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Schöfferstrasse 8B, D-64295 Darmstadt, Germany, stefan.zander@h-da.de

Abstract. Clinical pathways play a crucial role in the rehabilitation
process of patients during and after a clinical stay. Posterior to the clini-
cal stay, patients are usually left to their own devices. This fact hampers
the adequate treatment of the patient as there is no longer a technical
controlling and guiding instance. For this reason, this work describes the
current status of the virtual coach, a) a semantic representation frame-
work for clinical pathways with their immanent exercises and combines
this semantic representation framework with b) a reinforcement learning
approach for computing the optimal exercise severity level according to
the current patient capabilities and recovery. The semantic representa-
tion and linkage of heterogeneous Internet of Things (IoT) devices to
medical exercises helps to monitor and adjust exercise recommendations
according to sensed environmental states. The combination of IoT with
semantic web technologies as well as reinforcement learning contributes
towards an optimal rehabilitation process.
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1 Introduction

Patients who have lost or weakened their motoric capabilities due to an accident
or disease have to perform—during as well as after their medical treatment—
exercises in order to train their lost motoric capabilities. The exercises are defined
by the patient’s physician or physiotherapist and follow a strict and concrete
sequence. Usually, the patient’s physiotherapist has to coach and check during
the exercises if they are performed correctly by the patient. This requires that
the patient has to perform these exercises during a hospital stay in frequent
sessions under control of the physiotherapist. Mostly, after the hospital stay, the
exercises have—depending on the disease or impairment—to be continued by the
patient alone. However, the patient has no instructor who controls and supports
the patient during the exercises repetition what can lead to a wrong appliance of
exercises and worsen the recovery progress. This observation shows the necessity
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of a virtual coaching system for coaching the patient individually, in particular
after the hospital stay through appropriate and adequate exercises.

This works aims at addressing certain IoT challenges using semantic web
technologies. Especially, monitoring and making sense out of sensed data to-
gether with adaptability are crucial challenges that need to be addressed in
medical recovery scenarios. Moreover, we describe a concept for semantically
representing clinical pathway exercises in relation with the IoT related obser-
vation system. Based on semantic exercise descriptions, reinforcement learning
(RL) is applied in order to compute and create semantic optimal exercise exe-
cution paths (policies). By means of this execution paths, the virtual coach is
enabled to check the steps of the performed tasks and to recommend the next
exercise steps. Moreover, the virtual coaching system can notice by the exercise
progress which capability has been trained successfully in order to inform the
patient about his/her trained capabilities.

The remainder of this work is structured as follows. Section 2 discusses related
work in order to distinguish this work from other approaches. Section 3 describes
a possible use case scenario of a patient and his recovery process. Section 4
presents the semantic representation of training exercises as well as required
capabilities and shows how the computation of optimal task executions by means
of RL is performed. Section 5 illustrates the proof-of-concept of the presented
approach. Section 6 ends with a conclusion and gives an outlook to future work.

2 Related Work

A number of frameworks for monitoring and adjusting clinical pathways to the
patient’s characteristics already exist; however, only few of them incorporate
semantic technologies and almost none of them considers IoT technology and the
possibility of utilizing such devices for rehabilitation purposes. In the following,
we introduce the most relevant related works.

Dragoni et. al. [3] propose a semantic platform for monitoring patient activ-
ities. Their proposed platform recommends—by reasoning rules—healthy activ-
ities (e.g. healthy diets), based on the user generated data and the presented
domain knowledge. Bailoni et al. [2] developed PerKApp, a context-aware and
user-centric platform utilizing “persuasion technologies, natural language and
deep knowledge representation tools” for proposing healthier lifestyles to target
users. Wang et al. [10] propose a “generic framework for the hospital-specific
customization of standard care plans defined by clinical pathways or clinical
guidelines”. Therefore, it constructs a semantic data model in order to store
semantic clinical data and extract ordered treatment procedures. An ontology
model for generating clinical pathways by adopting organizational semiotics has
been developed by Tehrani et al. [9]. The authors apply the Semantic Analysis
Method (SAM) in order to represent clinical pathways and the Norm Anal-
ysis Method (NAM) for recognizing behavioral patterns and rules of clinical
pathways. The approach by Li et al. [6] presents a knowledge representation
framework which is built upon inputs of organizational semiotics. This com-
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puterized knowledge representation is intended to improve treatment processes
as well as the quality of medical services. In 2014, Li et al. [5] Li developed a
norm-based approach for managing clinical pathways and upon these simulating
a multi-agent system. In this approach, norms are represented by rules. Their
approach aims at the integration of pathway knowledge into treatment processes
and hospital information systems. The personalization and adaption of health-
care processes and treatment plans was also discussed by Alexandrou et al. [1].
The authors utilize an ontology together with a set of semantic rules in order to
achieve a predetermined form of process adaptability. Laleci et al. [4] develope-
d “a clinical decision support system for remote monitoring of patients at their
homes”. Their main objective is to provide a semantic multi-agent-based interop-
erability framework for heterogeneous clinical systems. Shen et al. [7] combined
a case-based reasoning approach with an ontological multi-agent architecture for
facilitating clinical decision support systems. By applying case-based reasoning,
solutions for known problems can be applied for solving similar problems.

All considered approaches aim at the representation and integration of clin-
ical pathways into electronic and heterogeneous systems. To support this, on-
tologies, rule- and multi-agent-based systems are utilized, mainly to improve
decision support systems. However, all of these approaches do neither consider
the continuation of rehabilitation processes at home nor consider the potential
of IoT devices. The patient as well as his/her capabilities and recovery progress
are not in the primary focus of the discussed approaches. Moreover, in none of
the mentioned approaches RL is applied for training agents regarding optimal
clinical pathway exercises.

3 Use Case

In this section, we provide an example use case which motivates and reinforces
the necessity of a virtual coaching system for processing environmental observa-
tions by means of IoT devices. Moreover, the use case involves a persona (Magnus
Mirks) which represents a potential target user. The use case demonstrates gen-
eral requirements, which were identified during interviews and workshops with
medical domain experts (e.g. physicians, physiotherapists, caregivers).

Magnus Mirks—a 68 year old retired teacher—got an on-pump coronary
artery bypass. After the surgery, he had to stay for two weeks at the hospital and
a physiotherapist helped him frequently to train the capacity of his lung as well as
his condition, endurance, mobility and body power. Magnus is now at home again
and knows that he has to continue to train these capabilities. Every of the learned
exercises are aligned to his health status and the treatment objectives which are
to train the mentioned capabilities. Therefore, he needs an infrastructure for
observing his exercise activities in order to evaluate his progress in training his
capabilities. Considering his situation, Magnus thinks that it would be fine to
have a virtual motivating game where he can perform his training exercises and
achieve rewards and the next level for successfully performing his exercises. He
believes that this would increase his motivation to follow the prescribed exercises
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and to fasten his recovery. In addition, he thinks, an avatar—interacting with
him in a human like way—could coach him during the performance of exercise
tasks. The example of Magnus shows the following observations: a) A framework
is necessary for observing and providing his exercise executions in a processable
format. b) A reward mechanism is appreciated by the patient as it increases the
motivation to continue the exercises. c) A human-like interaction is required by
the patient in order to get feedback regarding the performed exercises and to
assure the patient about the trained capabilities. In the next section, we discuss
how these requirements are addressed by the presented approach.

4 Approach

The presented virtual coaching system comprises several different system compo-
nents. However, we just present three of them: a Web of Things (WoT) server for
abstracting IoT devices, a RL agent for computing optimal exercise policies and
a Semantic MediaWiki(SMW)3—enhanced with an extension and templates—
for creating a semantic representation of clinical pathway relevant entities (e.g.
IoT devices, user profiles, disease profiles, medical exercises). These components
are discussed in the following subsections. Section 4.1 introduces the seman-
tic representation of exercises and user capabilities. Section 4.2 shows how the
semantic representation conduces to the RL approach for recognizing exercise
states and computing according to these states the optimal task executions. Sec-
tion 4.3 presents the exercise modelling tool4 for physicians. This tool allows the
physicians to provide semantic exercise descriptions without being an expert in
semantic technologies. In order to provide a framework for physicians, we have
chosen SMW. SMW is a content management platform which enables its users
to provide semantic RDF(S) representations of wiki pages. These semantic rep-
resentations are used by the coaching system in order to process relevant infor-
mation about the patient and the medical exercises. Furthermore, semantic web
technologies are applied because of their expressiveness and immanent shared
understanding. They allow an adequate description and linkage of the related
exercises to required capabilities and the patient’s performed actions. In addi-
tion, we consider in the representation the involved sensors in order to describe
exercise states and recognize the current state of performed exercise tasks. The
linkage between all these semantic entities allows the virtual coaching system to
compute optimal exercise paths and to provide these to the coaching avatar for
supporting the patient during the exercise execution. Figure 1 illustrates the big
picture of the virtual coaching framework.

3 For more details, see: https://www.semantic-mediawiki.org/wiki/Semantic_

MediaWiki
4 SemanticStateChart extension for SMW

https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
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Fig. 1. The architecture of the virtual coach

The WoT server provides by different IoT adapter components an abstrac-
tion layer between heterogeneous IoT devices of the environment and the running
virtual coach. The IoT device specific protocols are implemented and transferred
by these IoT adapters into a general JSON-LD representation. The WoT itself
uses the JSON-LD messages for communicating with the virtual coach and a da-
ta store. The data store collects sensor events and performed actions in order to
provide for machine learning agents data samples. Every IoT device is described
by events (evoked by the device), actions (triggering the device) and additional
properties. The virtual coach agent subscribes at the WoT for all registered IoT
devices and is informed as soon as a device is changing its state. Subsequently,
the virtual coaching agent requests from the SMW all available state represen-
tations and deduces by them and the received IoT device states the appropriate
state of the environment. A state is a representation of the environment and
can be considered as an observation about the current sensed context (e.g. Us-
er is in LivingRoom, User is awake, Kitchen is dark). Moreover, every state is
related to possible actions and a reward value that allows the virtual coaching
agent to asses the state. In a next step, the virtual coaching agent searches by
SPARQL queries, the appropriate exercise policy representation, which is linked
to the given state. If a matching policy is found, the virtual coaching agent ex-
ecutes the suggested action and its possible sub actions. The execution of an
action leads again to a new state change which is reported by the WoT server to
the virtual coaching agent. Iteratively, the virtual coaching agent performs these
process steps by means of the WoT and the policies until a goal state is achieved.
However, before the virtual coaching agent is able to follow these steps, it has to
compute beforehand the policies for given exercises. The exercises are created by
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a domain expert (e.g. physiotherapist, physician) via the Semantic StateChart
extension, which is integrated in the SMW. In order to avoid mistakes by the
domain expert, the SemanticStateChart extension purports some restrictions,
which have to be followed by the domain expert. For instance, every state re-
quires to be linked to an action. Even the goal state has to reference itself by an
action. Moreover, every state has to provide a reward value which can be either
a value of -1, 0, or 1. Every state and action has to be unique because semantic
entities are unique. The mentioned model creation rules are documented in the
SemanticStateChart extension in order to support the domain expert during the
creation of medical exercises.

The virtual coaching agent requests exercise representations which are marked
as open and computes for these exercises and for every related state the appropri-
ate action (policy). After the computation, the agent sets the exercise status to
done and creates a semantic policy representation, which it publishes in SMW,
so that it can be accessed later by the virtual coaching agent in the local net-
work. By means of these policies, the virtual coaching agent recommends to
the patient the appropriate exercise actions and deduces after every successfully
accomplished exercise, the trained capabilities.

4.1 Semantic Representation of Exercises and Capabilities

Every training exercise has a degree of difficulty. This degree of difficulty depends
on the achievements of the patient during an exercise. If an exercise can be
accomplished successfully, the degree of difficulty might be increased in order to
challenge and train the capabilities of the patient. However, it depends heavily
on the full execution of the exercise tasks whether a patient can achieve the
next exercise level. Therefore, it is required that the virtual coaching system can
recognize by e.g. optical, kinect or vital sign sensors in which execution step
the patient resides. This implies that the virtual coaching system contains an
expressive representation of the clinical pathway as well as a concrete description
of the exercise tasks and of the monitoring IoT devices.

Moreover, trained capabilities—described by OWL 2 DL and their entities—
are linked semantically to the exercise representations. The virtual coach is en-
abled by this to deduce by performed exercises the appropriate trained capabil-
ities.

Furthermore, the interaction of the coaching system with a patient is neces-
sary, in order to demonstrate or explain the moves in cases feedback is demanded
by the patient. It is necessary to tightly connect the observation system with
the semantic processing infrastructure in order to make sense out of acquired
sensorial data—in particular to assure that every step has been performed. This
section shows how sensorial data from IoT devices helps to monitor and deduce
the patient’s context (e.g. activities) in order to recommend appropriate actions
for accomplishing the given medical exercises. The proposed semantic represen-
tation uses state-action diagrams in order to present clinical pathway exercises.
The states can be considered as an aggregation of sensed sensor states and are
described by means of the Semantic Web Rule language (SWRL) since SWRL
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rules can express complex circumstances. The rules define, if the conditions for a
state are achieved. Therefore, the virtual coach observes during the exercises the
appropriate sensor states and reasons by these rules whether the sensor states
match to the appropriate state. A state itself represents an achieved task step.
Given a current state, the virtual coach can decide if the goal state of the ex-
ercise has been already achieved by checking the semantic state representation.
The definition of a goal state is prescribed by the physician during the exercise
specification. Is this the case, the virtual coach knows the patient’s next opti-
mal action to perform in order to achieve the next exercise step and degree of
difficulty because the exercises are linked to each other, ordered according to
their degree of difficulty. It is sufficient to describe the state-action diagrams in
a deterministic way, because the exercises are also deterministic and have always
an absorbing goal state. The state transitions are represented by actions which
lead to a next state. In order to transfer a state-action representation into a
semantic one, the state diagram is transferred into a RDF(S) representation.
This step is necessary, because the RDF(S) representation provides additional
knowledge about linked required capabilities for every exercise, reward values for
every state, compound device states, which represent an exercise state and about
the processing status of a task. This knowledge is used by the virtual coach in
order to reason trained capabilities. As previously mentioned, every state entity
is described by SWRL rules. Equation 1 shows the general structure of such a
rule:

Patient(?p) u Sensor(?s) u hasState(?s, ”value”)

⇒ isInState(?p,Staten)

(1)

The rule expresses that a patient ?p is in some Staten, if a sensor ?s has sensed
a certain value. The rule can contain an arbitrary count of predefined sensor
states in order to describe a semantic state entity. In this way, the virtual coach
observes certain sensor states in order to decide, which exercise state the patient
has already achieved. The exercise state entities are linked via RDF(S) proper-
ties to possible actions, which the patient has to perform to achieve the next
state. The semantic action entities describe a single movement and contain for
an explanation a human readable description. A virtual coach avatar is then
enabled to request—via a SPARQL endpoint—and read this description in or-
der to support the patient in performing the current action. In this way, every
exercise task is specified by a semantic graph representation, which is processed
subsequently by the virtual coach.

It is important to know that every exercise sequence requires a certain policy,
which the patient has to follow. The policy prescribes an action to perform in
a certain exercise state. This is especially necessary if a state allows more than
one actions to perform. Equation 2 shows a policy representation. However,
the policy is not predefined in the exercise representation. The virtual coaching
agent computes the optimal policies based on the underlying semantic exercise



8

representation in order to provide optimal exercise paths.

π∗(st) = at (2)

Every exercise step requires a certain motoric capability in order to achieve
the final state of a successfully performed exercise. In order to represent this,
capability entities are linked to exercise state entities. Axiom 3 illustrates the
linkage between an exercise state and a capability via a subsumed role restriction
axiom in OWL 2 DL.

State v ∃ requiresCapability.SomeCapability (3)

Using the previous axiom, the following RDF Turtle5 representation shows how
an assertional example representation of an exercise state looks like:

<http://192.168.2.104/vc/LegSweeping>

rdf:type :State;

:trainsCapability :Mobility,

:Coordination.

The exercise state entity LegSweeping trains two different capabilities (Mobil-
ity, Coordination). The virtual coaching agent can deduce implicitly through
the accomplished state whether the patient provides the required capabilities
for performing that exercise task. The assertional knowledge is represented by
means of SMW. Every exercise entity as well as capability requires to be created
and represented by a Wiki page. SMW generates by the page representation a
RDF(S) representation, which can be requested via a SPARQL endpoint by the
virtual coaching agent in order to compute optimal exercise paths.

4.2 The Computation of Optimal Exercise Paths

For the computation of optimal actions in certain exercise states, the virtual
coaching agent applies RL, because it allows the agent to simulate and learn
by a reward mechanism the optimal actions to perform in order to master an
exercise. Moreover, RL does not require like supervised learning, a huge amount
of datasets. Only the semantic state-action representations of exercises are suf-
ficient for computing optimal exercise policies. A policy is an optimal strategy
to achieve an objective. In this case the objective is to perform an exercise suc-
cessfully in order to train lacking motoric capabilities. According to Sutton and
Barto [8], a policy can be computed by a Q-Learning function. The function is
illustrated in Equation 4.

Q∗(St,At) =

T∑
t=0

rt+1 + α ∗max(Q∗(St+1,At+1) ) 0 ≤ α ≤ 1 (4)

5 https://www.w3.org/TR/turtle/

https://www.w3.org/TR/turtle/
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The Q-function computes for every state-action pair a cumulative reward value.
This value is determined in several episodes. An episode starts at the exercise
beginning and ends if the exercise goal state is achieved. As soon as all Q-
function values are converging, the optimal policies are found and the virtual
coach stops its computation and publishes them in a semantic representation
via SMW. Hence, the found policies are subsequently transferred into SWRL
rules. These SWRL rules are linked via semantic annotations to a policy entity.
Axiom 5 illustrates a general rule structure of every exercise policy.

Patient(?p) u State(Statex)

u Action(Actionx) u isInState(?p,Statex)

⇒ hasOptimalAction(Statex,Actionx) (5)

The given rule defines in its premise patient, state and action entities and claims
that a patient has to be in a certain Statex, which has an optimal action. This
optimal action has been computed previously by means of the RL approach. In
order to provide the computed policy, the virtual coach creates autonomously via
the MediaWiki API6 a semantically enhanced policy representation. The policy
page is linked via semantic annotations to required capabilities and the exercise
states, including the goal state. Therefore, the agent requests via SPARQL the
appropriate matching capabilities. An example query for capability-retrieval is
depicted in equation 6. The SPARQL query requests for all capabilities which
are linked to an entity of the JointRotationToStretching action class. If more
than one capabilities are returned, then the virtual coach can show the patient
that all of these capabilities are trained by performing the recommended action.

SELECT ?capability WHERE{
?capability rdf : type Category : Capability.

?capability : hasAction ?action.

?action rdf : type : JointRotationToStretching.} (6)

The published policy is used afterwards during the exercise execution by the
virtual coach for suggesting and evaluating the right exercise execution path.

4.3 The Exercise Modelling Tool

In order to support physicians at the provision of exercise descriptions, the vir-
tual coach provides via SMW an extension (SemanticStateChart) for creating
semantic exercise descriptions. Figure 2 illustrates the UI of the extension. The
physician requires to provide a state-action diagram, an exercise task name, a
goal state and a discount factor for the Q-learning function. The nodes of the
state-action diagram are representing the exercise states, while the arrows are
representing the possible actions. Additionally, to every node a reward value
has to be assigned after a colon. The extension generates after the storage of

6 https : //www.mediawiki.org/wiki/API : Main page
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Fig. 2. The SemanticStateChart extension for a graphical exercise diagram creation

this specification, a new semantic exercise representation by creating and linking
new state- and action entities in terms of annotated wiki pages. Afterwards, the
physician has the possibility to enhance via forms and templates the created
state entities with additional information (e.g. state-conditions as presented in
Section 4.1).

5 Proof-of-Concept

For evaluation purposes, we generate a sequence of medical exercises e.g. Train-
Coordination, TrainMobility, TrainEndurance, TrainPower which are related to
each other. Every exercise is linked semantically to a previous and a next exercise
while every exercise has a degree of difficulty (e.g. low, medium, high, very high).
Moreover, we create in the SMW for every exercise a capability, which is trained
through the exercise. The exercises train the following capabilities e.g. coordi-
nation, mobility, power, endurance. In the next step, we generate a simulated
patient with the following characteristics: gender: male, age: 68, history of ill-
ness: arteriosclerosis, socialization: active, impairments: decreased coordination,
endurance, power and mobility, current health status is at the beginning of the
evaluation set to low. Moreover, we create virtual sensors, which provide the
information about the current user activity. Every activity is related to and de-
fined by certain sensor state changes. The virtual sensors are connected via the
WoT server. The virtual coach subscribes for these sensors in order to receive
state changes. In the first step, the virtual coach computes for every exercise
the optimal action path for accomplishing an exercise. The computation and
creation of exercise policies lasts in average for every exercise 6 seconds. Hence,
for the four exercises the virtual coach requires 24 seconds. In order to compute
the average duration, we executed ten policy computation runs. In the next step,
the virtual patient starts with the coordination exercise. ActivitySensor1 reports
the current state in the exercise representation. According to the state, the agent
retrieves the proposed policy rule. Regarding the sent exercise states, the agen-
t deduces correctly the appropriate actions for performing the exercise. After
the agent deduces the goal state, it requests correctly the next related exercise,
which is in this case the endurance exercise. This process steps are continuing
until every exercise is successfully accomplished. Additionally, the virtual coach
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deduces and reports after every accomplished exercise, the related and trained
capability. An implemented coaching avatar leads the patient through every ex-
ercise step, depending on the patient’s accomplishments. The PoC shows that
the virtual coaching system works as expected by us. However, we also plan to
evaluate the virtual coach with the target users (e.g. physicians, physiothera-
pists, cardiological and neurological patients). Maybe some improvements may
be required in order to simplify the usability of the virtual coaching system. We
also require some strategies regarding unexpected situations. For instance, it has
to be defined a strategy for situations where the patient interrupts the exercise
without finishing it. Moreover, motivating strategies have to be considered in
order to assure the success of the patient’s rehabilitation.

6 Conclusion

The presented work has illustrated by means of an example use case the require-
ments of a virtual coaching system for a continuing rehabilitation at home. It has
been discussed, that an IoT infrastructure is necessary to monitor the patient ac-
tivities in order to improve the recovery progress of patients after a hospital stay.
Therefore, the presented work provides a semantic representation framework for
virtual medical exercises as well as for IoT devices. Based on this semantic repre-
sentation, RL is applied in order to compute optimal exercise action paths. This
is required for enabling the virtual coach to control the conduction of exercise
steps by the patient. The provided SemanticStateChart extension supports the
physicians in the creation of exercises upon which the virtual coach is enabled
to provide optimal exercise policies in order to coach the patient adequate to
his/her achieved capabilities and exercise level progress. However, clinical path-
ways are usually more complex and require more representational knowledge
than the presented one. For instance, the virtual coach requires to consider also
patient profiles (e.g. medical records, rehabilitation history), as well as the close
interaction with the responsible physicians in order to allow the physicians to
adjust the treatment of the patient. Moreover, the introduced avatar, requires
to be personalized in order to provide an individual coaching experience. It is
planned to transfer the presented approach also to other tasks and domains in
order to show the generalizability of the presented approach.
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