown, with their name,
behavior and parameters slowly emerging, as prototypes become
available for testing. By having services emerging and evolving
while development is progressing, the emphasis is on ways to
easily integrate new or modify existing services, without requiring
changes in functionally unrelated modules of the structure server
(which cause major concerns to developers). In particular, the
goal here is to achieve localization of the effects during the
evolution of services.

Smooth evolution of protocol implementations: Although the
design of multi-protocol support ensures easy integration of new
protocols developed entirely from scratch, it does not address
evolution of existing protocols. During protocol evolution, new
methods might be added to existing protocol implementations;
existing methods might change their signature or might even be
associated with different operations at the domain model layer.
Such tasks need to be carried out quickly to ensure short iteration
cycles.

3. Design Patterns
Within the Callimachus project, design patterns [11] have been
proven a valuable mechanism to support smooth evolution of
hypermedia services and their seamless integration with Web
applications.

In particular, design patterns are utilized to address changes at the
hypermedia services layer due to new web application needs as
well as changes at the web applications layer due to changes at
hypermedia services. Consequently, two types of design patterns
can be identified: patterns that address concerns at the hypermedia
services layer and patterns that address concerns at the web
application layer.

Next, for each layer, we briefly present the design patterns used.
Although the design patterns discussed are already well known,
the focus is mainly on what benefits can be gained when using
them in service oriented environments.

Web Application

Structure Server 1

Infrastructure

Storage Server

RDBMS

ODBC

API

Naming Server Notification Server Template
Repository Server

Structure Server 2
API

Structure Server N
API

Content services Structuring services

3.1 Design Patterns at the Hypermedia
Service Layer
3.1.1 Protocol Handlers
Everytime a connection with a client is establised, all received
requests for structure services need to be parsed in order to be
checked for validity and prepared for execution. Validity
checking includes the examination of the conformance of the
requesting message to the syntax of the domain protocol
specifications, as well as to the semantics of the domain model
functions (i.e., the indicated operations along with the type of
parameters supplied). Preparing a request for execution refers to
the necessary actions dealing with determining the appropriate
operation in the domain model that has to be executed. Such tasks
are the responsibility of the protocol handler [12]. Since different
structure servers require different protocols, development of
protocol handler is performed every time a new structure server is
developed. The situation gets more perplexed when considering
that the same structure server can be accessed using different
protocols meaning that the same structure server needs to provide
support for a number of protocols that need to be activated at
runtime. The question thus is how to make the same set of
operations provided by structure servers available through
different protocols.

To achieve smooth evolution of protocol issues within structure
servers, parsing of incomming requests must be decoupled from
invocation of the operation that requests designate. For this
reason, the strategy design pattern is used [11]. This permits also,
the parsing algorithm to vary according to the incomming request.

How the strategy design pattern is utilized is depicted in figure 2.
Within each structure server, the ServerContext class deals with
all low level aspects of receiving a request from the TCP/IP
socket, as well as parsing the HTTP headers of the tunneled
request. The class also maintains a reference to an instantiation of
the HypertextProtocol, an abstract class that is used to parse the
received request and supports only the public virtual methods
Parse and Clone. While the Parse method encapsulates the
suitable algorithm for parsing and preparing incoming requests,
the Clone method returns a copy of the HypertextProtocol
instance, used in the context of the prototype design pattern. All
protocols supported by a particular structure server, are derived
from the HypertextProtocol class. Every derived class (that
constitutes a protocol handler) implements the method parse,
where the appropriate code for parsing, validating and preparing
the request is placed by the developer. The appropriate protocol is
determined and instantiated during runtime based on HTTP’s
Content-Type parameter. For this task, the prototype design
pattern is utilized, determining how the appropriate available
protocol implementations are declared and instantiated during
runtime. The hypertext protocol factory is part of the
ServerContext class and is instantiated during initialization of the
structure server. There is exactly one hypertextProtocolFactory
for every structure server.

ParseRequest()

HTProtocol

HTProtocol->Parse()

ServerContext

Parse()
Clone()

HypertextProtocol

Parse()

NavProtocol

Parse()

OHP

Parse()

Navigational

Figure 2 : Protocol Handler

Adding support for new protocols is fairly trivial, allowing
developers to focus only on parsing and preparing without
spending time about how to integrate the new protocol into the
structure server. During design time, developers have to create a
class that resembles their protocol implementation (derived from
the HypertextProtocol class) and to provide the
implementation for the Parse method. Furthermore, they have to
register the new class in the factory’s registerProtocol
method that takes place in the factory’s constructor. During
runtime, correct deployment of the new protocol handler is
ensured by the prototype design pattern [11], since the mechanism
of how to determine which class to instantiate is independent of
protocol handlers.

3.1.2 Service Execution
Different web applications may require different set of operations
from the same structure server. For example some web
application providing directory services might require complex
editing of entire subtrees such as deleting directories or moving
and copying them to different locations while others don’t.
Moreover, for all available operations, undo, redo, logging and
queuing options should be available. The question here is how to
systematically extend the available operations (and thus services).
The goal is to provide domain specific operations in a plug-and-
play fashion. To support such development tasks, the invocation
of an operation needs to be seperated from its execution. Within
Callimachus, this is achieved using a variation the active object
and command processor design patterns [10].

In the design pattern of figure 3, all client requests (denoting
operations, such as openNode, traverseLink in case of a
navigational structure server and deleteDirectory in case of a
taxonomic structure server) are instantiated as separate objects.
There exists one class for each operation available to clients,
elevating operations to first class entities, thus allowing them to
be stored, scheduled and even undone. Such treatment of
operations also allows the support of transactions. All available
operations are derived from the DomainOperation class, an
abstract class with two methods: Execute and Undo
(implemented by the concrete derived classes). The Execute
method of each concrete class executes the operation by calling
the appropriate method of the class HMDomain that represents
the interface to the domain model subsystem. For example, the
openNode class would call the openNode method of class
HMDomain.

The appropriate concrete operation instances are created by the
HypertextProtocol class, after having parsed and validated

incoming client requests. The HypertextProtocol class decides
which operation to instantiate in order to be flexible with respect
to which method of HMDomain class to invoke. There might be
cases where a matching method might not be available in the
HMDomain class, so an equivalent method (or set of methods) in
that class should be invoked. For example, a getNode operation
(that would be modeled as a separate class) has to invoke the
available openNode method (i.e., an equivalent method) of the
HMDomain class, when a getNode method is not available. Such
choice is conveniently done in the HypertextProtocol class after
parsing and before the execution phase of client requests.

1..*
opq->insert(op)

operation()
dispatch ()

OperationProcessor

Execute()
Undo()

DomainOperation

openNode createLink traverseLink

HMDomain
<<Execute>>

insert()
remove()

OperationQueue

HypertextProtocol <<create>>

Response

Figure 3: Service execution

The HypertextProtocol class enqueues all operation instances by
calling the Operation method of the OperationProcessor class.
There is exactly one OperationProcessor instance for every
structure server. Thus, an OperationProcessor constitutes a
singleton [12]. The OperationProcessor class maintains the
operation objects in the OperationQueue, and schedules their
execution. The OperationQueue class may arrange the operations
by priority and decide which operation is ready to be executed by
calling the operation’s canExecute method. Operations are
dequeued and executed concurrently by calling the appropriate
methods of the HMDomain class. Each operation executes in a
separate thread of control. The output of each operation is
available through a specific class (see Response class in Fig. 3)
that is used to send replies back to clients.
During structure server evolution, developers can systematically
approach the problem of constant change in the domain
operations, in the protocol specifications and in their bridging.
New operations can be added during design time by extending the
DomainOperation class and delegating execution to the
appropriate domain specific interface method. Since identification
and invocation of the operation are provided by the framework at
run-time, developers can focus only on semantic aspects of the
operations. In addition, the framework provides the foundation for
supporting a number of advanced (but necessary) capabilities,
such as the undo/redo operations, as well as transaction manage-
ment for all structure servers in a uniform manner, thereby
reducing maintenance efforts.

3.2 Design Patterns at the Web Application
Layer
While the previous sections presented design patterns that
facilitate the evolution of structure server when new web
applications requirements emerge, the following design patterns
address concerns at the web application layer and in particular
attempt to address issues that deal with hypermedia service
invocation.
With respect to invocation, the patterns aim at providing
mechanisms to achieve the following:

1. provide a single point from which requests to the
hypermedia services originate.

2. Offer templating mechanism for re-occuring invocation
schemes.

3.2.1 Single Invocation Point: Dispatching requests
Everytime developers need to issue requests from the web
application layer to Callimachus they place code (e.g. that uses
the API for accessing hypermedia services) in different web
application modules. Such approach to hypermedia service
provision results in code that is unstructured and thus
unmaintainable. The question here is how can be hypermedia
service invocations be systematically integrated into web
applications reducing thereby maintainance efforts.
Systematic integration is achived by using the action dispatcher
design pattern. The action dispatcher design pattern provides a
single access point for communication with hypermedia services,
selecting the appropriate action by dispatching centrally all
incomming requests. Firgure 4 depincts the action dispatcher
design pattern.
In Figure 4, all requests for hypermedia services are dispatched by
the Dispatcher class that creates the appropriate operation that
needs to be requested from structure server. Thus, every operation
that is available by a particullar structure server is represented as
a separate class. Each such class, in turn, extends a generic Action
Handler class.

Figure 4: Dispatchign requests

Selection of the specific operation (or action) is done using a
creational pattern (e.g. factory method).

3.2.2 Request chaining
At the web application layer and specifically during the handling
of a particular user request, a number of hypermedia services need
to be invoked sequentially – passing responses from one
invocation to the other - to complete a user transaction. Moreover,
situations arise where hypermedia and content services need to be
invoked sequentially to produce the final response that will be

Dispatch()

CreatesDispatcher

Handle()

Action Handler

Handle()

OpenDir

Handle()

createDir

Handle()

copyTree

Response

sent back to the user. Similar invocations schemes are used within
the web application layer (and not only in relation with
Callimachus) such as validating user request using filters before
invoking hypermedia services.

Figure 5: Sequential invokation of operations

Figure 5 depicts the design pattern to support sequential
invocation schemes. Currently at the web application layer, two
types of operations can be chained: filter and hypermedia service
invocations. Actions that need to be invoked within such “chain”
need to extend the appropriate class providing developers a
convenient way to specify sequential invokation of services and
operations in general.

4. CONCLUSIONS AND FUTURE WORK
In this paper we presented design patterns that address evolution
concerns in web application that are based on SOA. In particular
we described what design pattterns have been implemented within
the Callimachus project – a CB-OHS- that provides hypermedia
services to a broad range of clients including web applications. In
Callimachus, design patterns are used to address evolution and
maintenance concerns at the web application and hypermedia
service layer. Although the design patterns mentioned are already
known, we have discussed them in a service oriented context.

Future work includes identifying additional design patterns to
address even more elaborate evlolution scenarios. We believe that
design patterns have a particular role to play when building web
applications on SOA.

5. REFERENCES
1. Ginige, A., Murugesan, S., Web Engineering: An

Introduction, IEEE MultiMedia, 8(1), Jan.–Mar. 2001,
pp. 14–18. (CHI ’00) (The Hague, The Netherlands,
April 1-6, 2000). ACM Press, New York, NY, 2000,
526-531.

2. Papazoglou, M. P., Georgakopoulos, D. (eds.), Service-
Οriented Computing, Communications of the ACM, 46(10),
2003.

3. Agrawal, R., Bayardo, R. Jr., Gruhl, D., Papadimitriou, S.,
Vinci: A Service-Oriented Architecture for Rapid Development

of Web Applications, in Proceedings of the 10th Int’l
Conference on World Wide Web (WWW ’01, Hong Kong,
Hong Kong), 2001, pp. 355–365.

4. Wiil, U. K., Nürnberg, P. J., Hicks, D. L., Reich, S., A
Development Environment for Building Component-Based
Open Hypermedia Systems, in Proceedings of 11th ACM Int’l
Conference on Hypertext and Hypermedia (Hypertext ’00, San
Antonio, Texas, USA), 2000, pp. 266–267.

5. Nürnberg, P. J., Leggett, J. J., Schneider, E. R., As We Should
Have Thought, in Proceedings of the 8th ACM Int’l Conference
on Hypertext and Hypermedia (Hypertext ’97, Southampton,
UK), 1997, pp. 96–101.

6. Tzagarakis, M., Avramidis, D., Kyriakopoulou, M., Schraefel,
M., Vaitis, M., Christodoulakis, D., Structuring Primitives in
the Callimachus Component-Based Open Hypermedia System,
Journal of Network and Computer Applications, 26(1),
January 2003, pp. 139–162.

7. Vaitis, M., Papadopoulos, A., Tzagarakis, M., Christodoulakis,
D., Towards Structure Specification for Open Hypermedia
Systems, in Proceedings of the 2nd Int’l Workshop on
Structural Computing, Springer-Verlag LNCS 1903, 2000, pp.
160–169.

8. Wiil, U. K., Multiple Open Services in a Structural Computing
Environment, in Proceedings of the 1st Int’l Workshop on
Structural Computing (SC1, Darmstadt, Germany), Technical
Report AUE-CS-99-04, Aalborg University Esbjerg, Computer
Science Department, Denmark, 1999, pp. 34–39.

9. Beringer, D., Melloul, L., Wiederhold, G., A Reuse and
Composition Protocol for Services, in Proceedings of
Symposium on Software Reusability (SSR’99, Los Angeles,
California, USA), 1999, pp. 54–61.

10. Buschmann, F., Meunir, R., Rohnert, H., Sommerland, P., Stal,
M., Pattern Oriented Software Architectures: A System of
Patterns, John Wiley & Sons, 1996.

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995.

12. Hu, J., Schmidt, D. C., JAWS: A Framework for High-
performance Web Servers, in Fayad, M., Johnson, R. (eds.),
Domain-Specific Application Frameworks: Frameworks
Experience by Industry, John Wiley & Sons, 1999.

13. Dart, S.: Configuration Management: the missing link in
Web engineering. Artech House, 2000.

14. Karousos, N., Pandis, I., Reich, S., and Tzagarakis, M.
(2003). Offering Open Hypermedia Services to the
WWW: A Step-by-Step Approach for the Developers.
In Proceedingss of Twelfth International World Wide
Web Conference WWW2003, (Budapest, Hungary), pp.
482-489.

15. Wiil, U., Nurnberg, P., Evolving hypermedia middleware
services: Lessons and observations. Proceedings of the
Thirteenth ACM Symposium on Applied Computing (SAC
99), San Antonio,TX, US, Mar.,1999

executionUnit

execute()

Execute()

Filter

Execute()

<<Next>>

ServiceMethod

Execute()

CheckSession LogAction

Execute()

	INTRODUCTION
	Service Oriented Architectures (SOA)
	The Callimachus Component Based Hypermedia System.

	Design Patterns
	Design Patterns at the Hypermedia Service Layer
	Protocol Handlers
	Service Execution

	Design Patterns at the Web Application Layer
	Single Invocation Point: Dispatching requests
	Request chaining

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

