
Exposing Internet of Things Devices via REST
and Linked Data Interfaces∗

Sebastian Richard Bader, Tobias Käfer, Lars Heling, Raphael Manke, and
Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany
{sebastian.bader|tobias.kaefer|harth}@kit.edu,
{lars.heling|raphael.manke}@student.kit.edu

Abstract. Web technologies are widely used open standards to inter-
connect devices on virtually any platform. The W3C’s Web of Things
effort wants to bring web technologies to the Internet of Things to ad-
dress the interoperability challenges in this area and to transfer the ex-
tensive work on Web standards towards this domain. In this paper, we
report on four independently developed implementations whose aim was
to expose Internet of Things devices via web technologies, more precisely
REST and Linked Data interfaces. While they were all developed with
the same goal in mind, and with technologies that promote uniformity
on the interfaces, the implementations still exhibit different schemas and
architectures with different communication patterns.

1 Introduction

In the last couple of years, developments of embedded devices have made net-
worked sensors and actuators from various vendors in many domains affordable.
To provide a common term for considerable adoption and deployment of such
devices, the term Internet of Things (IoT) has been coined. But to expose IoT
device data and functionality on a network interface, various vendors in different
domains came up with contrary ways of describing data and interacting with the
devices. This heterogeneity makes an integrated processing of data from various
devices a hard task: For example, manufacturing machine suppliers equip their
machines with numerous networked sensors and actuators. While the machines
from the individual suppliers can be optimised using its defined methods, holistic
optimisation over the whole shop floor of a machine operator is hindered because
of incompatible protocols, data formats or other interoperability problems. Sim-
ilarly, in the smart home scenario, there are solutions like ZigBee Light Link1

(Philips Hue2, Osram Lightify3), which give interoperability on a local scale in

∗A preliminary version of this work was presented at the 2nd International Work-
shop on Interoperability & Open Source Solutions for the Internet of Things, 2016

1http://www.zigbee.org/zigbee-for-developers/applicationstandards/

zigbee-light-link/
2http://www.meethue.com/
3http://led.osram.de/led_de/lightify/lightify-produkte/index.jsp

http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link/
http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link/
http://www.meethue.com/
http://led.osram.de/led_de/lightify/lightify-produkte/index.jsp

2 Bader, Käfer, Heling, Manke, Harth

the light domain. But their heterogeneity is a non-trivial challenge when building
applications that make use of devices from different domains and vendors. This
topic needs to get addressed, at latest for the Industrial Internet of Things (also
known as Industrie 4.0), where connections between heterogeneous systems of
different companies have to be designed, built, and maintained which are driven
first and foremost by economic considerations and not common technology.

Before IoT applications can be built, the devices’ data has to be made ac-
cessible. Accomplishing data accessibility, one faces two degrees of freedom:

1. How to interact with the device to obtain the data?
2. How to describe and represent the data?

We propose to use established Web technologies to build IoT systems, thus
embracing the W3C’s Web of Things effort (see also Section 2). Specifically,
we rely on HTTP (the Hypertext Transfer Protocol), an implementation of the
REST (representational state transfer) architectural style, for the interaction
and on RDF (the Resource Description Framework), a data model for represent-
ing the data. This combination is also referred to as Linked Data as it allows a
connection of data entities through HTTP links. Although we take those deci-
sions upfront, the technologies HTTP and RDF still present us with choices for
both degrees of freedom even for 1.

Before the advent of IoT, the proliferation of mobile devices gave rise to cloud
applications that expose RESTful APIs (Application Programming Interface)
for mobile apps, which mainly only consume data. The architecture of such
cloud applications is characterised by a central server, on which all users’ data
is maintained. Such centralisation of data brought privacy issues and led to
data silos with a proprietary data model, where it is hard to get any data out.
Nevertheless, such an architecture depending on a central server is also a way
to connect IoT devices. But while in the mobile apps scenario, the distributed
and power-limited device is mainly the consumer of data, regarding IoT we have
highly distributed, unreliable and power-limited devices data producers.

In this paper, we want to present two design approaches to get data and
functionality from sensors and actuators accessible through web technologies
such that they can get integrated in applications. Those applications, as regarded
in this paper, are research prototypes that consume Linked Data APIs. The
paper is a report on four independently developed implementations, two for
each approach, that we independently carried out from scratch to provide Linked
Data access to our IoT devices. The paper is structured as follows: In Section 2,
we give basic definitions and introductions to the technical terms we use in the
remainder of the paper. We describe four implementations to get sensors and
actuators into the Internet of Things in Section 3. Last (Section 4), we summarise
our observations and conclude.

2 Preliminaries

The Internet of Things is under active development, with many standardisation
organisations (e.g. the ISO/IEC Internet of Things working group) and industry-

Exposing Internet of Things Devices via REST and Linked Data Interfaces 3

led consortia (e.g. the AllSeen Alliance4, the Open Connectivity Foundation5and
the Industrial Internet Consortium6) that work on creating and establishing
dedicated IoT standards. Given that these efforts are rather young and their
standardisation processes are in constant flux, we do not attempt to provide a
survey of the different approaches. Rather, we embrace the W3C’s effort around
the “Web of Things”7, assuming IoT is going to use established web technologies
such as URIs and HTTP. We therefore share the aim and base technologies
with the Web of Things effort, despite our research focus is different from the
standardisation work of the Web of Things group. While the Web of Things effort
is mainly concerned with descriptions of offerings and capabilities of things that
may have Linked Data interfaces, we assume Linked Data interfaces and are
concerned with the semantic data provided by the thing, the interaction with
the thing and the execution of programs that employ the thing of interest. On
the other hand, we note that there are other less widely deployed web standards
such as WebSockets, which can also be used to connect IoT devices [10].

The web can be described as a system that implements the architectural
style of Representational State Transfer (REST) [8]. We use the terminology
introduced in [8] to describe and contrast our different approaches for accessing
IoT devices as part of applications. Broadly speaking, applications following the
RESTful architectural style consist of data, connectors and components. In the
remainder of the section, we address each in turn, starting with data.

In RESTful architectures, the central notion is that of a “resource”; a resource
is any identifiable and referenceable thing in the context of an application. To
reference resources, we use URI templates as specified in [9]. To access and trans-
fer the potentially dynamically changing state of resources between components,
we need a way to represent the specific, currently valid state. In addition, those
resource representations need to include references to other resources in order
to allow linking and discovering previously unknown resources in decentralised
networked environments such as the Web or the Web of Things.

Connectors are concerned with the transfer of representations of resource
states between components [8]. Connectors provide, in other words, the means
for communication. REST defines clients, servers, cache, resolvers, and tunnels.
From this list, only the two first are relevant in the scope of this paper as
we only regard basic interactions. For the figures, we use components from the
UML component diagram, where a REST server connector is depicted as a UML
provided interface, and a REST client connector as a UML required interface. We
use the Hypertext Transfer Protocol (HTTP) [7] as our communication protocol.
An interaction between components in HTTP consist of polling, in particular a
request-response pair of messages. Depending on the type of request, the message
may includes data in the body section of the response.

4http://allseenalliance.org/
5http://openconnectivity.org/
6http://www.iiconsortium.org/
7http://www.w3.org/Submission/wot-model/

http://allseenalliance.org/
http://openconnectivity.org/
http://www.iiconsortium.org/
http://www.w3.org/Submission/wot-model/

4 Bader, Käfer, Heling, Manke, Harth

In REST, a connector to send or answer requests resides on a so-called com-
ponent. Among intermediaries (see Section 3.2), there are user agents (the client
program initiating a request to a resource) and origin servers (the source of au-
thoritative information on the resource). The terms client and server are only
concerned with the roles in an exchange of one request-response pair, as one com-
ponent may act as client in one exchange and as server in a different exchange.
For our implementations, we started out from scratch and different circumstances
made us go different routes, which we describe in Section 3.

The Linked Data principles [2] are a set of practices to publish data on the
web making use of the combination of RDF and HTTP: The first two principles
suggest to rely on HTTP URIs to identify things for the retrieval of resources.
The third principle recommends the use standard-conforming data represen-
tations such as RDF. To enable the discovery of new information, the fourth
principle advocates to include links in the representation to other relevant data.

While the Linked Data principles are about data publishing, the interaction
with web resources was not in their scope. The W3C’s Linked Data Platform
(LDP)8 specification closes the gap between the HTTP and the RDF specifica-
tion for RESTful interactions with web resources. The recommendation defines
Linked Data Platform Resources and Linked Data Platform Containers. A LDP
Resource guarantees a minimal set of common read operations and specifies how
servers publishing such resources need to react to HTTP requests. LDP contain-
ers are collections of LDP Resources with additional functionalities for creating
new resources.

3 Approaches and Implementations

The first two implementations directly connect the devices with sensors/actuators
to the web. The second two implementations use an intermediary. All approaches
expose the information in form of web resources. We describe the approaches and
implementations in this section. We cover in detail the involved components and
their interaction. We also name the vocabularies that are used for describing the
data for each implementation, but omit the detailed presentation of the RDF
data, as this is not in the focus of the paper. Yet, we provide links to the source
code of each implementation for the interested reader.

3.1 Direct Access to the Device with the Sensor/Actuator

In this section, we present two implementations that implement the REST com-
ponent type “origin server”, i. e. there is direct access to the definitive source
of information about the resources. The origin server thus implements a REST
“server connector”.

8http://www.w3.org/TR/ldp/

http://www.w3.org/TR/ldp/

Exposing Internet of Things Devices via REST and Linked Data Interfaces 5

Tessel 2User Agent

Fig. 1. Component Diagram of the Implementation using the Tessel 2.

Connecting two Modules of a Tessel 2 In this section, we describe how
we built a REST and Linked Data interface for the Tessel29. The corresponding
code can be found online10. Tessel2 is a PCB (Printed Circuit Board) that has
been developed to easily build networked sensor/actuator devices. The PCB runs
Node.js11 such that one can program the PCB in JavaScript. We use a Tessel2
PCB with the ambient module, which includes sensors for light and sound, and
the relay module, which includes two relays to switch 240V at 5A, see Figure 1.

URI Template Method Description

/ambient/ GET Returns an overview over the available sensors of the
ambient module.

/ambient/{sensor} GET Requests a reading from the sensor, i. e. light or
sound, and returns it.

/relay/ GET Returns an overview over the available power
switches.

/relay/{n} GET Returns the status for the n-th power switch.
/relay/{n} PUT Sets the status for the n-th power switch.

Table 1. API Description of the Implementation for the Tessel 2.

On the HTTP interface, we describe the board with its two sensors using the
LDP vocabulary. The root resource thus points to two resources describing the
modules through the ldp:contains property and declaring it as a LDP Con-
tainer. The ambient module points to the LDP RDF Source Resources for the
sensors in the same manner. The sensors are described as observations from the
data cube vocabulary12. The sensor readings are connected to the sensor using
a custom property. The relay module also uses the ldp:contains property to
point to its relays. The relay’s state (on/off) is also connected to the relay it-
self using a custom property. Using a PUT request on the relay’s URI sending
the new desired state of the relay leads to an update of its representation and
consequently switches the connected relay on and off. Relying on the LDP defini-
tions of Container and RDF Source Resource implicitly contains the information
about possible interaction patterns. We implemented the HTTP interface using
the Express framework13 for building Web APIs in JavaScript and JSON-LD as
way to represent the RDF data.

9http://tessel.io/
10http://github.com/kaefer3000/t2-rest-relay-ambient
11http://nodejs.org/
12http://purl.org/linked-data/cube#
13http://expressjs.com/

/ambient/
/ambient/{sensor}
/relay/
/relay/{n}
/relay/{n}
http://tessel.io/
http://github.com/kaefer3000/t2-rest-relay-ambient
http://nodejs.org/
http://purl.org/linked-data/cube#
http://expressjs.com/

6 Bader, Käfer, Heling, Manke, Harth

Raspberry piUser Agent

Fig. 2. Component Diagram of the Implementation using the SenseHat, which is
Connected to a Raspberry Pi.

Connecting a SenseHat In this section, we describe how we built a REST
and Linked Data interface to interact with a Sense Hat14, an add-on board for
the Raspberry Pi. The Sense Hat board offers several sensors (humidity, gyro-
scope, accelerometer, magnetometer, temperature, barometric pressure), and a
programmable LED matrix. The code can be found online15.

To describe the data on the interface, we use parts of the popular Semantic
Sensor Network ontology (SSN) [4]. But SSN proved not to be specific enough as
way to specifically describe one device is not part of the SSN ontology, nor how
the data of a sensing device can be structured. Therefore, we extended the SSN
ontology by the class LedMatrix. Each sensor on the Sense HAT board is an
instance of the SSN class SensingDevice, and the LED matrix of LedMatrix.
A SensingDevice is connected to the quantity kind (such as humidity and tem-
perature) it observes using the featureOfInterest property. On top of that a
SensingDevice is connected to the RDF literal representing the measured value
using the observationValue property and to the URI representing the cor-
responding unit using the observationUnit property. Those descriptions can
make use e. g. of dbpediaor the QUDT ontology16. Using the hasLed property,
the connection between a SingleLed (defined by their X and Y coordinate) and
a LedMatrix can be stated. The colour of each SingleLed can be defined using
the three RGB properties in a range from 0 and 255. We serve dereferencable
URLs for the data about the Sense Hat as described in Table 2.

We implemented the interface to the Sense Hat of the Raspberry Pi in
Python. The Sense HAT python library17 allowed to program access to the
sensors of the Sense Hat and the LED matrix. We used the framework Flask18

to implement the interaction with the resources. The library RDFlib19 served
in the serialisation and deserialisation of RDF data. Upon a request to a URI
on the REST interface, the corresponding RDF data is retrieved from the Sense
Hat, and then sent as a response. Some extra focus must be taken on the way
the LEDs can be updated when several LEDs are addressed in the same re-
quest. We rely on N-ary relations with blank nodes, with relations to the x and
y coordinates identifying the LED and an additional predicate for its new state.

14http://www.raspberrypi.org/products/sense-hat/
15http://git.scc.kit.edu/ujdpo/sensehat
16http://www.qudt.org/
17http://pythonhosted.org/sense-hat/
18http://flask.pocoo.org/
19http://github.com/RDFLib

http://www.raspberrypi.org/products/sense-hat/
http://git.scc.kit.edu/ujdpo/sensehat
http://www.qudt.org/
http://pythonhosted.org/sense-hat/
http://flask.pocoo.org/
http://github.com/RDFLib

Exposing Internet of Things Devices via REST and Linked Data Interfaces 7

URI Template Method Description

/ GET Returns information on the Raspberry Pi linking to
the installed boards, e. g. the Sense Hat.

/sensehat/ GET Returns information on the Sense Hat linking to the
sensors and the LED matrix.

/sensehat/led/ GET Returns information on the LED matrix linking to
the individual LED and all LEDs’ current value.

/sensehat/led/ PUT Overwrites the information on the LED matrix. Can
be used to set the values of the LEDs.

/sensehat/led/{x}/{y} GET Returns the colour of the LED at (x, y) on the LED
matrix.

/sensehat/{sensor} GET Returns the value of a sensor.

Table 2. API Description of the Implementation for the SenseHat.

3.2 Access via an Intermediary to the Device with the
Sensor/Actuator

In addition to the direct access to the information source we present two imple-
mentations that use an intermediary. There are two components: one component
that has a sensor/actuator connected (which we call the sensor/actuator-bearer)
and a client connector. The second component, the intermediary, with a server
connector exposing a resource that represents the state of the sensor/actuator
connected to the other component. The state of this resource is periodically
updated by the sensor/actuator-bearer using PUT requests.

What is this Approach in REST? In REST terms, this pattern is hard
to grasp. One could argue that there is a resource on the first connector that
cannot get accessed directly, because the sensor/actuator-bearer has no server
connector, and that there is a logical correspondence between the not directly
accessible resource and the accessible resource on the second component. The
resource on the intermediary ”represents” the sensor or actuator although it
is only loosely coupled. Next, we discuss the origin server and the different
intermediary component types REST offers and why they do not fit the pattern:

Origin Server An origin server is defined as “the program that can originate
authoritative responses for a given target resource” [7]. While our intermedi-
ary is the source for information on a given resource, the authoritative source
is the sensor/actuator-bearer. Moreover, the term origin server would fit for
the latter, because a characteristic of an origin server is to “be the ultimate
recipient of any request” [8]. But the sensor-bearer cannot be called origin
server, because it does not have a server connector, therefore it cannot give
authoritative responses.

Proxy A proxy is defined as “a message-forwarding agent that is selected by the
client [. . .] to receive requests [. . .] and attempt to satisfy those requests via
translation through the HTTP interface” [7]. While our intermediary is not

/
/sensehat/
/sensehat/led/
/sensehat/led/
/sensehat/led/{x}/{y}
/sensehat/{sensor}

8 Bader, Käfer, Heling, Manke, Harth

selected by the client, because the client does not know that the source of
the information is not the intermediary, our scenario looks like the example
proxy in [8, Fig. 5-10 c].

Gateway A gateway is defined as “intermediary that acts as an origin server for
the outbound connection but translates received requests and forwards them
inbound to another server or servers” [7] While in our case the intermediary
indeed acts as an origin server, it does not forward the request. On the
other hand, the encapsulation of other services is one of the examples of the
gateway, and it may communicate with other servers using any protocol [7].
Thus, the gateway could be regarded as the closest fit.

The Intermediary Strategy as a Way of Addressing IP-layer The ap-
proach with a central server is necessary e. g. in situations where the ongoing
transition from IPv4 [12] to IPv6 [5] is solved using so-called DS-lite [6] connec-
tions: In IPv4, every consumer gets one single an IPv4 address from his Internet
Service Provider (ISP), which is reachable from the Internet. For a provider to
nevertheless connect multiple devices to the internet, network address transla-
tion (NAT) [13] is used: The customer employs a router, which gets the one IPv4
from the ISP. The devices on the local network can connect to the Internet by
sending a request to the router, which replaces the local IP that initiates the
connection with his own IP, and assigns a free port to the connection. The router
then forwards data that comes to this port from the Internet to the local IP and
port that initiated the connection. All computers in the local network thus ap-
pear as one computer on the Internet. Connections initiated from the Internet
can only reach a local device if the router is configured to do port forwarding:
The router maintains a mapping from his own ports to a tuple of local IP and
port of local devices and forwards traffic accordingly.

As we go from IPv4 to IPv6, many ISPs employ a technique called Dual
Stack lite (DS-lite) [6]: Instead of giving both an IPv4 and IPv6 address to their
customers (Dual Stack [11]), ISPs only give IPv6 addresses to their customers.
If the customer requests a connection to an IPv4 address on the Internet, the
ISPs tunnel the traffic accordingly. Conversely, this means that there cannot be a
IPv4 connection initiated from the Internet, because the customer does not have
an IPv4 address. This is particularly an issue for devices on cellular network,
where typically only IPv4 is deployed. Moreover, if no further port forwarding is
employed, only connections to IPv6-enabled local devices can be initiated from
the Internet. However, not only the deployment of DS-lite is an argument for the
proposed architecture, but also the fact that it alleviates the necessity to have
access to the router with the necessary rights to configure the port forwarding.

Addressing Device Limitations using the Intermediary Strategy We
imagine two scenarios here:

– The continuous availability of the device is not guaranteed, but a high avail-
ability of the data is important. An off-the shelf caching intermediary for
HTTP would be sufficient here, though

Exposing Internet of Things Devices via REST and Linked Data Interfaces 9

– The intermediary can answer more complex requests on top of HTTP based
on the same data. To have the data both on the device and the component,
which is proposed to be an intermediary, would be an unnecessary duplica-
tion of data.

Connecting Weather Sensors and a 433MHz Transceiver In this section,
we describe how we built an Linked Data interface to (a) the functionality of a
433MHz transceiver (b) a directly connected temperature sensor. The code can
be found online20. In our scenario, the transceiver wirelessly controls two power
sockets, and receives data from a weather station, in particular temperature and
humidity values. The transceiver is connected to the GPIO pins of a Raspberry
Pi together with another temperature and humidity sensor directly connected to
the GPIO pins. In this implementation, the access to the client is implemented
indirectly: The Raspberry Pi exchanges data with a central server, which stores
data about the current state of the sensors and sockets. For the sockets, the data
on the server can also mean the desired state. One rationale for this approach
is to alleviate the necessity to directly access the clients to retrieve sensor data
and control actuators.

The implementation describes a sensor reading as Observation from the
SSN ontology. To describe the value, we use Wikidata21 and the Smart Appli-
ances Reference ontology22. The location of the reading is described using the
WGS8423 ontology. The values are described using XSD data types.

The client periodically takes snapshots from the sensors directly connected to
the Raspberry Pi. Additionally, a 433Mhz transceiver is used to first wirelessly
receive temperature and humidity values from a weather station sensor every
five minutes, and second wirelessly control two power sockets.

All data from the sensors is enriched with meta data, sent to a server where it
gets stored in a relational database. Moreover, there are records in the data base
for the sockets, too. The relational database is made accessible using a RESTful
API, which allows for requests to read and store data. On the interface the
sensors and actuators are identified using URIs and therefore can be requested
through GET requests and action for actuators can be sent using POST to the
corresponding URI.

Raspberry piUser Agent
MySQL

database

Fig. 3. Component Diagram of the Implementation for the Weather Sensors and the
433MHz Transceiver, which are connected to a Raspberry Pi.

20http://github.com/Lars-H/home-automation
21http://www.wikidata.org/
22http://ontology.tno.nl/saref.ttl
23http://www.w3.org/2003/01/geo/wgs84_pos

http://github.com/Lars-H/home-automation
http://www.wikidata.org/
http://ontology.tno.nl/saref.ttl
http://www.w3.org/2003/01/geo/wgs84_pos

10 Bader, Käfer, Heling, Manke, Harth

URI Template Method Description

/sensor/outside/{type} GET Returns the latest record of the sensor value
for the wirelessly connected weather station.

/sensor/inside/{type} GET Returns the latest record of the sensor value
of type humidity or temperature.

/actuator/plug{n}/status GET Get the current status for the n-th wireless
power plug.

/actuator/plug{n}/status PUT Set the status for the n-th wireless power plug.

Table 3. API Description of the Implementation for the Weather Sensors and the
433MHz Transceiver.

The database is a MySQL database which can be accessed using an HTTP
interface to store and retrieve data. The REST-interface is realised as a server
using the Flask Framework24 for building RESTful APIs in Python. A descrip-
tion of the API can be found in Table 3. The API supports content negotiation
for different RDF serialisations.

Connecting a SensorTag The goal of this approach is to publish various
outputs of a Texas Instruments SensorTag CC265025. The SensorTag delivers
sensors for temperature, humidity, acceleration, and light which can be accessed
via a Bluetooth Low Energy interface. The range of the bluetooth connection
limits the distance between the sensor itself and an according control unit where
at the same time the positioning of the SensorTag should not depend on space
requirements of a powerful hardware. Further on, we want to query the real-time
observations while also be able to access the whole data for analytical tasks on
the historical data.

We use the Observation from the SSN ontology to describe a sensor read-
ing, and describe the data using XML Schema datatypes, vCard26, and QUDT.
We connect the SensorTag to a Raspberry Pi Model B equipped with a Blue-
tooth 4.0 dongle. The Raspberry Pi is programmed to periodically request data
from the SensorTag using bluepy27. Bluepy supplies JSON data. Another pro-
cess (“Administration Shell” in Industrie 4.0 terminology [1]) checks whether
this data from the SensorTag has changed and if so, the process lifts this sen-
sor data to RDF and represents it as an observation according to SSN, XML

Raspberry piUser Agent
Apache

Marmotta

Fig. 4. Component Diagram of the Implementation using the SensorTag, which is
connected to a Raspberry Pi.

24http://flask.pocoo.org
25http://www.ti.com/sensortag
26http://www.w3.org/TR/vcard-rdf/
27http://github.com/IanHarvey/bluepy

/sensor/outside/{type}
/sensor/inside/{type}
/actuator/plug{n}/status
/actuator/plug{n}/status
http://flask.pocoo.org
http://www.ti.com/sensortag
http://www.w3.org/TR/vcard-rdf/
http://github.com/IanHarvey/bluepy

Exposing Internet of Things Devices via REST and Linked Data Interfaces 11

URI Template Method Description

/marmotta/ldp/ldbc GET Responds with information on the used Linked Data
Platform Basic Container

/marmotta/ldp/ldbc POST Creates a new Linked Data resource
/marmotta/ldp/ldbc/{x} GET Returns information about the data object x
/marmotta/ldp/ldbc/{x} PUT Overwrites an existing resource or creates a new one
/marmotta/ldp/ldbc/{x} DELETE Erases resource x

Table 4. The Linked Data Platform API as implemented by Apache Marmotta.

Schema datatypes, and vCard. This administration shell sends the RDF data to
a collection resource on a Linked Data Platform implementation, more precisely
to a ldp:BasicContainer. As the LDP nature of the resources is communicated
as part of the representation of the root container and its containing resources
a client receives enough information to further interact with them as specified
by the LDP specification. We use Apache Marmotta as an implementation of
the Linked Data Platform, as it both offers a Linked Data interface for RESTful
interaction and a SPARQL interface for queries demanded by our analytics use-
case. Especially for the requirements of a profound analytical application, we
assume the Raspberry Pi not powerful enough to store the amount of data and
do a sufficient query processing. That’s the reason why we have the Marmotta
instance running on an Ubuntu 14.04 based virtual machine, separating the data
management from the data producer. The code can be found online28.

4 Discussion and Conclusion

We described four independently developed implementations of a REST and
Linked Data interface for IoT devices. The interface is thus built on open stan-
dards. We hid the technology fragmentation of the sensors and actuators behind
a uniform interface and data model. The uniform interface of REST and Linked
Data makes the devices easier to connect to as a bunch, or together with other
devices that share this interface and data model. Despite this uniformity as aim
of all implementations, we ended up with four implementations varying in vocab-
ularies and interaction direction with the device that bears the sensor/actuator.

In terms of interaction direction, the implementations can be categorised ac-
cording to whether there is direct access to the device with the sensor attached
or not. While the direct access would be the expected pattern in a RESTful
architecture, there are strong reasons why in some settings the access via an in-
termediary is reasonable. The intermediary again provides a uniform interaction
direction in all implementations.

The different implementations resulted in vocabulary heterogeneity, although
the use-cases are very similar. This is because while there are elaborate estab-
lished vocabularies to describe sensors and values, there are no established simple
constructs to describe properties of physical objects. Part of the W3C’s effort
of the Thing Descriptions29 is to come up with such constructs. They note that

28http://github.com/sebbader/KSRI-KM_STEP
29http://www.w3.org/WoT/IG/wiki/Thing_Description

/marmotta/ldp/ldbc
/marmotta/ldp/ldbc
/marmotta/ldp/ldbc/{x}
/marmotta/ldp/ldbc/{x}
/marmotta/ldp/ldbc/{x}
http://github.com/sebbader/KSRI-KM_STEP
http://www.w3.org/WoT/IG/wiki/Thing_Description

12 Bader, Käfer, Heling, Manke, Harth

also on the capability description level, ontologies do not much agree on termi-
nology [3]. In the meantime, the use of the semantic data model RDF allows
for employing reasoning techniques in the applications that interact with the
devices to integrate the data described using different vocabularies.

Acknowledgements This work is partially supported by AFAP, a BMBF
Software Campus project (FKZ 01IS12051), the BMBF ARVIDA project (FKZ
01IM13001G), and the BMWi project STEP (FKZ 01MD16015B).

References

1. Umsetzungsstrategie industrie 4.0 (2015), http://www.bitkom.org/Bitkom/

Publikationen/Publikation_5575.html

2. Berners-Lee, T.: Design issues – linked data (2009), http://www.w3.org/

DesignIssues/

3. Charpenay, V., Käbisch, S., Kosch, H.: Introducing thing descriptions and inter-
actions: An ontology for the web of things. In: 1st Workshop on SemanticWeb
technologies for the Internet of Things (SWIT) at ISWC (2016)

4. Compton, M., Barnaghi, P., Bermudez, L., Garćıa-Castro, R., Corcho, O., Cox, S.,
Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The ssn ontology of
the w3c semantic sensor network incubator group. Web semantics: science, services
and agents on the World Wide Web 17 (2012)

5. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard) (Dec 1998), http://www.ietf.org/rfc/rfc2460.txt, up-
dated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112

6. Durand, A., Droms, R., Woodyatt, J., Lee, Y.: Dual-Stack Lite Broadband Deploy-
ments Following IPv4 Exhaustion. RFC 6333 (Proposed Standard) (Aug 2011),
http://www.ietf.org/rfc/rfc6333.txt, updated by RFC 7335

7. Fielding, R., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1): Message Syn-
tax and Routing. RFC 7230 (Proposed Standard) (Jun 2014), http://www.ietf.
org/rfc/rfc7230.txt

8. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. Diss. University of California, Irvine (2000)

9. Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., Orchard, D.: URI Tem-
plate. RFC 6570 (Proposed Standard) (Mar 2012), http://www.ietf.org/rfc/
rfc6570.txt

10. Merkle, N., Kämpgen, B., Zander, S.: Self-service ambient intelligence using web
of things technologies. In: 1st Workshop on Semantic Web Technologies for Mobile
and Pervasive Environments (SEMPER) at ESWC (2016)

11. Nordmark, E., Gilligan, R.: Basic Transition Mechanisms for IPv6 Hosts and
Routers. RFC 4213 (Proposed Standard) (Oct 2005), http://www.ietf.org/rfc/
rfc4213.txt

12. Postel, J.: Internet Protocol. RFC 791 (Internet Standard) (Sep 1981), http://
www.ietf.org/rfc/rfc791.txt, updated by RFCs 1349, 2474, 6864

13. Srisuresh, P., Egevang, K.: Traditional IP Network Address Translator (Tradi-
tional NAT). RFC 3022 (Informational) (Jan 2001), http://www.ietf.org/rfc/
rfc3022.txt

http://www.bitkom.org/Bitkom/Publikationen/Publikation_5575.html
http://www.bitkom.org/Bitkom/Publikationen/Publikation_5575.html
http://www.w3.org/DesignIssues/
http://www.w3.org/DesignIssues/
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc6333.txt
http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc6570.txt
http://www.ietf.org/rfc/rfc6570.txt
http://www.ietf.org/rfc/rfc4213.txt
http://www.ietf.org/rfc/rfc4213.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc3022.txt
http://www.ietf.org/rfc/rfc3022.txt

	Exposing Internet of Things Devices via REST and Linked Data Interfaces

