
Alessandro Marchetto and Andrea Trentini

Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano, Italy

www.dico.unimi.it

WMR 2006

A framework for

Web Applications Testing

through Object-Oriented

approach and XUnit tools

Introduction and WAAT Project

Web Modeling

OTMW

unit testing

integration testing

system testing

Case Study

Conclusions

Talk outline

Motivation:

There is an increasing need for: Web software

(more strategic), quality and reliabity, reusability,

support for legacy applications, documentation

Goal:

to be able to increase application quality

through Web applications analysis and testing

Briefly:

reverse engineering techniques applied to

Web applications to generate/extract models

(UML Class and State diagrams); and application

analysis and testing based on extracted model.

Motivation and WAAT Project

Web application (WA): set of Web documents (Web pages),

Web objects, and server components.

Web document can be: static, active or dynamic.

Application analysis are used to extract/generate model from

existing Web applications, and can be: static and/or dynamic

Static analysis: traditional source code analysis used to extract

software features (e.g., using scanner or parser)

Dynamic analysis: based on software execution, used to

extract runtime features. (e.g., capture-replay, user

controls, mutation analysis, and so on).

Definitions

Class diagrams define application structure (e.g. form,frames,script,...)

We defined a UML

Web meta-model

inspired by the

models proposed by

J.Conallen and

F.Ricca-P.Tonella.

Web Modeling

(OTMW) forward or reverse engineered models

page1

Active Web document,

e.g., HTML page with

client-side scripting

Dynamic Web document,

e.g., server page that builds

a set of client-side pages

page2

link

Active Web document,

e.g., HTML page with frames

script

HTML

F 1

F 2

F 3

page3
page2
page1

State diagrams represent application behaviour and navigational

structure (e.g. pages, links, frames, scripting flow,...).

Client-side page submits data to server-side

page, that builds response pages

....<form id=“F” action=“server.asp”....>

<input type=“button” id=“B”...>

<input type=“submit” id=“S”....>

</form>......
<%......request.form(“B”)....

if B= "" then error = 1

else response.write(“Value=” & B)....

....%>

Static Web documents,

e.g., link between pages

Extraction of several kinds of information from UML models

In particular, three different kinds of graph such as:

Class Diagram (high level) �Web Graph (WG)

* nodes = web pages

* edges = links between web pages

* (B � A) = “there is a link between B and A pages”

* used to represent the navigational system of applications

Class Diagram �Web Test Dependence Graph (wTDG)

* nodes = model classes (pages, components, etc.)

* edges = classes dependencies

* every edge is weighted with used methods and attributes

* (B� A) = B uses A = “B is test dependent on A”

* used to search the best integration orders

State Diagram � Extended Function Calls Graph (eFCG)

* nodes = functions, state of objects, pages, components, etc.

* edges = function calls, links, clicks, user gestures, etc.

* used to represent system executions

Functional testing inspired by equivalence classes testing (EC) and

by the category partition method (CPm).

Steps:

* Unit testing: to verify every software component (client/server

side pages, Web objects or components).

We may verify functionality and states of the units.

* Integration testing: to verify integrations/collaborations

among components (cluster as a unique unit).

We may verify the messages exchanged among units.

* System testing: to perform the pages-based testing to verify

the navigational system and structure of the application (i.e., in

terms of sequences of pages).

OTMW -testing framework-

Verification of:

- elements composing applications (e.g., pages, objects, and so on);

- the structure of every component

- the evolution of every component (in terms of function calls, etc.)

- the dynamically generated pages (e.g., HTML code generated

by server pages).

Main steps:

- identification of units to test in isolation (using wTDG of the AUT);

- identification of the needed drivers and stubs (using wTDG);

- test cases definition (using testing tables defined through the

eFCG of the UUT);

- test scripts definition and tests execution (using XUnit tools);

Unit testing

To identify units we use a set of rules considering the kind of

components and of dependencies among them.

Units may be:

• static HTML pages

• client side objects such as the scripting codes

• server side objects

• server pages written in PHP 4/5 and their set of dynamically

generated HTML client-side pages

• client-side scripting code generating a set of HTML pages

• Web objects and components

• etc.

the dependencies type is used to decide if a relationship may

be “breakable” (e.g., inheritances and compositions are

considered not-breakable) and to define the stubs needed.

For every UUT we build its testing table, it represents the basic

information to define test cases through a category partition method.

to build a table for a given UUT:

* we identify the unit input variables

* we extract the eFCG (it describes unit

executions in terms of function calls and actions performed)

From a given eFCG we may extract paths (=software executions)

traversing the graph and using conventional coverage criteria.

Thus, every row of the table represents a class of test cases and

may be converted in a set of test cases.

classes of

test cases

testing table

We test data or messages exchanged among units.

Web software may be written through more languages so we need

to test interactions among some different kinds of elements

(e.g., HTML-JS; JS-JS; HTML-PHP; PHP-PHP, and so on).

Steps:

- we identify sequences of units to test (using wTDG)

- then, we treat every integration cluster (group of units in the

sequence) as a single “big-unit”

- we fill the cluster testing table (using eFCGs of the cluster units)

- we define and execute the set of test cases

Integration testing

* We define the best integration order using existing OO approach

studying components dependencies and scaffolding complexity

* Often, a topological order of the elements composing the class-

dependencies graph is defined

* Unfortunately, this graph may contain cycles of dependencies so

may be impossible to define a topological order

* Existing deterministic/random strategies “break” dependencies

in cycles to obtain acyclic graphs and then to find the best orders

(e.g., minimizing number/complexity of needed stubs).

* When we have defined the testing order, we need to test every

cluster composing the sequence.

* We use the same methods and tools used for unit testing

Every cluster considered as a unique “big-unit” (black-box)

with an interface composed of the sum of all units interfaces.

Thus, we define several invocation sequences to stress methods

of all units in cluster and verify every state reachable by cluster.

We use the Web Graph representing AUT to verify its navigational

system.

A test case is a sequence of URLs requested to Web server with

their input values (if needed).

We traverse the AUT simulating user navigations and gestures:

* we extract several paths (URLs- sequences) from the graph

through some graph-coverage measures

* these sequences (test cases) are completed with input values

(using random, log-based or user manually definition)

* finally, test cases are executed (more time) performing requests

to the Web server

System testing

MiniLogin application:
* it is a simple Web application

to control reserved area via

login and password

* it is composed of few HTML,

PHP and txt files

Case Study

Testing layer:

-units

-integration

-system

fragments of eFCGs for three elements

* we extract methods, their input and used variables

* then (by the state diagram) we build its eFCG and we extract

several paths (e.g., control php (3): “Main, setCombine, verify, ret”)

* we fill the testing its table

(every row represents a path)

* we use this testing table

to define test cases (rows)

and write them using XUnit tools

we identify units

for everyone:

Unit

1

2
3
4

for a given AUT:

* we use wTDG to calculate coupling measures and we use a

genetic-based tool to find the best integration order

* thus, we need to test every cluster defined in the integration order

for every cluster:

* we use eFCGs of its units to identify sequences of methods &

variables used among units to collaborate.
e.g., (index html.Main & Javacript 1.Main & input.Main & form.Main),

formMain.user, input.onMouseOut, Javacript 1.controlUser, formMain.submit, input.

onMouseClick, Javacript 1.controlUser; and so on.

* we fill testing table for cluster and we use them to define test

cases (e.g., we may use HTMLUnit and PHPUnit to write testing script)

* we execute test cases repeating them using several input values.

Integration

1

2
3,4

5,6,7

- HTML page

with Javascript

* A test case is a sequence of URLs and input values:

< page to load, [list of parameters values] >

* Possible test cases:

- (index.html), (member.php);
- (index.html), (member.php, “username”, “password”), (access.html);

- (member.php, “user1”, “psw1”), (errorTime.html);

- (member.php,“user2”, “psw2”), (error.html), (index.html);

- and so on.

System

index.html

member.php

errorTime.html

access.html

error.html

“client-side”

Conclusions

In this presentation we have introduced our OTMW model

It may be usable to test WA through an OO approach and based

on UML models and functional testing (i.e., category partition).

The future...

Complete the implementation of framework, currently there are:

- our WebUml (reverse engineering)

- our TestUml (system testing)

- our wJenInt (genetic-based integration orders)

- existing XUnit tools

So, we need to implement:

- eFCGs extraction tool

- a tool to help testers to fill the testing tables

Comments or questions

marchetto@dico.unimi.it

