
Evaluating SPARQL 1.1 Property Path Support ?

Daniel Janke1, Adrian Skubella1, and Steffen Staab1,2

1 Institute for Web Science and Technologies
Universität Koblenz-Landau, Germany

{skubella,danijank,staab}@uni-koblenz.de
http://west.uni-koblenz.de/

2 Web and Internet Science Group
University of Southampton, UK
s.r.staab@soton.ac.uk

http://wais.ecs.soton.ac.uk/

Abstract. With the release of SPARQL 1.1 in 2013 property paths were intro-
duced, which make it possible to describe queries that do not explicitly define
the length of the path that is traversed within an RDF graph. Already existing
RDF stores were adapted to support property paths. In order to give an insight on
how well the current implementations of property paths in RDF stores work, we
introduce a benchmark for evaluating the support of property paths. In order to
support realistic RDF graphs as well as arbitrarily scalable synthetic RDF graphs
as benchmark dataset, a query generator was developed that creates queries from
query templates. Furthermore, we present the results of our benchmark for 4 RDF
stores frequently used in academia and industry. These results indicate that many
current implementations of property paths have several shortcomings.

1 Introduction
The SPARQL Protocol And RDF Query Language (SPARQL) is used to query data
from RDF stores. In 2008 SPARQL 1.0 became an official World Wide Web Consor-
tium recommendation [2], and has been used in academia and industry since then.

One limitation of SPARQL 1.0 was the missing possibility to formulate queries,
which do not specify the length of traversed paths during their execution. Therefore,
queries may become very complex, or it may even be impossible to retrieve complete
results with one single query.

For example it is impossible to create a SPARQL 1.0 query that retrieves all friends
of friends of a friend etc. from a social network. In order to make such complex queries
more concise, or even possible, property paths were introduced with SPARQL 1.1 in
2013. The construct <foaf:knows>* could be used in a SPARQL 1.1 query to re-
trieve all direct or indirect friends of a friend.

After property paths had been introduced, already existing RDF stores have been
adapted to support this new feature. To give insights into the current state of the integra-
tion of property paths and to detect possible shortcomings, the current implementations
of property paths needs to be evaluated. RDF store developers could use such an eval-
uation of their own property path implementation to analyse the current state of their
implementation and as help for the further development of their RDF store. In order to
provide such an evaluation we offer two main contributions in this work:

1. In section 3 we introduce a benchmark, which makes it possible to evaluate the

? This paper is based on the findings in the bachelor thesis [1]

property path support of RDF stores based on the completeness and soundness of re-
sults and the execution time of queries. This benchmark is not restricted to a specific
dataset by offering query templates and a query generator that instantiates these tem-
plates for arbitrary datasets.

2. In section 4 we present benchmark results for Apache Jena, Virtuoso, Allegro-
graph and RDF4J. These results indicate that the current property path implementation
of some stores have several shortcomings. Queries containing property paths partly have
an execution time of over one hour and for some queries RDF stores return incomplete
or even incorrect results.

2 Preliminaries
In this section common definitions for RDF, SPARQL and property paths are given in
order to define the terminology used in this work.

2.1 Resource Description Framework

The Resource Description Framework [3] is a general-purpose language for represent-
ing information in the web. It uses triples to represent the information as directed, la-
belled graphs. A graphical representation of a fictitious social network with the name
social-nw is shown in figure 1. In this figure nodes depict people, for instance snw:Ann,
which are connected by edges labelled with foaf:knows or snw:isMarried. For
better legibility prefixes can be used to abbreviate IRIs. An example for such a prefix
is given by PREFIX snw: http://www.social-nw.com/. This prefix defines
that for instance snw:Ann actually means http://www.social-nw.com/Ann.

Fig. 1: An RDF graph depicting a fictitious social network

Definition 1. RDF triple
The triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) is called RDF triple where I and L are
two disjoint sets of all IRIs and literals, respectively and B is the set of all blank nodes.
Furthermore, s is called the subject, p the predicate and o the object of the triple. [4]

An example for such an RDF triple within the social network show in figure 1 is the
IRI snw:Ann which denotes the subject, followed by foaf:knows, which is the
predicate and finally snw:Bob which denotes the object of the triple.

Definition 2. RDF graph
An RDF graph G is a finite set of RDF triples. [5]

The graph shown in figure 1 is an RDF graph. In graphs paths exist between vertices.

Definition 3. Path
A path P = (< v1, e1, v2 >,< v2, e2, v3 >, ..., < vn, en, vn+1 >) in an RDF graph G
is a sequence of triples such that (vi, ei, vi+1) ∈ G. Furthermore the length of the path
is defined by the number of triples in the path. [5]

A path with the length 2 from snw:Ann to snw:Carla in the graph in figure 1 can be
depicted as(<snw:Ann,foaf:knows,snw:Bob>,<snw:Bob,foaf:knows,
snw:Carla>)

2.2 SPARQL

SPARQL can be used to query data from a stored RDF graph. In definition 4 basic graph
patterns are defined, which are frequently used in queries.

Definition 4. Basic graph pattern (BGP)
A tuple t ∈ (I∪L∪B∪V)×(I∪V)×(I∪L∪B∪V) is a basic graph pattern, where
I, L, B and V are disjoint sets of IRIs, literals, blank nodes and variables respectively.
If P1 and P2 are basic graph patterns, then (P1 . P2) is a graph pattern.[5]

BGPs can be used with SELECT queries of SPARQL to retrieve data from RDF graphs.

Definition 5. SELECT query
If P is a graph pattern and V’ ⊂ V is a set of variables, then (SELECT V’ WHERE {P})
is a SELECT query.[4]

The semantics of graph patterns are defined in terms of mappings in definition 6.

Definition 6. Variable mappings
Mappings are partial functions from variables V to an RDF term T , which is defined
as I ∪ L.[6]

The domain dom(µ) of a mapping µ is the set of variables on which µ is defined. Two
mappings can be compatible as defined in definition 7.

Definition 7. Compatible mappings
Two mappings µ1 and µ2 are compatible (written as µ1 ∼ µ2) if µ1(x) = µ2(x) for all
variables x that are in both dom(µ1) and dom(µ2).[6]

If µ1 ∼ µ2, then µ1∪µ2 denotes the mapping obtained by extending µ1 according to µ2

on all variables in dom(µ1) and dom(µ2). The join of two sets of mappings is defined
in definition 8.

Definition 8. Join of mappings
Given two sets of mappings M1 and M2, the join of M1 and M2 is defined as:
M1 ./ M2 =⇒ {µ1 ∪ µ2|µ1 ∈M1, µ2 ∈M2,∧µ1 ∼ µ2} [6]

For a triple pattern P and a mapping µ, µ(P) is written for the triple obtained from P
by replacing each variable x ∈ dom(µ) by µ(x). In the following definition the eval-
uation [[P]]G of a graph pattern P over a graph G is defined. The set of all variables
appearing in a pattern P is denoted by var(P).

Definition 9 Evaluation of graph pattern
if P ∈ (I∪L∪V)×(I∪V)×(I∪L∪V), then [[P]]G := {µ : var(P)→ T |µ(P) ∈ G},
if P is P1.P2, then [[P]]G := [[P1]]G ./ [[P2]]G [6]

Finally the evaluation of SELECT queries is defined in definition 10.

Definition 10 Semantics of SELECT query
The evaluation [[Q]]G of a query Q of the form SELECT X WHERE P is the set of all
projections µ|X of mappings µ from [[P]]G to X , where the projection of µ|X is the
mapping that coincides with µ on X and is undefined elsewhere.[6]

Property Paths were introduced as part of SPARQL 1.1 in 2013. Property Paths make it
possible to define queries that match with an arbitrary amount of edges.

Definition 11. Property Paths
sPo is a property path where s ∈ V ∪ I , o ∈ I ∪ L ∪B ∪ V and P is a property path
expression. Furthermore sPo is a basic graph pattern.

There are several different property path expressions, which denote different paths.
These different expressions and their syntax are presented in definition 12.

Definition 12. Property Path expression
1) p ∈ I is a property path expression.
2) ˆP with property path expression P , is the inverse property path expression.
3) P1/P2, with property path expressions P1 and P2, is the sequence property path
expression.
4) P1|P2, with property path expressions P1 and P2, is the alternative property path
expression.
5) P*, with property path expression P , is the transitive reflexive closure property path
expression.
6)P+, with property path expressionP , is the transitive closure property path expression.

A query containing the property path expression * is shown in listing 1.

PREFIX snw : h t t p : / / www. s o c i a l−nw . com /
PREFIX f o a f : h t t p : / / xmlns . com / f o a f / 0 . 1 /
SELECT ? f r i e n d WHERE {

<snw : Ann> < f o a f : knows>∗ ? f r i e n d . }

Listing 1: Query containing the * operator of property paths

The evaluation of a property path is presented in the following definition:

Definition 13. Evaluation of property paths
For constants s ∈ I, o ∈ I ∪ L ∪ B and variables v, v1, v2 ∈ V the evaluation of
property paths is defined as:

[[sPo]]G :=

{
{µ = ∅}|if(s, o) ∈ [[P]]G
∅, otherwise

[[vPo]]G := {µ|(µ(v), o) ∈ [[P]]G ∧ dom(µ) = {v}}
[[sPv]]G := {µ|(s, µ(v)) ∈ [[P]]G ∧ dom(µ) = {v}}
[[v1Pv2]]G := {µ|(µ(v1), µ(v2)) ∈ [[P]]G ∧ dom(µ) = {v1, v2}}
The semantics of the evaluation of property path expressions are defined in definition 14.

Definition 14. Evaluation of property path expressions
The evaluation [[P]]G of a property path expression P over an RDF graph G is a set
of pairs of RDF terms from I ∪ L ∪B ∪ V defined as follows:
[[p]]G := {(s,o) | (s,p,o) ∈ G},
[[ˆP]]G := {(s,o) | (o,s) ∈ [[P]]G},
[[P1/P2]]G := [[P1]]G ◦ [[P2]]G,
[[P1|P2]]G := [[P1]]G ∪ [[P2]]G,
[[P+]]G :=

⋃
i≥1[[P

i]]G,
[[P∗]]G := [[P+]]G ∪ {(s,s) |(s, p, o) ∈ G},
where ◦ is the usual composition of binary relations, and pi is the concatenation p/.../p
of i copies of p. [6]

The query in listing 1 contains the * operator and returns nodes that are connected to
snw:Ann by a direct or indirect foaf:knows relation. Executing this query on the
RDF graph illustrated in figure 1 would return snw:Ann, snw:Bob, snw:Carla,
snw:Dan, snw:Eve, snw:Fred, snw:Glen and snw:Harry.

3 Property Path Benchmark Design
When benchmarking the performance of RDF stores, different datasets might lead to
different results. As stated in [7] realistic datasets are less ordered and have a less consis-
tent structure than generated datasets. Thus, benchmarks using synthetic datasets might
lead to different results than benchmarks using realistic datasets. Nevertheless, dataset
generators can produce arbitrary sized synthetic datasets to benchmark the scalability of
RDF stores. To overcome the limitations of selecting a single dataset we have designed
our novel property path benchmark3 that can use every RDF dataset.

To make it possible to use an arbitrary dataset as benchmark dataset, we provide
query templates instead of fixed queries. These query templates are designed to test
property path expressions. With the help of a query generator the query templates can
be instantiated for the user-selected dataset (see section 3.1).

When evaluating the implementations of property paths, we see the testing of sound-
ness and completeness of the returned query results as well as the querying time as the
most important measures (see section 3.3 for their definitions). In order to test whether
the returned results are complete and sound, we need a reference result set for each
query. The creation of these reference result sets is described in section 3.2.

Since query result sets might contain different identifier for the same blank node,
the equality of two result sets containing blank nodes might become hard to check [8].
Therefore, we preprocess the dataset by replacing each blank node by a new unique
IRI that did not exist in the dataset before. This procedure as well as the rest of the
execution strategy of our benchmark is described in section 3.4.

3.1 Query Generator
With our benchmark we want to evaluate how well the individual property path prim-
itives are supported. Therefore, the benchmark comprises 8 query templates (see ap-
pendix A). Half of them test a single property path primitive. The only difference be-
tween the + and * operator is that in case of a query SELECT ?o WHERE {S P* ?o}
where S and P are IRIs, S is included in the result set, whereas it is not included in

3 Available as open source under https://github.com/Institute-Web-Science-and-
Technologies/propertyPathBenchmark

the case of SELECT ?o WHERE {S P+ ?o} . Thus we only test the * operator.
The nesting of property path primitives may cause a higher degree on computational
complexity. Therefore, the second half of the query templates test different nestings
comprising templates with a high complexity containing nested * or + operators and
templates with a low complexity containing, e.g., only alternative and sequence opera-
tors.

In order to generate queries that can be executed on the user-selected dataset each
query template contains query variables and template variables. The former remain
variables in the generated queries whereas the latter will be replaced by IRIs exist-
ing in the dataset. An example for a query template is shown in listing 2. In this listing
the template variables S1 and P1 denote subject and predicate that are substituted with
constant IRIs during the query generation process. The query variable ?o1 remains a
variable in the actual generated query later on.
SELECT ? o1 WHERE{

S1 P1∗ ?o1 . }

Listing 2: Query template for the * operator

Basically the start, the end and all edge labels of a property path can be query variables
or template variables. As shown in [9], in most realistic SPARQL 1.0 queries, predi-
cates consist of constant IRIs as well as at least one variable and one constant occurring
at subject and object positions. We assume that property paths used in a realistic setting
will have similar properties. Therefore, all of our query templates have template vari-
ables as predicates as well as one query variable and one template variable at the start
or end of the property path.

RDF stores that are designed to process only SPARQL 1.0 queries regularly use SPO,
OSP and POS indices as described in [10]. With the help of these indices and a cache
of previous lookups, queries that traverse short paths during execution can be processed
efficiently. Property paths containing * and + operators may easily match with paths
longer than the paths usually matched with SPARQL 1.0 queries. Therefore, an efficient
indexing strategy for property paths are required to achieve a high query performance.
In order to stress the indices of the evaluated RDF stores, the query generator has to en-
sure that each generated query containing a * or a + operator matches with at least one
path of length n in the dataset. This n can be chosen freely. Furthermore, the generated
queries should return non-empty result sets to check whether the evaluated RDF stores
are able to find all query results.

In order to ensure that the generated queries return non-empty results set, our query
generator searches for a substitution of the template variables such that the resulting
property path matches with at least one path in the dataset. In case of property paths
containing * and + operators, this path has to have a minimal length of n. To find such
a substitution our query generator first generates so called grounding queries only con-
sisting of SPARQL 1.0 features. These grounding queries are sent to an RDF store,
which has loaded the dataset, to find actual IRIs as substitutions for the template vari-
ables. An example for such a grounding query is shown in listing 3. It checks if there
exists a path of at least 4 edges labelled with ?p1. If this is the case ?s1 and thus the
starting point of the query and ?p1, the property is returned. The substitutions found by
the query generator are used to replace the template variables with concrete IRIs found
in the dataset resulting in the final queries that can be executed to actually perform
the benchmark.

SELECT ? s1 ? p1 WHERE{
? s1 ?p1 ?o1 .
?o1 ?p1 ?o2 .
?o2 ?p1 ?o3 .
?o3 ?p1 ?o4 .
}

Listing 3: Grounding query for query template in listing 2 ensuring a path length of at
least n = 4

Assuming the dataset shown in figure 1 and the query template in listing 2 the query
generator executes the grounding query shown in listing 3 in order to fill the template
variables in the respective template. Thus, ?s1 would be bound to snw:Ann and ?p1
to foaf:knows because there only exists a path from snw:Ann to snw:Eve that has
a length of 4 and has the same IRI foaf:knows on each edge. The resulting query,
which then can be executed on the dataset, is shown in listing 4.

PREFIX snw : h t t p : / / www. s o c i a l−nw . com /
PREFIX f o a f : h t t p : / / xmlns . com / f o a f / 0 . 1 /
SELECT ? o1 WHERE{

<snw : Ann> < f o a f : knows>∗ ?o1 . }

Listing 4: Benchmark query generated by query generator

3.2 Result Set Generator
Since we want to test for completeness and soundness of results, we need the correct
and complete reference result sets for each generated query. These reference result sets
are obtained with the help of a result set generator. This generator simulates queries
that contain the inverse, sequence and alternative operator by executing one or more
SPARQL1.0 queries that should return the same results as the property path queries.
Furthermore, the generator can simulate the * and + property path expression by ex-
ecuting a breadth-first search. Thereby the data is retrieved with several SPARQL 1.0
queries4. We restrict these queries to SPARQL 1.0 since we assume that these features
are implemented correctly for most RDF stores.

These queries are then send to all benchmarked RDF stores and the result sets are
computed. For each query we compare the result sets of the different RDF stores. If the
majority of the stores have the same result set we take this set as the correct result. If no
majority can be found, we state that the result set is unknown. Thus, the completeness
and soundness cannot be evaluated for this query.

Sometimes more than one query is needed to create the reference result set. In case
of the prior created benchmark query in listing 4 the breadth-first search based re-
sult set generation works as follows: First a reference result set R is initialized with
R = {(?o1, < snw : Ann >)} because the * operator also returns the starting point of
the query. Then the query shown in listing 5 is executed that returns all vertices con-
nected to snw:Ann by an edge labelled with foaf:knows and the results are added to
R. After that the query is extended to reach all vertices that are connected to snw:Ann

4 The queries that are used to create the reference result set for each query template are listed in
appendix A

by a path containing two occurrences of foaf:knows. The query is shown in listing
6 and the results retrieved from executing this query are added to R. This is done until
a query does not return any new results. Then R is enclosed and is defined as the final
reference result set for the query.

PREFIX snw : h t t p : / / www. s o c i a l−nw . com /
PREFIX f o a f : h t t p : / / xmlns . com / f o a f / 0 . 1 /
SELECT ? o1 WHERE{

<snw : Ann> < f o a f : knows> ?o1 . }

Listing 5: Query that retrieves vertices connected to snw:Ann by one occurrence of
foaf:knows

PREFIX snw : h t t p : / / www. s o c i a l−nw . com /
PREFIX f o a f : h t t p : / / xmlns . com / f o a f / 0 . 1 /
SELECT ? o1 WHERE{

<snw : Ann> < f o a f : knows> ? r1 .
? r1 < f o a f : knows> ?o1 . }

Listing 6: Query that retrieves vertices connected to snw:Ann by two occurrences of
foaf:knows

3.3 Metrics
The metrics of the new property path benchmark were chosen to focus on the complete-
ness and soundness of results to ensure that the returned results are feasible and thus,
the RDF store can be used with queries containing property paths.

Definition 15. Query soundness
The percentage of right query results that are returned by each query. If Rq is the set of
correct results for a query q and Rs

q is the set of returned results of an executed query q
where s is the name of the respective RDF store, then the query soundness is defined as

s(q) =
|Rq ∩Rs

q|
|Rq|

Definition 16. Query completeness
The percentage of all possible query results of the query. If Rq is the set of correct re-
sults for a query q and Rs

q is the set of returned results of an executed query q where s
is the name of the respective RDF store then the query completeness

c(q) =
|Rq ∩Rs

q|
|Rs

q|

On the other hand the execution time of queries is measured to compare the efficiency
of query execution between the benchmarked stores.

Definition 17. Average execution time per query
The arithmetic mean avexec(q) of the execution time t(q) of each query q. The average
execution time per query is:

avexec(q) =

∑n
i=1 t(qi)

n
where i is the ith execution of the query.

3.4 Execution Strategy

Preparation phase: As first step of the benchmark execution, each blank node in the
used dataset is replaced with an unique IRI. After that the dataset is loaded into the
tested system. Then the query generator generates the queries from the query templates.
After that the result queries are executed and thus, reference result sets are generated.
Evaluation phase: In order to measure the query execution time of the benchmark on a
warm store and thus, to evaluate how the tested system performs in an authentic setting,
the query mix is executed twice before the actual metrics are measured. The queries
of the query mix are executed one after another and not in parallel. The query mix is
executed 10 times in order to have ample results. Queries that are not finished after one
hour are aborted and counted as failed queries. From the results the highest and lowest
execution times are deleted to prevent the effect of outliers. Query 1 to query 8 are all
executed once, before query 1 is executed again to prevent caching of results. Finally
the resulting metrics are returned in a human readable log file.

4 Evaluation
With the help of the property path benchmark defined in the previous section we bench-
marked RDF stores frequently used in academia and industry.

4.1 Experimental Setup

Benchmarked stores: The benchmarked stores are Virtuoso 7.2.2 community edition5,
RDF4J 2.0M1 formerly known as Sesame6, Apache Jena 3.0.17 and Allegrograph 6.0.2
free edition8.
Dataset: In [7] Duan et al. state that synthetically created datasets have a shortcoming
due to their structuredness in comparison to real world datasets. Synthetically created
datasets are often created by a data generator and do not reflect the characteristics of real
world data. Duan argues that synthetically created datasets have a rather ordered and
consistent structure, whereas real world datasets are often far less structured. Therefore
we have decided to use the Billion Triple Challenge (BTC) 2014 dataset [11], which
holds real world data, for our evaluation.

The BTC 2014 dataset was crawled in 14 iterations called hops. In the first hop all
triples that contain a seed IRI as subject are crawled and added to the dataset. The
objects of these triples were used as the seed IRIs for the second hop. In these 14 hops
a dataset of about 4 billion quads was crawled [12].

Since the complete BTC 2014 dataset would consume a lot of time to be loaded
without giving additional insight into the property path support of the RDF stores, we
used only a subset of the complete dataset for our benchmark. This subset consists
of the first three hops of the BTC dataset. This subset was preprocessed by iterating
over all quads of the original dataset and deleting all syntactically incorrect quads. The
remaining dataset consists of about 400 million quads.

The free edition of Allegrograph has a limit of 5 million triples [13] and therefore
the BTC 2014 could not be used to benchmark it. In order to still get an insight into

5 http://virtuoso.openlinksw.com/ retrieved at 3.7.2017
6 http://RDF4J.org/ retrieved at 3.7.17
7 https://jena.apache.org/ retrieved at 3.7.2017
8 http://franz.com/agraph/allegrograph/ retrieved at 3.7.17

Allegrograph a Polish DBpedia dump9 that consists of around 1.3 million triples was
used to benchmark the store.
Evaluation Environment: The RDF stores were benchmarked on a virtual machine
with 8 GB RAM, 500 GB disk space, 4 2.9 Mhz processor cores and Ubuntu 14.04
running on it. The Java version on the machine has been 1.8.0.77.

4.2 Evaluation of Results

While benchmarking Virtuoso, RDF4J and Allegrograph no errors or exceptions have
occurred. During the benchmark process of Jena an OutOfMemoryError has been
thrown whenever a query with the * operator was used. In order to identify the cause
of the error, the amount of results the query should return has been limited to 100. The
results that have been returned by a query of the form SELECT ?o WHERE {A B*
?o.} LIMIT 100 where A and B are valid IRIs, consisted of 100 times A. Due to
this fact it is presumable that the query containing the * operator returns A recursively
until the main memory was full. To ensure that this behaviour is not caused by cycles
in the dataset a query of the same form but with a predicate IRI that did not exist in the
dataset was executed. This query still returned 100 times A. This indicates, that the *
operator is not implemented correctly.

Due to the problems with the * operator the queries 4, 7 and 8 could not be processed.
Additionally query 3, 5, and 6 returned no results after 1 hour and thus, were aborted.
Query 1 returned an empty and thus, incomplete result set. Only for query 2 a valid
result was returned. Due to the lack of comparable results, Jena has been omitted in the
comparison of triple stores.

Completeness and Soundness

As presented in table 1 the result sets of Virtuoso and RDF4J on the BTC dataset are
different for almost all queries. For instance query 1 and 6 deliver completely different
result sets, because for query 6 RDF4J returns 0 results and for query 1 Virtuoso returns
0 results. Due to the fact that 0 results were returned, nothing can be said about the
soundness of results as it is depicted by - in the table. Only for query 5 Virtuoso and
RDF4J returned the same result set.

Query Virtuoso RDF4J Reference
RV irtuoso

q s(q) c(q) RRDF4J
q s(q) c(q) Rq

1 = ˆP1 0 - 0 4111 1 1 4111
2 = P1/P2 2 0.5 0.5 2 1 1 2
3 = P1| P2 4 1 0.66 6 1 1 6
4 = P1* 6 1 1 1 1 0.166 6
5 = (P1| P2)/P3 3 1 1 3 1 1 3
6 = P1+/P2 6 1 1 0 - 0 6
7 = P1*| P2*| P3* 8 1 0.57 14 1 1 14
8 = P1+/P2* 5 1 0.71 7 1 1 7

Table 1: The soundness and completeness for Virtuoso and RDF4J

9 http://wiki.dbpedia.org/Downloads2015-04 retrieved at 29.06.17

The soundness and completeness of the results of RDF4J is 100% for queries 1, 2,
3, 5, 7 and 8. For query 6 RDF4J returned an empty result set and for query 4 it only
returns 1 out of 6 correct results. Thus, the soundness for the results is 100% for query
4 but the completeness is only 16.6%. On the other hand Virtuoso found the correct and
complete result sets for queries 4, 5 and 6. For queries 7 and 8 Virtuoso returns correct
but incomplete results. In case of query 1 Virtuoso returns none of the 4111 correct re-
sults. For query 2 Virtuoso misses 1 result and even returns a wrong result. Thus, it can
be concluded that in our evaluation Virtuoso has problems with returning all results and
in case of query 2 even correct results at all, whereas RDF4J seems to have problems
only with the execution of * and + operators.

Due to this outcome we benchmarked only Allegrograph and RDF4J with the Pol-
ish DBpedia dump. In table 2 the amount of results in the reference dataset and the
soundness and completeness of each store are displayed.

Query Allegrograph RDF4J Reference
RAllegro

q s(q) c(q) RRDF4J
q s(q) c(q) Rq

1 = ˆP1 2 1 1 2 1 1 2
2 = P1/P2 1 1 1 1 1 1 1
3 = P1| P2 2 1 1 2 1 1 2
4 = P1* 5 1 1 5 1 1 5
5 = (P1| P2)/P3 2 1 1 2 1 1 2
6 = P1+/P2 1 1 1 1 1 1 1
7 = P1*| P2*| P3* 6 1 1 6 1 1 6
8 = P1+/P2* 4 1 1 4 1 1 4

Table 2: The soundness and completeness for Allegrograph and RDF4J

The table shows that the result sets of Allegrograph and RDF4J are the same for each
store and equal to the reference dataset. Thus, it can be concluded that the soundness
and completeness of results is 100% for both stores.

Since RDF4J returned the correct result sets for the + and also for the * operators on
the smaller Polish DBpedia dump but not on the larger BTC 2014 subset, RDF4J might
ignore some intermediate results if the number of the intermediate results becomes to
huge.

Execution Times

The execution times of Virtuoso and RDF4J can be compared only partly. Due to the
fact that Virtuoso fails to return complete and sound results for most queries and RDF4J
also fails to do so for some queries, the mere comparison of execution times of queries
is not very meaningful. Only for query 5, where the result sets are complete and sound
for Virtuoso and RDF4J, it can be said that RDF4J executed the query with 79ms faster
than Virtuoso with 1122ms. Nothing can be said about the execution times for any of
the other queries.

As shown in figure 2 the execution time for Allegrograph is higher for each query
but query 5. Due to the fact that both stores return sound and complete result sets, it
can be concluded that RDF4J evaluates queries with property path expressions more
efficiently than Allegrograph.

Fig. 2: The average execution time for each query for Allegrograph and RDF4J

4.3 Discussion

In our evaluation we evaluated the RDF stores Apache Jena, Virtuoso, RDF4J and Al-
legrograph, that are used frequently in academia and industry. Before performing the
benchmark we expected that the RDF stores would process property path queries cor-
rectly. When performing our benchmark this expectation was not fulfilled. Jena could
not return results for any query in under 1 hour besides query 2. Furthermore, the * op-
erator could not be evaluated at all and the inverse operator returned empty result sets.

Virtuoso returned mostly incomplete results and in one case even a wrong result.
RDF4J could handle most property path expressions but had problems with some queries
containing the * and + operator when executed on the larger BTC 2014 subset. On the
smaller Polish DBpedia dump RDF4J and Allegrograph could find the complete and
correct result sets for all queries. All in all it can be said that our evaluation indicates
that some RDF stores have shortcomings in the context of property paths.

5 Related Work
When examining the already existing benchmarks for RDF stores, we found no bench-
mark that focused on evaluating the support of property paths. Nevertheless, we checked,
whether the used queries could serve as a basis for property path queries.

The Berlin SPARQL Benchmark [14] uses an e-commerce use case in which the
dataset describes different vendors, their products and users’ reviews. The queries em-
ulate the search and navigation pattern of consumers. Since the execution of queries
traverse at most 2 edges, this benchmark is not usable to test property paths.

In [15] the Lehigh University Benchmark is presented, which was designed to evalu-
ate the performance of RDF stores over a dataset generated based on an ontology. The
queries were chosen in respect to different characteristics like their length, complexity
or selectivity. The longest path that is traversed by a query has a length of 3 and thus,
the benchmark queries are not suitable for testing property paths.

The DBpedia SPARQL Benchmark [9] uses the DBpedia knowledge base as dataset,

which can be scaled to an arbitrary size. The queries were created by mining the official
DBpedia SPARQL endpoint for a three month period and then graph clustering algo-
rithms were used to identify frequently posted queries. These query patterns are used to
generate queries for the scaled dataset. Due to the fact that the generated queries match
with at most 2 edges they cannot serve as basis for queries evaluating the support of
property paths.

The Semantic Publishing Benchmark [16] is a benchmark developed by the Linked
Data Benchmark Council, which was inspired by the media and publishing industry.
It was designed along a scenario in which news, articles and media assets are updated
regularly. The benchmark offers a data generator that produces scalable synthetic data.
The queries were chosen in order to evaluate how well an RDF store handles several
technical challenges like the parallel execution of unions, optional and nested optional
clauses or how well regular expressions are evaluated. Since the longest path that is
traversed when the queries are executed has a length of 2, the queries are not usable to
test property paths.

To the best of our knowledge, no benchmark that evaluates the property path support
of RDF stores in particular exists. Due to paths with a length of at most 3 traversed
edges during query execution, none of the benchmarks provides queries that can be
used as a basis for realizing queries testing the * or + operator support.

6 Conclusion
Property Paths that make it possible to define queries that match with an arbitrary
amount of edges were introduced with SPARQL 1.1 in 2013. Already existing RDF
stores were extended to make it possible to process queries containing such property
paths. In order to evaluate how well these RDF stores handle property paths we in-
troduced a novel benchmark. With our benchmark the RDF stores can be tested with
several datasets. For each dataset queries are generated that test the implementation of
the property path expressions. Beside the query execution time the benchmark also ex-
amines the completeness and soundness of the returned query results.

When benchmarking several RDF stores frequently used in academia and industry,
especially the check of sound and complete query results lead to surprising results.
Several tested RDF stores could not return complete result sets and in one case even in-
correct results were returned. Furthermore, in our evaluation another RDF store needed
over one hour to execute queries containing property paths. This long execution time
indicates that queries with property paths are executed inefficiently.

In summary our evaluation indicates that the current implementations of property
paths in frequently used RDF stores is not ready for practical usage. Thus, our novel
property paths benchmark has shown to be a valuable tool to systematically evaluate
the property path support of existing and future RDF stores.

References
1. A. Skubella, “Benchmarks for sparql property paths,” bachelor thesis, Institute

for Web Science and Technologies, Universität Koblenz-Landau available under
https://west.uni-koblenz.de/sites/default/files/studying/theses-files/bachelorarbeit-adrian-
skubella-benchmarks-for-sparql-property-paths.pdf, 2016.

2. https://www.w3.org/blog/SW/2008/01/15/sparql is a recommendation/ retrieved at 5.07.17.

3. M. L. Richard Cyganiak, David Wood, “Rdf 1.1 concepts and abstract syntax,” tech. rep.,
W3C Recommendation, 2014.

4. M. Arenas and J. Perez, “Federation and navigation in sparql 1.1,” in Reasoning Web. Se-
mantic Technologies for Advanced Query Answering (T. Eiter and T. Krennwallner, eds.),
vol. 7487 of Lecture Notes in Computer Science, pp. 78–111, Springer Berlin Heidelberg,
2012.

5. B. DuCharme, Learning SPARQL, Chapter 2 pp 19-44, Chapter 3 pp 45-100. O’Reilly
Media, Inc., 2011.

6. E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vrgoč, The Semantic Web - ISWC 2015:
14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part I, ch. SPARQL with Property Paths, pp. 3–18. Cham: Springer Interna-
tional Publishing, 2015.

7. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea, “Apples and oranges: A compar-
ison of rdf benchmarks and real rdf datasets,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’11, (New York, NY, USA),
pp. 145–156, ACM, 2011.

8. L. Chen, H. Zhang, Y. Chen, and W. Guo, “Blank nodes in rdf,” Journal of Software, vol. 7,
pp. 1993–1999, September 2012.

9. M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “Dbpedia sparql benchmark: Perfor-
mance assessment with real queries on real data,” in Proceedings of the 10th International
Conference on The Semantic Web - Volume Part I, ISWC’11, (Berlin, Heidelberg), pp. 454–
469, Springer-Verlag, 2011.

10. D. Wood, P. Gearon, and T. Adams, “Kowari: A platform for semantic web storage and
analysis,” in In XTech 2005 Conference, pp. 05–0402, 2005.

11. T. Käfer and A. Harth, “Billion Triples Challenge data set.” Downloaded from
http://km.aifb.kit.edu/projects/btc-2014/, 2014.

12. T. Käfer, J. Umbrich, A. Hogan, and A. Polleres, “Towards a dynamic linked data observa-
tory,” in In LDOW at WWW, 2012.

13. http://franz.com/agraph/allegrograph/ag commercial edition.lhtml retrieved at 16.06.17.
14. C. Bizer and A. Schultz, “The berlin sparql benchmark.,” Int. J. Semantic Web Inf. Syst.,

vol. 5, no. 2, pp. 1–24, 2009.
15. Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark for owl knowledge base systems,” Web

Semant., vol. 3, pp. 158–182, Oct. 2005.
16. V. Kotsev, A. Kiryakov, I. Fundulaki, and V. Alexiev, “Ldbc semantic publishing benchmark

(spb) - v2.0 first public draft release,” tech. rep., LDBC, 2014.

A Query Templates
In the following the query templates and the respective SPARQL 1.0 queries for the
generation of the reference result set are presented. For query templates 1, 2, 3, 5 and 6
the reference result sets are obtained by simply executing the corresponding SPARQL
1.0 queries. Query 4 and 7 have an initial result set R = {(?o1, S1)}. These initial
result sets are extended with results returned from SPARQL 1.0 queries that translate
P1* into 1, 2, 3... matches of P1. This process stops if no new results can be added to
the reference result set.

Query template 8 contains the sequence of P1+ and P2*. In this case we start with
an empty result set and then systematically execute queries that first match P1 one or
several times followed by zero, one or more matches of P2. We indicate this by showing
intermediate reference result set creating queries, in which only P2* is translated. Each
of these queries still contains P1+ that is then translated similar to the reference result
set creating queries for query template 6.

Query Templates Reference Result Set Creating Queries

SELECT ? o1 WHERE{
?o1 ˆ P1 S1 . }

Query 1

SELECT ? o1 WHERE{
S1 P1 ?o1 . }

Result Set Query 1

SELECT ? o1 WHERE{
S1 P1 / P2 ?o1 . }

Query 2

SELECT ? o1 WHERE{
S1 P1 ? r1 .
? r1 P2 ?o1 . }

Result Set Query 2

SELECT ? o1 WHERE{
S1 P1 | P2 ?o1 . }

Query 3

SELECT ? o1 WHERE{
S1 P1 ?o1 . }

SELECT ? o1 WHERE{
S1 P2 ?o1 . }

Result Set Queries 3

SELECT ? o1 WHERE{
S1 P1∗ ?o1 . }

Query 4

SELECT ? o1 WHERE{
S1 P1 ?o1 . }

SELECT ? o1 WHERE{
S1 P1 ? r1 .
? r1 P1 ?o1 . }

...
Result Set Queries 4

SELECT ? o1 WHERE{
S1 (P1 | P2) / P3 ?o1 . }

Query 5

SELECT ? o1 WHERE{
S1 P1 ? r1 .
? r1 P3 ?o1 . }

SELECT ? o1 WHERE{
S1 P2 ? r1 .
? r1 P3 ?o1 . }

Result Set Queries 5

SELECT ? o1 WHERE{
S1 P1+/P2 ?o1 . }

Query 6

SELECT ? o1 WHERE{
S1 P1 ? r1 .
? r1 P2 ?o1 . }

SELECT ? o1 WHERE{
S1 P1 ? r1 .
? r1 P1 ? r2 .
? r2 P2 ?o1 . }

...
Result Set Queries 6

SELECT ? o1 WHERE{
S1 P1 ∗ |P2 ∗ |P3∗ ?o1 . }

Query 7

∀P ∈ {P1, P2, P3}

SELECT ? o1 WHERE{
S1 P ?o1 . }

SELECT ? o1 WHERE{
S1 P ? r1 .
? r1 P ?o1 . }

...
Result Set Queries 7

SELECT ? o1 WHERE{
S1 P1+/P2∗ ?o1 . }

Query 8

SELECT ? o1 WHERE{
S1 P1+ ?o1 . }

SELECT ? o1 WHERE{
S1 P1+/P2 ?o1 . }

SELECT ? (o1) WHERE{
S1 P1+/P2 / P2 ?o1 . }

...
Result Set Queries 8

