A frameworKk for
Web Applications Testing

through Object-Oriented
approach and XUnit tools

Alessandro Marchetto and Andrea Trentini

Dipartimento di Informatica e Comunicazione
Universita degli Studi di Milano, Italy

www.dico.unimi.it

WMR 2006

Talk outline

Introduction and WAAT Project
Web Modeling
OTMW

unit testing
integration testing
system testing

Case Study
Conclusions

Motivation and WAAT Project

Motivation:
There is an increasing need for: Web software
(more strategic), quality and reliabity, reusability,
support for legacy applications, documentation

Goal:
to be able to increase application quality
through Web applications analysis and testing

Briefly:
reverse engineering techniques applied to
Web applications to generate/extract models
(UML Class and State diagrams); and application
analysis and testing based on extracted model.

Web application (WA): set of Web documents (Web pages),
Web objects, and server components.

Web document can be: static, active or dynamic.

Application analysis are used to extract/generate model from
existing Web applications, and can be: static and/or dynamic

Static analysis: traditional source code analysis used to extract
software features (e.g., using scanner or parser)

Dynamic analysis: based on software execution, used to
extract runtime features. (e.g., capture-replay, user

controls, mutation analysis, and so on).

Web Modeling

Class diagrams define application structure (e.g. form,frames,script,...)

We deﬁned a UML Frame {{Iinknx {I‘Ml o
Web meta-model e <<link>p WebDocument |<>— <
. . i Lt IFrame
inspired by the o ® 1 T
Frameset Object_Class
models proposed by ‘
J.Conallen and —® ClientPage (0T serverPage (<
F.Ricca-P.Tonella. ? f‘;{nm}
= Applet windows0 pen Session
om
(5 iy
Cookie
z=submit>= Script %‘—

(OTMW) forward or reverse engineered models

State diagrams represent application behaviour and navigational
structure (e.g. pages, links, frames, scripting flow,...).

Active Web document,
e.g., HTML page with
client-side scripting

Static Web documents,

. Dynamic Web document,
e.g., link between pages

e.g., server page that builds

{ pagel } a set of client-side pages
link /script N\ 7~ ~N
\ o—(O-0 <
by
{ page2 } HTML v/ [agzel W }
*—0 ” [B s
J o / J

Client-side page submits data to server-side

Active Web document, _
page, that builds response pages

e.g., HTML page with frames

....<form 1d="F” action="server.asp”....>

/Q—>O—>O F1) <input type="“button” id="B”...>
<input type="“submit” id="S”... .>\
o— F2 </form>......
O <%......request.form(“B”)....
S ®——()—>() F3 y if B="" then error = 1

else response.write(“Value=" & B)....
..Y0>

Extraction of several kinds of information from UML models
In particular, three different kinds of graph such as:

Class Diagram (high level) 2 Web Graph (WG)
* nodes = web pages
* edges = links between web pages
* (B 2> A) = “there is a link between B and A pages”
* used to represent the navigational system of applications

ClisntP]l dymamicP buidHTML1 ClientPa

»o\:cm +O

O——0

uyind idHTHLY ClientPs

Class Diagram = Web Test Dependence Graph (wTDG)
* nodes = model classes (pages, components, efc.)
* edges = classes dependencies
* every edge 1s weighted with used methods and attributes
*(B=> A)=Buses A="“B is test dependent on A”
* used to search the best integration orders 03

22|—|5|:|
3,0 u“ o
DE

State Diagram > Extended Function Calls Graph (eFCG)
* nodes = functions, state of objects, pages, components, efc.
* edges = function calls, links, clicks, user gestures, etc.
*used to represent system executions

7 wrteFile

o |

s —V

counter ————3 end

OTMW -testing framework-

Functional testing inspired by equivalence classes testing (EC) and
by the category partition method (CPm).

Steps:

* Unit testing: to verify every software component (client/server
side pages, Web objects or components).
We may verify functionality and states of the units.

* Integration testing: to verify integrations/collaborations
among components (cluster as a unique unit).
We may verify the messages exchanged among units.

* System testing: to perform the pages-based testing to verify
the navigational system and structure of the application (1.e., in
terms of sequences of pages).

Unit testing

Verification of:

- elements composing applications (e.g., pages, objects, and so on);
- the structure of every component

- the evolution of every component (in terms of function calls, etc.)

- the dynamically generated pages (e.g., HTML code generated
by server pages).

Main steps:
- identification of units to test in 1solation (using wTDG of the AUT);
- identification of the needed drivers and stubs (using wTDG);
- test cases definition (using festing tables defined through the
eFCG of the UUT);

- test scripts definition and tests execution (using XUnit tools);

To 1dentify units we use a set of rules considering the kind of
components and of dependencies among them.

Units may be:
e static HTML pages
» client side objects such as the scripting codes
* server side objects
* server pages written in PHP 4/5 and their set of dynamically
generated HTML client-side pages
e client-side scripting code generating a set of HTML pages
* Web objects and components
* ctc.

the dependencies type is used to decide 1f a relationship may
be “breakable” (e.g., inheritances and compositions are
considered not-breakable) and to define the stubs needed.

Input Output
Actions | State Expected | [Expected
Before | Output Output
Testing Actions]

State

After ;
Testing lesting table

Wariables

For every UUT we build its testing table, 1t represents the basic
information to define test cases through a category partition method.

.) <vmiahles Input Actions clusses of
to build a table for a given UUT: || tbasasnn 7@ cases
-corpile form

* we 1dentify the unit input variables e
* we extract the eFCG (it describes unit
executions in terms of function calls and actions performed)

From a given eFCG we may extract paths (=software executions)
traversing the graph and using conventional coverage criteria.

Thus, every row of the table represents a class of test cases and
may be converted 1n a set of test cases.

Integration testing

We test data or messages exchanged among units.
Web software may be written through more languages so we need

to test interactions among some different kinds of elements
(e.g., HTML-IJS; JS-JS; HTML-PHP; PHP-PHP, and so on).

Steps:

- we identify sequences of units to test (using wTDQG)

- then, we treat every integration cluster (group of units in the
sequence) as a single “big-unit”

- we fill the cluster testing table (using eFCGs of the cluster units)

- we define and execute the set of test cases

* We define the best integration order using existing OO approach
studying components dependencies and scaffolding complexity

* Often, a topological order of the elements composing the class-
dependencies graph is defined

* Unfortunately, this graph may contain cycles of dependencies so
may be impossible to define a topological order

* Existing deterministic/random strategies “break” dependencies
in cycles to obtain acyclic graphs and then to find the best orders
(e.g., minimizing number/complexity of needed stubs).

* When we have defined the testing order, we need to test every
cluster composing the sequence.

* We use the same methods and tools used for unit testing

Every cluster considered as a unique “big-unit” (black-box)
with an interface composed of the sum of all units interfaces.

Thus, we define several invocation sequences to stress methods
of all units in cluster and verify every state reachable by cluster.

System testing

We use the Web Graph representing AUT to verify its navigational
system.

A test case 1s a sequence of URLSs requested to Web server with
their input values (if needed).

We traverse the AUT simulating user navigations and gestures:

* we extract several paths (URLs- sequences) from the graph
through some graph-coverage measures

* these sequences (test cases) are completed with input values
(using random, log-based or user manually definition)

* finally, test cases are executed (more time) performing requests
to the Web server

Case Study

MiniLogin application: Y Y N pyey)
* . . 3 : < nda_fbemil 1) =submitss ’
it 1s a simple Web application rete L =
to control reserved area via S I * P L
151 7] + 4 | Aelinkes

login and password
* it is composed of few HTML, ‘““' -

PHP and txt files

li=niPag=_html 7l

+r|-:-ru preTime_html |1 1‘

4
% lirkr =
Frrl:lr_h‘lrnl (2]~

=]

1
l

FalseSubrt

Te
Ilain cnntm]DatTt-c‘frd—‘_)
l Eh“)a]BrMsg
controlPsw X

DntmlUserH_,__)

fﬁend

(&) lavasenpt 1

I writeFile

rﬂ’*‘/l
P

countey ——= end

{27 meraber_php

o getCormbine
Ml_,/:‘«'eﬁfy ;l.él I
TS Testing layer:
WS g lay
splitString — yend -unltS
s -integration

-System

fragments of eFCGs for three elements

[]
l l nlt Taput Crutput
Vanables Actions state Expected Expected State
Befors Output utput After
Testing Actions] Testing
ConoLphap
)]
: : : $user, Spsw li.class instantion new String | SuserSpaw
We ldentlfy unlts 2.call setCombine() egual to stings
3 read rehuned value fusec$psw | concatenation
)
for everyone: $user, $psw | 1.class instantion “one” or Suser Spaw
2.call setCombine() “two” or” stings
3.call verify “theree” or | concatenation
nsing 2. result “error” and
4 read returned value verification

* we extract methods, their input and‘used variables

* then (by the state diagram) we build its eFCG and we extract
several paths (e.g., control php (3): “Main, setCombine, verify, ret’)

* we fill the testing its table
(every row represents a path)

* we use this testing table E:E%%:;gggg:;:5;‘}35;%3,:3%Igﬁlgﬁffmmeﬂtﬂaﬂe-Php’*a'

d f clasg controlTest extends {
FPHEFmit2 Framework TeastCaaes
tO e 1ne teSt Cases (rOWS) public functien testsetCombineVerifv correct ()|
. . . 1 Soontrol=-new contreoll);
P . - F
and write them using XUnit tools Juser-Uscrl’,
SexpectedOutput="cone’ ; 2
Soutputl=Scontrol ->getCombine (Suser, Spaw) ; 3

Soutputi=Fcontrol->verifyv (Soutputl};
Sthig-=assertBquals (SexpectedOutput, Soutputl);

4

Integration

for a given AUT:

* we use wTDG to calculate coupling measures and we use a
genetic-based tool to find the best integration order

* thus, we need to test every cluster defined in the integration order

for every cluster:
* we use eFCGs of 1ts units to 1dentify sequences of methods &

variables used among units to collaborate.
e.g., (index html.Main & Javacript 1.Main & input.Main & form.Main),
formMain.user, input.onMouseOut, Javacript 1.controlUser, formMain.submit, input.
onMouseClick, Javacript 1.controlUser; and so on.

* we fill testing table for cluster and we use them to define test
cases (e. g., we may use HTMLUnit and PHPUnit to write testing script)
* we execute test cases repeating them using several input values.

Input Clutput
Variables Actions State Expecied gfpecred State
Before Output tput After
Techinm Actions] Testing
Clnster 1
(1) ptaglUsemame.
1 load index_html de formMain user ptagUsername=— login and pTaELse:mme—
2 put user string formMain psw iz String’ password ‘is String” and
I 3 onMouseOut activation 1udex_htmlp ptagUsername) | +alert{Number Sedning) | verification ‘ptagPassword=—
/ -1 u:a]l u:u:uuémlL sername) de index_html ptagPassword) undef
51
Rfouse 1-:1: activation
CMICDuHDUDan
Ulnster =
|?
fusername | 1{oad index html def] formMain user) access OK + username and
$password | 2 put real username def{ptagPassword) load access_html + password
3 put real password
4 click submit
3 load access_himl
I5 it contains gif and link
7 click link
- HTML page
import com.gargoylesoftware.htmlunit. +; Wlth Javascrlpt
import java.net.URL;
import com.gargoylesoftware.htmlunit.html. ;
import junit.framework.TestCase;
import java.util.s;
public class SimpleHtmlUnitTest extends junit.framework.TestCase |
public void testHomePagel () throws Exception {

WebClient webllient =
java.net .URL url =
HtmlFPage page =
asaertbBEqualas (Home Page’,

new
({HtmlPage)

new WebZlient () ;
java.net .URL{ "http://
webZlient .getPage (url) ;

page .getTitleText ()] ;

HtmlForm form = page.getFormByName (' formMain®) ;

HtmlTextInput textField= (HtmlTextInpu
textField. setValuslttrikbute ('prova’) ;

HtmlPage appWindow=(HtmlPage) page.executedavaScriptIfPoasible | 3 4
textField.getOnMouseOutAttFibute (],

asaertBEquals (* Home Page‘ '
asgertBquals ' Taername ia String’,

HtmlSubmitInput button =

appWindow.getHtmlElementById (' ptagUsernams’
(HtmlSubmitInput) form. get InputB}-Hame ("Submit’) ;

List collectedAlertas = new ArraylList () ;
webllient . aetilertHandler { new CollectingAlertHandler (collectedAlerts) | ;

HtmlPage newPage =

assertBEqualsas (

(HtmlPage) button.clicki) ;

List expectedAlerts = Collections.singleton
expectedilerts,

collectedllerts)

TCegtb T

3 form.getInputByName (‘username’) ;

l:::::a.ihr::ﬂ.t :28080/alex/logred2/index. html")} ;

Talee, textField) .getNewPage) ;

appWindow.getTitleText ()] ;

cgetFirstChildl) .

List (" Number sending’);

aaText () };

[or 'Humberc sending’]

* A test case 1s a sequence of URLs and input values:
< page to load, [list of parameters values] >

* Possible test cases:
(mdex html), (member.php);

- (member.php, “useri”, “pswi’), (errorTime.html);
- (member.php,“user2” “pst”), (error.html), (index.html);

- and so on.
index.html

@\Smember. php

‘client-side”

error.html gi errorT ime.html

access.html

Conclusions

In this presentation we have introduced our OTMW model
It may be usable to test WA through an OO approach and based
on UML models and functional testing (1.e., category partition).

The future...
Complete the implementation of framework, currently there are:
- our WebUml (reverse engineering)
- our TestUml (system testing)
- our wlenlnt (genetic-based integration orders)
- existing XUnit tools

So, we need to implement:
- eFCGs extraction tool
- a tool to help testers to fill the testing tables

Comments or questions

marchetto@dico.unimi.it

