
Benchmarking Link Discovery Systems for
Geo-Spatial Data?

Tzanina Saveta1, Giorgos Flouris1, Irini Fundulaki1, and
Axel-Cyrille Ngonga Ngomo2

1 Institute of Computer Science-FORTH Greece,
2 Paderborn University

Abstract. Linking geo-spatial entities is targeted only by a limited
number of link discovery benchmarks. Linking spatial resources requires
techniques that differ from the classical, mostly string-based approaches.
In particular, considering the topology of the spatial resources and the
topological relations between them is of central importance to systems
that manage spatial data. Due to the large amount of available geo-
spatial Linked Data datasets, it is critical that benchmarks for geo-spatial
link discovery systems are developed that can determine the effectiveness
and the efficiency of the proposed techniques. In this paper, we propose
a Spatial Benchmark generator that deals with link discovery for spatial
data. Our benchmark generator can be used to test the performance of
systems that deal with all the topological relations proposed in the state
of the art DE-9IM (Dimensionally Extended nine-Intersection) model in
the two dimensional space. We also provide a comparative analysis with
benchmarks produced using the Spatial Benchmark generator to assess
and identify the capabilities of RADON and Silk, two of the state of the
art systems.

1 Introduction

The number of datasets published in the Web of Data as part of the Linked Data
Cloud is constantly increasing. The Linked Data paradigm is based on the uncon-
strained publication of information by different publishers, and the interlinking
of Web resources across knowledge bases. In most cases, the cross-dataset links
are not explicit in the dataset and must be automatically determined using link
discovery tools amongst others [1]. The large variety of link discovery techniques
requires their comparative evaluation to determine which one is best suited for
a given context. Performing such an assessment generally requires well-defined
and widely accepted benchmarks to determine the weak and strong points of the
proposed techniques and/or tools.

A number of real and synthetic benchmarks that address different data chal-
lenges have been proposed for evaluating the performance of such systems [2].
However, to the best of our knowledge, there is no benchmark to target the
problem of linking geo-spatial entities. This is in contrast to the fact that, some

? The presented work was funded by the H2020 project HOBBIT (#688227).

2 T. Saveta et. al.

of the largest knowledge bases on the Linked Open Data Web are geo-spatial
knowledge bases (e.g., LinkedGeoData,1 with more than 30 billion triples).

Linking spatial resources requires techniques that differ from the classical
mostly string-based approaches. In particular, considering the topology of the
spatial resources and the topological relations between them is of central im-
portance to systems that manage spatial data. We believe that due to the large
amount of available geo-spatial datasets employed in Linked Data and in sev-
eral domains, it is critical that benchmarks for geo-spatial link discovery are
developed.

The present paper proposes the Spatial Benchmark generator2 that deals
with Link Discovery for spatial data. The benchmark can be used to test the
performance of systems that deal with topological relations proposed in the state
of the art DE-9IM (Dimensionally Extended nine-Intersection Model) model [3].
This benchmark generator implements all topological relations of DE-9IM be-
tween trajectories in the two-dimensional space. In our work, we focus on (a) the
correct implementation of the DE-9IM relations by the systems and (b) scala-
bility, more specifically, check if the systems are able to handle large datasets
properly.

To the best of our knowledge such a generic benchmark, that takes as input
trajectories and checks the performance of linking systems for spatial data does
not exist. We also provide a comparative analysis with benchmarks produced
using the Spatial Benchmark generator to assess and identify the capabilities of
RADON [4] and Silk [5], two of the state-of-the-art systems.

2 Dataset and Ontology

The Spatial Benchmark is based on TomTom datasets3 provided in the context
of the HOBBIT H2020 project4. TomTom’s traffic data archive contains approx-
imately 15 trillion (1.5 · 1013) speed measurements from hundreds of millions of
road segments all over the world, mostly based on anonymized GPS positioning
data collected with user’s consent. This data has been used to extract the re-
current traffic patterns and adds this to digital navigation maps as a map layer.
Statistical traffic data also form an important input set for TomTom’s live traf-
fic fusion engine. Probe data is being used for custom-made traffic and demand
analysis. Furthermore, archived positioning data is used to improve digital maps,
road geometry and map attributes.

The ontology we use to represent TomTom’s data is shown in Figure 1.
The main class is Trace that contains one or more points (class Point). Class
Point is a subclass of wgs84 pos:Point class of the WGS84 Geo Positioning
(geo)5 vocabulary that represents latitude, longitude and altitude information

1 http://linkedgeodata.org/About
2 https://github.com/hobbit-project/SpatialBenchmark
3 https://www.tomtom.com/en_gr/
4 http://project_hobbit.eu
5 http://lov.okfn.org/dataset/lov/vocabs/geo

http://linkedgeodata.org/About
https://github.com/hobbit-project/SpatialBenchmark
https://www.tomtom.com/en_gr/
http://project_hobbit.eu
http://lov.okfn.org/dataset/lov/vocabs/geo

Benchmarking Link Discovery Systems for Spatial Data 3

Fig. 1: TomTom Ontology

in the WGS84 geodetic reference datum. Each point is associated with a veloc-
ity (class Velocity), instances of which have properties velocityMetric and
velocityValue, the former taking values from a predefined set (km per hour,
miles per hour) and the later from class xsd:Float. A point also has attribute
hasTimeStamp that takes its values in class xsd:TimeStamp which designates
the time an object was at this specific point. Listing 1.1 shows an example of a
Trace consisting of 4 Points.

1 @base <http ://www. tomtom . com/ trace−data /0000000001. t t l> .
2 @pref ix : <http ://www. tomtom . com/ on t o l o g i e s / t r a c e s#> .
3 @pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
4
5 <#trace> a : Trace .
6 <#trace> : hasPoint <#point0> .
7 <#point0> : hasTimestamp ”2010−03−12T10 :19 : 00 . 000000”ˆˆ xsd : dateTime ;
8 : l a t 40.898320 ;
9 : long 14.185080 ;

10 : hasSpeed <#speed0> .
11 <#speed0> : v e l o c i tyVa lue 7 .22 ;
12 : v e l o c i t yMet r i c : k i l ometer s perHour .
13 <#trace> : hasPoint <#point1> .
14 <#point1> : hasTimestamp ”2010−03−12T10 :19 : 10 . 000000”ˆˆ xsd : dateTime ;
15 : l a t 40.898560 ;
16 : long 14.184440 ;
17 : hasSpeed <#speed1> .
18 <#speed1> : v e l o c i tyVa lue 6 .67 ;
19 : v e l o c i t yMet r i c : k i l ometer s perHour .
20 <#trace> : hasPoint <#point2> .
21 <#point2> : hasTimestamp ”2010−03−12T10 :19 : 20 . 000000”ˆˆ xsd : dateTime ;
22 : l a t 40.898950 ;
23 : long 14.184130 ;
24 : hasSpeed <#speed2> .
25 <#speed2> : v e l o c i tyVa lue 5 .28 ;
26 : v e l o c i t yMet r i c : k i l ometer s perHour .
27 <#trace> : hasPoint <#point3> .
28 <#point3> : hasTimestamp ”2010−03−12T10 :19 : 30 . 000000”ˆˆ xsd : dateTime ;
29 : l a t 40.899410 ;
30 : long 14.184080 ;
31 : hasSpeed <#speed3> .
32 <#speed3> : v e l o c i tyVa lue 5 .28 ;
33 : v e l o c i t yMet r i c : k i l ometer s perHour .

4 T. Saveta et. al.

Listing 1.1: TomTom Data

3 Spatial Benchmark

3.1 Dimensionally Extended nine-Intersection Model (DE-9IM)

The Dimensionally Extended nine-Intersection Model (DE-9IM) [3] is a topologi-
cal model and a standard, used to describe the spatial relations of two geometries
in two-dimensional space. The DE-9IM model is based on a 3 × 3 Intersection
Matrix of the form:

DE9IM(a, b) =

dim(I(a) ∩ I(b)) dim(I(a) ∩B(b)) dim(I(a) ∩ E(b))
dim(B(a) ∩ I(b)) dim(B(a) ∩B(b)) dim(B(a) ∩ E(b))
dim(E(a) ∩ I(b)) dim(E(a) ∩B(b)) dim(E(a) ∩ E(b))


where dim is the maximum number of dimensions of the intersection (∩)

of the interior (I), boundary (B), and exterior (E) of geometries g1 and g2.
Dimension (dim(x)) values are obtained mapping the value 1 (for lines) to T
(true), so using the boolean domain {T, F}. The supported spatial relations of
DE-9IM are formally described below (see also Figure 2). Here, we will write
(I(g1)I(g2)) to show dim(I(g1) ∩ I(g2)) etc.

– Equal: Two geometries g1 and g2 are topologically equal if their interiors
intersect and no part of the interior or boundary of one geometry intersects
the exterior of the other. Topologically equal is equivalent to Within and
Contains DE-9IM relations. Formally:

(I(g1)I(g2))∧¬(I(g1)E(g2))∧¬(B(g1)E(g2))∧¬(E(g1)I(g2))∧¬(E(g1)B(g2))

– Disjoint: Two geometries g1 and g2 are disjoint if they have no point in
common. They form a set of disconnected geometries. Disjoint is equivalent
to not Intersects. Formally:

¬(I(g1)I(g2)) ∧ ¬(I(g1)B(g2)) ∧ ¬(B(g1)I(g2)) ∧ ¬(B(g1)B(g2))

– Touches: A geometry g1 touches(meets) a geometry g2 if they have at least
one boundary point in common, but no common interior points. Formally:

(¬(I(g1)I(g2)) ∧ I(g1)B(g2)) ∨ (¬(I(g1)I(g2)) ∧B(g1)I(g2))∨
(¬(I(g1)I(g2)) ∧B(g1)B(g2))

– Contains: A geometry g1 contains a geometry g2 if g2 lies in g1, and the in-
teriors of the two geometries intersect. Contains is equivalent to Within(g2, g1).
Formally:

(I(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2))

Benchmarking Link Discovery Systems for Spatial Data 5

– Covers: A geometry g1 covers a geometry g2 if geometry g2 lies in g1.
Other definitions: “no points of g2 lie in the exterior of g1”, or “Every point
of g2 is a point of (the interior or boundary of) g1”. Covers is equivalent to
CoveredBy(g2, g1). Formally:

((I(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨
((I(g1)B(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨
((B(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨

((B(g1)B(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))

– Intersects: A geometry g1 intersects g2 if they have at least one point in
common. Intersects is equivalent to not Disjoint.

– Within: A geometry g1 is within(inside) g2 if g1 lies in the interior of g2.
Within is equivalent to Contains(g2, g1).

– Covered by: A geometry g1 is covered by g2 (extends Within) if every
point of g1 is a point of g2, and the interiors of the two geometries have at
least one point in common. Covered by is equivalent to Covers(g2, g1).

– Crosses: A geometry g1 crosses g2 if they have some but not all inte-
rior points in common, and the dimension of the intersection is less than
that of at least one of them. Mask selection rules are checked only when
dim(g1) 6= dim(g2), except by line/line inputs, otherwise is false:

ll((I(g1)I(g2)) = 0) for lines

(I(g1)I(g2) ∧ I(g1)E(g2)) when dim(g1) < dim(g2)

(I(g1)I(g2) ∧ E(g1)I(g2)) when dim(g1) > dim(g2)

– Overlaps: A geometry g1 is overlaps g2 if they have some but not all
points in common, they have the same dimension, and the intersection of
the interiors of the two geometries has the same dimension as the geometries
themselves. Mask selection rules are checked only when dim(g1) = dim(g2),
otherwise is false:

ll((I(g1)I(g2)) ∧ (I(g1)E(g2)) ∧ (E(g1)I(g2))) for points or surfaces

((I(g1)I(g2)) = 1 ∧ (I(g1)E(g2)) ∧ (E(g1)I(g2))) for lines

Examples of the relations are shown in Figure 2.

3.2 Overview

For the Spatial Benchmark, we focus on transformations that follow the DE-
9IM (Dimensionally Extended nine-Intersection Model) topological relations and
determine whether the systems are able to identify such relations.

For the design of this benchmark, we focused (a) on the correct implementa-
tion of all the topological relations of the DE-9IM topological model and (b) on

6 T. Saveta et. al.

(a) Equals (b) Disjoint (c) Touches

(d) Contains & Covers (e) Intersects (f) Crosses

(g) Overlaps

Fig. 2: Examples of topological relations

producing datasets large enough to stress the systems under test. To the best of
our knowledge, there exist few systems that implement the topological relations
of DE-9IM, hence the benchmark already addresses the first choke point set.
Moreover, we produced very large synthetic datasets using TomTom’s original
data, and hence we are able to challenge the systems regarding scalabity.

The benchmark gets as input a set of traces, each trace being a sequence of
points. The points are expressed using standard longitude/latitude coordinates.
We preprocess the datasets to represent them in the Well-known text (WKT)
format6, widely used by systems that manage geo-spatial data. WKT is a text
markup language for representing vector geometry objects on a map, spatial
reference systems of spatial objects and transformations among spatial reference
systems. WKT offers a compact machine and human readable representation of
geometric objects. Nevertheless, if the input dataset comes in a different for-
mat, then we can easily transform the data in the required format. Appropriate
transformations are applied to the input set of traces in order to obtain the tar-
get dataset that can be used to test the ability of systems to identify DE-9IM
topological relations.

More specifically, as shown in Figure 3, the benchmark gets as input traces
represented as LineStrings, with a linestring being a one-dimensional object
representing a sequence of points and the line segments connecting them, and
produces a source and a target dataset. The source dataset is identical to the
input dataset, whereas the target dataset is generated in such a way so that its
traces have specific topological (DE-9IM) relations with the traces of the source

6 https://en.wikipedia.org/wiki/Well-known_text

https://en.wikipedia.org/wiki/Well-known_text

Benchmarking Link Discovery Systems for Spatial Data 7

dataset. The gold standard is produced after the generation of the source and
target datasets.

The benchmark generator makes use of the Initialization, Resource Generator
and the Resource Transformation modules:
1. The Initialization Module reads the test case generation parameters and

retrieves by means of SPARQL queries each trace instance.
2. The Resource Generator uses the trace instances retrieved from the Initial-

ization Module for the generation of the source dataset.
3. The Resource Transformation Module uses the JTS Topology Suite7 to re-

turn for each source instance si the transformed instance ti that has a certain
predecided relation (from the DE-9IM set) with si.

Note that Step 3 above may lead to the creation of certain ti that inadvertently
have some relation with some sj (i 6= j). To address this problem, the gold
standard is produced using RADON, in order to guarantee that all existing
topological relations (intended or not) will be included in the gold standard.

Fig. 3: Spatial benchmark architecture

3.3 Benchmark Parameters

For the generation of the source and target datasets, the user has to provide
values for the following benchmark parameters:
1. Number of instances to retrieve from the input dataset.
2. Percentage of points to keep for each Trace in the input dataset (this is due

to the large number of points in each trace).
3. DE-9IM topological relation that will be tested for the source and target

traces. As we mentioned earlier, a target trace ti is likely to have a relation
with sj (i 6= j) in addition to the source trace si from which it is generated.

7 https://en.wikipedia.org/wiki/JTS_Topology_Suite

https://en.wikipedia.org/wiki/JTS_Topology_Suite

8 T. Saveta et. al.

3.4 Source and Target Data Generation

Source Dataset In order to generate the source dataset we proceed as follows:
from the input dataset, we only keep longitude and latitude information from
each point. With those points, we create, for each trace, a LineString8 that is
represented in the Well-known text (WKT) representation format.

Target Dataset In order to produce the target dataset, we retrieve source
instances in a sequential manner, and using the Extension of the JTS Topol-
ogy Suite we generate one target instance for each source instance. The target
instance is defined in such a way so as the two instances (source and target)
have the DE-9IM relation that was specified in the benchmark’s configuration
parameters. This process is continued until the requested number of instances is
produced.

The JTS Topology Suite9 is a Java API that implements a core set of
spatial data operations using an explicit precision model and robust geometric
algorithms. It provides a complete model for specifying 2D linear geometries.
Many common operations in computational geometry and spatial data process-
ing are exposed in a clear, consistent and integrated API in JTS. JTS is intended
to be used in the development of applications that support the validation, clean-
ing, integration and querying of spatial datasets. JTS is based on the notion of
the bounding box (bbox), which is an area defined by two longitudes (in the range
−180 . . . 180) and two latitudes (in the range −90 . . . 90), such that the resulting
box (included within these coordinates) is the minimum box that contains the
geometry under study.

For generating the target data in the Spatial Benchmark, we decided to
implement an extension10 of the JTS Topology Suite that allows one to generate
a target geometry, given a source geometry and the intended Intersection Matrix
(i.e., DE-9IM relation) between the source and target geometries. Below, we
describe the algorithm of the implemented extension for each target relation of
DE-9IM. As we will see, all cases are essentially based on the algorithms that
generate disjoint LineStrings, along with some random selection of points and/or
series of points. More specifically:

1. equal: Given a source LineString, an equal LineString is the exact same.

2. disjoint: Given a source LineString s we determine its bbox (b(s)), and
randomly define coordinates for a bbox (say b′) that does not intersect b(s). This
is done by just taking sufficiently large (or sufficiently small) coordinates for the
minimum (maximum) longitude or latitude coordinates. Finally, we generate a
random LineString that entirely falls inside b′, thereby guaranteeing disjointness.

8 A LineString is a WKT geometric object and consists of a sequence of two or more
vertices, along with all points of the linearly interpolated curves (line segments)
between each pair of consecutive vertices. The line segments in the line may intersect
with each other (in other words, the linestring may “curl back” in itself and self-
intersect). A linestring must have either zero or two or more points.

9 https://svn.code.sf.net/p/jts-topo-suite/code/tags/Version_1.14
10 https://github.com/jsaveta/jtsExtension

https://svn.code.sf.net/p/jts-topo-suite/code/tags/Version_1.14
https://github.com/jsaveta/jtsExtension

Benchmarking Link Discovery Systems for Spatial Data 9

In rare cases, it could happen that b(s) covers the entire plane, so no b′ can
be defined. In these cases, we randomly break the original LineString into several
smaller LineStrings (say s1, . . . , sk), and compute their bboxes (b(s1), . . . , b(sk)).
Then, we use the above process to identify a bbox b′ that does not intersect with
any of them and create a random target LineString as above.

If, despite the partitioning of s, no appropriate b′ can be found, we define
an alternative, more fine-grained partition and repeat the process which ends
when an appropriate b′ is found, or when each pair of consecutive points of s is
a partition; if even this fine-grained partition does not allow the definition of an
appropriate bbox, then the original LineString covers the entire plane and no
disjoint line can be created.

An example of this partition, is shown in Figure 4. In the first subfigure, the
bbox of the LineString covers the entire plane, thus we partitioned the LineString
into 3 smaller parts. Then, we computed the new smaller bounding boxes and as
is shown in the second image, there is now space (blue area) where we can define
a new bbox and create the new LineString in it. We follow the same approach
for the rest of the relations.

y

x

bbox
1

bbox
2

bbox
3

Empty
space

y

x

bbox

Fig. 4: Partitioning of a bbox example

3. contains & covers: Given a source LineString s, we randomly partition it
into s1, . . . , sn, and randomly pick one si to be the target LineString t.

4. intersects: Given a source LineString s, we randomly pick n points p1, . . . , pn
(n > 1). Then, we create disjoint LineString p1, . . . , pk−n, where k the size of
LineString s. Finally, we create the final LineString t by adjoining the LineString
t and the n points.

10 T. Saveta et. al.

5. within & covered by: Within and covered by are obtained from contains
and covers respectively (they are their inverse relations).

6. crosses: This is the same as intersects, except that n = 1, and that the chosen
point must be an intermediate one.

7. overlaps: Given a source LineString s, we pick an intermediate point, say
p, essentially partitioning s into two segments, say s1, s2. Then, we create two
LineStrings t1, t2. The LineString t1 is randomly chosen to be equal to either s1
or s2. Without loss of generality, let’s assume that s1 is chosen. The LineString
t2 is a LineString that is disjoint from s. The final target LineString t is defined
by adjoining t1 with t2.

Gold Standard For the Spatial benchmark, the gold standard, could not be
produced during the generation of the target dataset. As mentioned earlier, such
an approach might lead to the creation of certain ti that inadvertently have some
relation with some sj (i 6= j), thus, the gold standard would be neither complete
nor correct. To support completeness and correctness of the gold standard, the
benchmark should check each generated target LineString ti against all source
LineStrings si for all possible relations that essentially amounts to implementing
a system for the computation of the topological relations.

To avoid this problem, after all the source and target datasets are generated,
we compute the gold standard using RADON [4]. RADON is a novel approach for
rapid discovery of topological relations between geo-spatial resources. RADON
combines space tiling, minimum bounding box approximation and a sparse index
to achieve high scalability. RADON was evaluated with real datasets of various
sizes and showed that in addition to being complete and correct, it also out-
performs the state of the art by orders of magnitude. Listing 1.2 shows a small
example of source, target datasets and the gold standard.

1
2 −−−−−−−−− SOURCE −−−−−−−−−
3
4 t1 a Trace .
5 t1 hasGeometry ”LINESTRING (8 .79232 48 .92266 , 8 .79186 48 .92246 ,
6 8 .79135 48 .92229 , 8 .79079 48 .92219 , 8 .79012 48 .92216 , 8 .78957

48 .92207 ,
7 8 .78903 48 .92185 , 8 .78848 48 .92162 , 8 .78807 48 .92133 , 8 .78782

48 .92097 ,
8 8 .78771 48 .92068 , 8 .78737 48 .92031 , 8 .78695 48 .92004) ”
9 ˆˆ<http :// s t r d f . d i . uoa . gr / onto logy#WKT> .

10
11 −−−−−−−−− TARGET −−−−−−−−−
12
13 t1 ’ a Trace .
14 t1 ’ hasGeometry ”LINESTRING (8 .78903 48 .92185 , 8 .78848 48 .92162 ,
15 8.78807 48 .92133 , 8 .78782 48 .92097 , 8 .78771 48 .92068 , 8 .78737

48 .92031) ”
16 ˆˆ<http :// s t r d f . d i . uoa . gr / onto logy#WKT> .
17
18 −−−−−−−−− GOLD STANDARD (e . g . f o r COVERS) −−−−−−−−−
19
20 t1 t1 ’ .

Listing 1.2: Spatial Benchmark Example

Benchmarking Link Discovery Systems for Spatial Data 11

Key Performance Indicators (KPIs) The performance metric(s) in a bench-
mark determine the effectiveness and efficiency of the systems and tools. In this
benchmark, we focus on the quality of the output in terms of standard metrics
such as precision, recall and f-measure [6]. We also aim to quantify the per-
formance (in ms) of the systems measuring the time needed to return all the
results.

4 Experimental Results

In order to show the rate between the time performance and the population (10,
100, 1K and 10K) of the traces, but also the time difference between the topo-
logical relations, we executed a set of experiments for all the DE-9IM relations
using the HOBBIT Platform11. Thus, we provide a comparative analysis with
benchmarks produced using the Spatial Benchmark generator to assess and iden-
tify the capabilities of RADON and SILK, two of the state of the art systems.
We should mention here that we are only presenting the time performance and
not precision, recall and f-measure as all were equal to 1.0. Moreover, because of
a problem encountered for SILK12, we had to select traces no larger than 64 KB
from all datasets in order to get a fair comparison for the systems under test.

Table 1 and Figures 5, 6 show the results of the executed experiments. Time
is measured in milliseconds but for a better presentation of the results we use
log(time). Relation Disjoint, needs the shortest time for the systems to return
the results if the number of traces is small. However, as the number of traces
increases, Silk seems to have difficulties linking all the traces fast enough, and
the experiment stops due to the platform time limit (75 minutes)13.

Intersects, Touches and Overlaps, seem to be the hardest relations for the sys-
tems as they need more time than Equals, Crosses, Covers/Covered By and Con-
tains/Within, which need approximately the same time. Specifically, for Touches
and Intersects we were not able to run experiments for the 10K traces source
dataset (the target dataset consists of the same number of traces) as in the other
cases the experiments stopped for both RADON and Silk. The reason that those
relations need much more time is that our data contain LineStrings that have
a large number of points in a rather small area. Covers/Covered By is not sup-
ported by Silk, but Contains/Within are the same when the datasets consist
of LineStrings, thus, this was not an issue for the system. Generally, RADON
seems to handle the growth of the dataset size smoother than Silk, meaning that
when it comes to a small number of traces, RADON needs approximately the
half time than Silk but as the size increases, RADON outperforms Silk by more
than one order of magnitude.

11 http://master.project-hobbit.eu
12 https://github.com/silk-framework/silk/issues/57
13 The platform has a time limit for each benchmark to prevent it from binding the

platform continuously.

http://master.project-hobbit.eu
https://github.com/silk-framework/silk/issues/57

12 T. Saveta et. al.

Fig. 5: RADON

Fig. 6: Silk

Benchmarking Link Discovery Systems for Spatial Data 13

RELATION System # 10 # 100 # 1K # 10K

EQUALS RADON 1139 1290 3891 23509
Silk 2424 3804 37585 704821

CROSSES RADON 1209 1996 5139 88799
Silk 3126 3927 55691 1035194

COVERED BY RADON 1124 1334 4793 28095
Silk Not Supported

COVERS RADON 1147 1235 4158 28673
Silk Not Supported

DISJOINT RADON 567 820 7269 18031
Silk 2686 5843 206313 Platform time limit

OVERLAPS RADON 1209 3047 21829 1452969
Silk 3693 10790 221734 Platform time limit

WITHIN RADON 1116 1311 3899 30233
Silk 2859 3151 27933 550819

CONTAINS RADON 1163 1294 3155 30560
Silk 3170 3079 26094 538441

INTERSECTS RADON 1400 6396 94733 Platform time limit
Silk 3628 13175 381310 Platform time limit

TOUCHES RADON 1436 4958 118104 Platform time limit
Silk 3072 19786 601024 Platform time limit

Table 1: Time rate (in ms) while increasing population for each topological
relation for RADON and Silk.

5 Conclusions

We presented HOBBIT’s Spatial benchmark, a benchmark that checks whether
the systems can identify DE-9IM (Dimensionally Extended nine-Intersection
Model) topological relations. To the best of our knowledge, such benchmarks
do not exist while the number of link discovery systems that identify links for
spatial datasets are limited.

We evaluated two of the state of the art systems, RADON and Silk using
the Spatial Benchmark generator to assess and identify their capabilities. Our
results show that performing link discovery for some of the DE-9IM relations
(touches, intersects, overlaps) takes prohibitive time. On the other hand, for the
rest of the relations, the systems seem to need much less time. In future work,
we aim to extend the implementation of the JTS extension in order to generate
different classes of object geometries in addition to LineString. In addition, we
will explore the possibility to include new evaluation metrics in the benchmark.

References

1. Axel-Cyrille Ngonga Ngomo. On link discovery using a hybrid approach. Journal
on Data Semantics, 1(4):203–217, 2012.

2. T. Saveta, E. Daskalaki, G. Flouris, I Fundulaki, M. Herschel, and A.-C.
Ngonga Ngomo. Pushing the limits of instance matching systems: A semantics-
aware benchmark for linked data. In WWW, pages 105–106. ACM, 2015. Poster.

14 T. Saveta et. al.

3. Christian Strobl. Encyclopedia of GIS, chapter Dimensionally Extended Nine-
Intersection Model (DE-9IM), pages 240–245. Springer, 2008.

4. Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, and Axel-Cyrille
Ngonga Ngomo. RADON - Rapid Discovery of Topological Relations. In Proceedings
of The Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 2017.

5. Panayiotis Smeros and Manolis Koubarakis. Discovering spatial and temporal links
among rdf data. In LDOW@ WWW, 2016.

6. Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision, recall
and f-score, with implication for evaluation. In European Conference on Information
Retrieval, pages 345–359. Springer, 2005.

	Benchmarking Link Discovery Systems for Geo-Spatial Data
	Introduction
	Dataset and Ontology
	Spatial Benchmark
	Dimensionally Extended nine-Intersection Model (DE-9IM)
	Overview
	Benchmark Parameters
	Source and Target Data Generation

	Experimental Results
	Conclusions

