Towards Empirical Validation of Design Notations for Web
Applications: An Experimental Framework

Paolo Tonella!, Filippo Ricca!, Massimiliano Di Penta?, Marco Torchiano?®
HTC-irst, Trento, Italy
2University of Sannio, Benevento, Italy
3Politecnico di Torino, Italy

tonella@itc.it ,ricca@itc.it, dipenta@unisannio.it, marco.torchiano@polito.it

ABSTRACT

Web application design involves at least one additional di-
mension over traditional software design: navigation, as sup-
ported by hyperlinks. Available design notations for Web
applications offer enhanced separation of different design
concerns (among which, navigation) and promise increased
understandability and maintainability. However, such claims
have not yet been tested in the field.

In this paper, we propose a framework for the execution of
empirical studies aimed at assessing the cost-effectiveness of
Web design notations. The context of the empirical studies
is a typical maintenance and evolution scenario, involving
activities such as program comprehension, impact analysis
and change implementation. The most important obstacles
and challenges in the design of such studies will be consid-
ered in this paper. We will propose counter-measures and
possible mitigations for them. Finally, we will instantiate
the framework into a specific empirical study that we plan
to conduct in the next few months.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-

niques; D.2.7 [Distribution, Maintenance, and Enhance-

ment|:

Keywords
Empirical Studies, Web Applications, Design Notations.

1. INTRODUCTION

Web application design is a complex activity which requires
the ability to deal with multiple and different kinds of con-
cerns. A Web application is typically composed of various
parts that need to be modeled at design time. Among them,
the most important ones are persistent data, business logic,
navigation structure, user interface. Other relevant concerns
include security, transaction management, authentication.

All these dimensions of a Web application must be addressed
properly in the design documents.

Several design notations and methodologies have been pro-
posed in the literature, in an attempt to provide solutions
to the problems mentioned above. Among the most refer-
enced approaches are WebML [2], UWE [6], WSDM [10],
OOHDM [9], Conallen [3]. Many of these notations are ex-
tensions of UML [8]. Their most distinctive feature is typi-
cally the ability to model explicitly the navigation structure
of a Web application through a dedicated model. Such a
model is often accompanied by “more traditional” entity-
relationship (or similar) models (for the data), static and
behavioral models (e.g., class, interaction and activity dia-
grams) for the business logic, etc.

Separation of concerns during Web application design is
clearly important during the initial development. However,
it poses many problems during the maintenance and evolu-
tion phase, which actually accounts for the vast majority of
an application’s life cycle[4]. In fact, it is hard to keep the
different views up to date and aligned. Traceability towards
the implementation may be also problematic. The overlaps
and interferences between different models may be hard to
detect. Overall, it might be not so obvious that the benefits
encountered during the initial development are kept during
the evolution phase, if assessed against the associated costs
(updates, alignment, traceability, etc.).

In such a context, it is extremely important to precisely un-
derstand the relative merit of the various models that have
been proposed in the literature, once considered during the
maintenance and evolution of an existing Web application.
It might be the case that some design notations are useful
mainly during the initial development, while becoming only
marginally useful later, with a negative cost-benefit trade
off. Others might on the contrary reveal themselves as pow-
erful tools that can be used to tackle the typical maintenance
and evolution scenarios. Gathering such knowledge is fun-
damental for the final user, who would be able to make an
informed decision. However, no empirical study was con-
ducted so far in this direction. In the literature, Web design
methodologies are evaluated only on small examples con-
structed ad-hoc by the proponents or through isolated case
studies, whose results cannot be usually generalized and do
not provide any comparative information.

Goal Analyze the support given by Web design notations to the comprehension and
modification activities during evolution.

Null hypothesis

No significant effect on effectiveness of task execution and quality of the result.

Main factor

Design notations being validated.

Other factors

Systems, tasks, subjects and subject skills, training, tools.

Dependent variables | Knowledge acquired, capability to locate changes precisely, quality of the result.

Table 1: Template for the empirical studies.

In this paper, we propose a framework for the execution of
empirical studies aimed at comparing different design no-
tations in order to assess the support they provide to the
maintenance and evolution of Web applications. The aim of
the framework is to support systematic and controlled ex-
ecution of experiments for the empirical validation of Web
design notations. The framework specifies the high level goal
and research questions of the studies, identifies the relevant
factors and proposes ways to deal with the main challenges.
An instance of the framework is a specific empirical study,
for the assessment of specific notations in a specific evolution
scenario. In this paper, an instance related to the validation
of the stereotyped class diagrams (following the Conallen’s
notation) is presented.

Section 2 describes the framework, while Section 3 presents
one example of instantiation of the framework, which is the
empirical study we are going to conduct in the next few
months. Conclusions and directions for future work are
drawn in Section 4.

2. TEMPLATEFORTHEEXPERIMENTAL
DESIGN

Table 1 summarizes the main elements of the experimen-
tal framework. Such a template follows the guidelines from

well-known experimental software engineering books by Wohlin

et al. [11] or Juristo and Moreno [5].

The general goal is quite clear: assessing Web design no-
tations in the maintenance phase. When instantiating the
framework, the general goal takes the form of a specific val-
idation objective that addresses a specific question about
the relative merit of specific notations, selected among those
available in the literature.

2.1 Hypothesis

The null hypothesis is that the treatments being compared
(e.g., two design notations) exhibit no significant difference.
When the null hypothesis can be rejected with relatively
high confidence, it is possible to formulate an alternative
hypothesis, which typically admits a positive effect of one
design notation in the execution of maintenance tasks. The
alternative hypothesis can be further specialized according
to the specific context in which it holds (see Table 3). In
turn, this is characterized by the independent variables (see
discussion of other factors below). The alternative hypoth-
esis is formulated in terms of the main independent variable
controlled in the experiment, i.e., the design notations being
used.

2.2 Treatments

The treatments compared can be either two alternative web-
specific design notation or a general purpose notation and a
web-specific notation.

2.3 Objects

In order to support maximal internal and external valid-
ity of the studies, all the other independent variables that
may affect the outcome of the study must be taken into ac-
count and possibly controlled. These include the software
systems that are the object of the maintenance tasks and
the tasks themselves. To mitigate the effect of these factors
on the experiment’s validity, the subject systems should be
selected with features (size, complexity, functionality) that
are typical of real Web applications. The tasks should be
representative of the activities carried out by Web develop-
ers in their daily work.

2.4 Subjects

The subjects executing the maintenance tasks are another
crucial factor affecting the possibility to generalize the out-
come of the study. To mitigate the effects of this factor,
proper training should be given to the involved subjects, so
as to ensure a common, basic knowledge of the technologies
involved in the experiment, as well as of the design nota-
tions being validated. Moreover, questionnaires can be used
to assess the actual skills of the participating subjects and
to (possibly) include them among the factors (independent
variables) being considered. Such an assessment allow to
properly design the experiment, ensuring a uniform distri-
bution of subjects with high and low ability across all ex-
periment groups. Moreover, the awareness of the subjects’
ability permits to use blocking [11] when analyzing the re-
sults.

The tools provided to the subjects and the associated pro-
gramming environment must be also selected carefully, so
as to mimic, as much as possible, the working environment
used for Web development.

2.5 Procedure and design

As discussed above, several factors affect the internal and
external validity of an empirical study such as the one we
are proposing. We already described ways to mitigate their
effect on the generality of the results. For some of them,
an additional method is counter-balancing, which can be
achieved through careful design of the experimental sessions.

Table 2 shows an experimental design which balances the ef-
fects of the software system under maintenance, of the order
of the treatments and of the learning curve of the involved
subjects. This is achieved by dividing the subjects into four
groups and involving them in at least two experimental ses-
sions (laboratories). The order in which the systems under

Goal

Analyze the use of stereotyped UML diagrams reverse engineered from the code.

Null hypothesis 1
Null hypothesis 2
Null hypothesis 3

No significant effect on comprehension level.
No significant effect on impact analysis.
No significant effect on maintenance result.

Main factor

Stereotyped (Conallen’s) UML diagrams vs. traditional UML diagrams.

Other factors

Systems (TuDu and DMS), tasks (comprehension, impact analysis and maintenance),
subjects (students), training, tools.

Dependent variables

Comprehension level, accuracy of impact analysis, quality of modified code.

Table 3: Template instance for validating the use of stereotyped (Conallen) UML class diagrams in software

maintenance tasks.

| | Group1l | Group2 | Group3 | Group4 |
Lab 1 | Sysl-Treatl | Sysl-Treat2 | Sys2-Treatl | Sys2-Treat2
Lab 2 | Sys2-Treat2 | Sys2-Treatl | Sysl-Treat2 | Sysl-Treatl

Table 2: Experimental design.

study are presented to the subjects is reversed when consid-
ering groups 1, 2 with respect to groups 3, 4. The order of
the treatments is also reversed between groups 1, 3 and 2,
4. The combination of system and treatment is completely
counter-balanced, by covering every possible sequence of sys-
tem and treatment.

Overall, this experimental design requires the execution of
at least two experimental sessions with at least four groups
of subjects. When these constraints are met, complete bal-
ancing of the order in which systems are considered and
treatments are subministered is obtained.

2.6 Variables

In order to measure the effects of a treatment (design no-
tation), metrics must be defined that allow evaluating the
experimental hypotheses. For example, such metrics could
capture the comprehension level reached, the ability to lo-
cate the requested change and the quality of the modified
system. Questionnaires, code inspections and change im-
pact estimates are examples of techniques that can be used
to derive metrics that map to the effects to be measured.

3. INSTANTIATING THE TEMPLATE

We are planning the execution of a first empirical study that
instantiates the framework described in the previous section.
The goal of the study is to analyze the use of stereotyped
UML diagrams (following the approach by Conallen [3]),
with the purpose of evaluating their usefulness in Web ap-
plication comprehension, impact analysis and maintenance.
The quality focus is ensuring high comprehensibility and
maintainability, while the perspective is multiple:

e Researcher: evaluating how effective are the stereo-
typed reverse engineered diagrams during maintenance.

e Project manager: evaluating the possibility of adopt-

ing a Web application design and reverse engineering
tool in her/his organization.

3.1 Hypotheses

Since we are interested in how stereotypes affect comprehen-
sion level, impact analysis and maintenance, we formulate
three different null hypotheses (and the related alternative
hypotheses):

e Hpi: When doing a comprehension task the use of

stereotyped reverse engineered class diagrams (versus
non-stereotyped reverse engineered class diagrams) does
not significantly affect the comprehension level.
H,1: When doing a comprehension task the use of
stereotyped reverse engineered class diagrams (versus
non-stereotyped reverse engineered class diagrams) sig-
nificantly affects the comprehension level.

e Hpz: When doing an impact analysis task, the use

of stereotyped reverse engineered class diagrams (ver-
sus non-stereotyped reverse engineered class diagrams)
does not significantly affect the accuracy and the ef-
fectiveness in the execution of the task.
H,>: When doing an impact analysis task, the use
of stereotyped reverse engineered class diagrams (ver-
sus non-stereotyped reverse engineered class diagrams)
significantly affects the accuracy and the effectiveness
in the execution of the task.

e Hp3: When doing a maintenance task, the use of stereo-
typed reverse engineered class diagrams does not sig-
nificantly affect the effectiveness in the execution of
the task.

H,3: When doing a maintenance task, the use of stereo-
typed reverse engineered class diagrams significantly
affects the effectiveness in the execution of the task.

3.2 Treatments

The treatment considered in this experiment is the design
notation proposed by Conallen [3]. Since this notation ex-
tends UML through a set of stereotypes, the notation used
for comparison (second treatment) is basic UML, with no
Web-specific stereotype. The aim is to determine the amount
of improvement (if any) that can be obtained by means
of Conallen’s stereotypes in the maintenance and evolution
phase. A similar, prelimilary study, focused on the use of
stereotypes for comprehending applications related to the
communication domain has been conducted by Kuzniarz
et al. [7]. The authors showed that the use of stereotypes
helped to improve the comprehension. Diagrams are reverse
engineered from the code and then adjusted manually, so as
to reproduce a situation where diagrams are aligned with
the code and at the same time represent a meaningful and
compact abstraction of the implementation.

hodel Name: glossary
Package Mame: glossary
Diagrarm Mame: search
Diagram Type: Class

«Persiste nt»ﬁ
+datahase

«serylets eservlets
+GetEntries contlutless) +String-util
=<redirect=»
cgemnlets
+ErrorMSG

Mod

Fackage Name: glossary
Diagram Mame: search
Diagram Type: Class

el Mame: glossary

xF’ersistent»@
+ilatahase

s o letter)y ﬁ
= «Client Pages By ‘-' Server Page®)
+Glossary home ‘:- +String-util
<=lifike> %«Server Pagesy =sinclude=»
| +GetE ntries J
iy =slink=>
<<build>> I
=« Client Pages® eSerer Pages =
+Error <huildz> | +ErrorMSG S «Client Page
+EntryListing

Figure 1: Basic UML class diagram (left) compared to Conallen’s diagram (right).

TuDu

Files | LOC
Java 62 2929
JSP 19 1232
Total 81 4161

DMS

Files | LOC
Java 40 3731
JSP 11 1125
Total 51 4856

Table 4: Characteristics of the systems under study.

Figure 1 gives an example of the extra information provided
by Conallen’s diagrams, compared to that usually repre-
sented in standard UML class diagrams. The modeled Web
application implements a glossary. On the left is the ba-
sic UML diagram, showing the Servlet (GetEntries) and the
database. On the right, the same diagram is enriched with
Conallen’s notation. It includes the client pages generated
by the Servlets (e.g., EntryListing), the static pages (Glos-
sary home) and the hyperlinks (notation: <<link>>).

3.3 Objects

Two Web applications were selected for this study: DMS
and TuDu. Both are small/medium size applications (see
Table 4) based on the Servlet/JSP technology and down-
loaded from sourceforge.net. Although commercial or in-
stitutional Web applications may be larger, given the time
constraints of the experiment and the involved subjects (stu-
dents), it was not feasible to consider larger examples. The
application domains of the selected system is pretty typi-
cal of existing Web applications. The same holds for their
organization and overall functioning. TuDu' is an on-line

"http://app.ess.ch/tudu

application for managing todo lists supporting cooperative
work of distributed teams. It can be accessed via RSS feed.
DMS? is a document management system, providing a Web
centric interface to manage, access and distribute documents
which are kept under version control.

3.4 Subjects

The subjects participating in the study are University stu-
dents. The study will be replicated at three different sites:
University of Trento, University of Sannio (Benevento) and
Politecnico di Torino, in Italy. The participating students
are at different levels of their course of studies, ranging from
undergraduate students, to graduate and master students.
Replication with students having different levels of exper-
tise will give us the opportunity to investigate this further
dimension, by comparing the results obtained at the differ-
ent sites.

3.5 Procedure and design

Students will be trained on Conallen’s notation, as well as
all the technologies used in the target applications (e.g.,
Servlets/JSP). They will be involved in four experimental
sessions (laboratories), each lasting approximately 2 hours.
The assignment given to each group of students in each lab-
oratory follows the experimental design in Table 5, which is
an instance of the counter-balanced scheme described in the
previous section.

Each laboratory in the original scheme (see Table 5) is split
into two (Lab N-a, Lab N-b, with N = 1,2). The first lab-
oratory (Lab N-a) consists of the execution of a compre-
hension task followed by impact analysis. Comprehension
is driven by a request for change. Impact analysis consists

Zhttp://docmgmtsys.sourceforge.net /

[Groupl | Group2 | Group3 | Group4 | zrea. We tried to control as much as possible the factors

Lab 1-a | TuDu-Con | TuDu-UML DMS-Con DMS-UML
Lab 1-b | TuDu-Con | TuDu-UML DMS-Con DMS-UML
Lab 2-a | DMS-UML DMS-Con TuDu-UML | TuDu-Con
Lab 2-b | DMS-UML DMS-Con TuDu-UML | TuDu-Con

Table 5: Instantiation of the experimental design.

of an estimate of the portions of the Web application af-
fected by the requested change, The second laboratory (Lab
N-b) is the implementation of the change. The program-
ming environment will be the one students are familiar with
(Eclipse), with plugins supporting the design notation being
validated (Conallen). The treatments indicated in Table 5
are Conallen (Con) vs. basic UML (UML).

Finally, we will ask students to fill-in a survey question-
naire (both after Lab N-a and Lab N-b) regarding the task
and system complexity, the adequacy of the time allowed
to complete the tasks and the usefulness of the provided
diagrams.

3.6 Variables

The dependent variables of the study are:

e Comprehension level (hypothesis Ho1).
e Capability of doing impact analysis (hypothesis Ho2).
e Quality of the maintained code (hypothesis Hos).

In order to assess the effects of the treatments on the de-

pendent variables, we will use questionnaires, test case exe-
cution and design/code inspections, and we will measure:

1. Number of correctly answered questions and time needed

to answer them (both for the comprehension and for
the impact analysis questionnaire).

2. Functional behavior of changed code (passed test cases).
3. Time required to implement the changes.

4. Flaws in new design (determined through inspections).
5

. Code quality (determined through inspections).

4. CONCLUSIONS

The research in Software Engineering (SE) is expected to
produce scientific knowledge. However, this is difficult to
achieve since humans are typically in the loop of any novel
SE technology. This is especially true for design notations,
such as those proposed for the development of Web applica-
tions.

This work represents a first step in the direction of gather-
ing systematic knowledge [1] about the cost-effectiveness of
Web design notations. We have defined a common frame-
work for the empirical studies focused on this topic. Then,
we have instantiated the general template, obtaining the
design of the first experiment that will be executed in this

possibly affecting the outcome of the experiment. Repli-
cation at three different sites, with different subjects, will
further strengthen the results. In the design of the exper-
iment, particular care was devoted to the balancing of the
main independent variables.

A lot of future work remains to be done. First, we will ac-
tually conduct the planned experiment and replicate it at
three distinct sites. We will also encourage further replica-
tions by other researchers outside the initial project team.
We expect that the results of the study will provide feedback
on the usefulness of different design views, according to the
tasks at hand and depending on the features of the appli-
cation under study. Data on the (possibly) different behav-
iors of subjects with different skills will be also gathered.
Overall, we aim at putting the design notations proposed
for Web applications in the context of a maintenance and
evolution scenario, in order to assess their cost effectiveness.
Replication with notations different from the one considered
initially will be also fundamental to corroborate our initial
findings.

5. REFERENCES
[1] V. Basili, F. Shull, and F. Lanubile. Building
knowledge through families of experiments. I[EEE
Transactions on Software Engineering, 25(4):456-473,
July/August 1999.

[2] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla,
S. Comai, and M. Matera. Designing Data-Intensive
Web Applications. Morgan Kaufmann, 2002.

[3] J. Conallen. Building Web Applications with UML.
Addison-Wesley Publishing Company, Reading, MA,
2000.

[4] T. C. Jones. Estimating Software Costs. McGraw Hill,
1998.

[5] N. Juristo and A. Moreno. Basics of Software
Engineering Ezperimentation. Kluwer Academic
Publishers, Englewood Cliffs, NJ, 2001.

[6] A. Knapp, N. Koch, and G. Zhang. Modeling the
structure of web applications with argouwe. In Proc.
Fourth Int. Conference on Web Engineering. Springer
Verlag, July 2004.

[7] C. W. L. Kuzniarz, M. Staron. An empirical study on
using stereotypes to improve understanding of uml
models. In Proceedings of the International Workshop
on Program Comprehension (IWPC), pages 14-23,
Bari, Italy, 2004.

[8] J. Rumbaugh, I. Jacobson, and G. Booch. Unified
Modeling Language Reference Manual.
Addison-Wesley, 2004.

[9] D. Schwabe and G. Rossi. An object oriented
approach to web-based application design. Theory and
Practice of Object Systems, 4(4):207-225, 1998.

[10] O. M. F. D. Troyer and C. J. Leune. Wsdm: a user
centered design method for web sites. In Proceedings
of the seventh international conference on World Wide
Web 7, pages 85-94. ACM Press, 1998.

[11] C. Wohlin, P. Runeson, M. Host, M. Ohlsson,
B. Regnell, and A. Wesslén. Ezperimentation in
Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

