
Attaching Semantic Metadata to
Cryptocurrency Transactions

Luis-Daniel Ibáñez, Huw Fryer, and Elena Simperl

University of Southampton, Southampton, UK,
[l.d.ibanez|h.fryer|e.simperl]@soton.ac.uk

Abstract. Cryptocurrencies like Bitcoin have provided a platform for
parties to transfer digital value in a decentralised way. However, to sup-
port scalability, the amount of extra data that can be attached to a
transaction is very limited, greatly limiting the possibility of attach-
ing descriptive metadata to them with the same guarantees that the
Blockchain In this paper we study the problem of attaching metadata in
RDF to Bitcoin-style transactions, where extra data is limited to 83 bytes
per transaction, linking the problem to the one of RDF-Compression.
However, the motivating scenarios for RDF compression (IOT devices
and Big Data Publish/Exchange) do not have the same requirements as
ours, as memory is extremely limited, but the input data is small and
there is no need for energy efficiency or providing a query interface. We
evaluated the size reduction of 7 RDF compression algorithms on two
small documents (4 and 10 triples), finding that only two of them on 4
triples and none on 10 triples were able to improve over a naive gzip com-
pression. Our findings motivate the need of further research on adequate
representations for this particular use case.

Keywords: Blockchain, Cryptocurrency, Bitcoin, RDF Compression

1 Introduction

Cryptocurrencies have revolutionized the way we transact digital assets and
value. Instead of using a bank as trusted intermediary to transfer value from a
sender to a receiver, cryptocurrencies provide a decentralized and dis-intermediated
environment in which a network of peers that do not necessarily trust each other
can keep a ledger of the transactions between them. The protocols designed for
this purpose provide the following desirable features: (I) Increases the difficulty
for an attacker to maliciously delete or inject transactions in the Ledger, from
needing only to compromise the central trusted node, to needing to compromise
a large number of peers and/or computing power in the network. (II) Thanks
to the fact that the ledger is fully replicated across a large subset of the peers
in the network, transactions recorded in the ledger are more persistent, that is,
for them to become lost, all nodes with a full replica will need to disappear, in
contrast with only the trusted node in a central scheme.



However, whenever a transaction is made, we are often interested in its con-
text: What is the purpose of the transaction? Is a transaction related to other
transactions, how? What are the links of a transaction with entities outside the
Blockchain? The Resource Description Format (RDF) provides the means to
write both descriptions and links in a standardized way, but how to attach an
RDF document to a cryptocurrency transaction?

Unfortunately, one of the sacrifices that cryptocurrency designers had to
make to achieve the above properties was to reduce as much as possible the size
of transactions. This means that only few bits of metadata about the transaction
are recorded: a transaction identifier, the recipient addresses, the amount trans-
ferred and the status of the transaction in the network. There is generally, very
little space to attach any metadata to the transaction. For example, in Bitcoin,
and in all its derivate or inspired-by cryptocurrencies, this space is limited to
one field of 83 bytes, which is in many cases not enough for even one RDF triple.

Services like CoinSpark 1, that work on top of Bitcoin, use this field to store
a cryptographic hash of a document describing the context of the transaction
that is then stored off-blockchain. The point is that the external storage does not
need to be trusted in not tampering the document, as anyone could easily check
integrity against the hash stored with the transaction. However, the external
storage needs to be trusted in preserving the document, as in the case it gets
lost or corrupted, it cannot be reconstructed from the hash. With this approach,
the context does not have the same persistence guarantees than the transactions.

In this paper we aim at answering the question: How to store the RDF
description of a cryptocurrency transaction in the same Ledger as the transaction
itself? Different cryptocurrencies have different transaction metadata sizes and
policies, we chose to focus on the Bitcoin parameters, a single 83 bytes field free
of charge per transaction, for two reasons: 1) Bitcoin is currently the most used
cryptocurrency 2 2) Many other popular cryptocurrencies derived or inspired
from Bitcoin (Litecoin, Dogecoin, Namecoin, Zcash) use the same parameters.

Our contributions are summarized as follow: 1) We identify the problem as
a variant of compression of RDF documents, and compare it with two other
scenarios that motivated it: adding semantics to IoT devices and publication
and exchange of Big Semantic Data. We discover that the our scenario is not
equivalent to any of the other two, having an extremely limited memory (less
than a IoT device), but a small input data size (like IoT devices) and relaxed
constraints on energy consumption and computational resources (similar to the
Publish/Exchange scenario) 2) On the light of 1), we compare 7 approaches
for RDF compression on two small documents (10 and 4 triples) describing the
provenance of a transaction to determine how well they generalise to the char-
acteristics and size of documents that we expect to be attached to transactions,
and to an scenario where compression ratio is the most important criterion.
Somewhat surprisingly for us, we found that none of them performed better

1 http://coinspark.org/
2 measured in market capitalisation on 15th July 2017 as for https://coinmarketcap.
com



than a naive gzip compression over Ntriples for 10 triples, and only two of them
(RDSZ and EXI with concrete grammar) performed better for 4 triples.

The paper is organised as follows: section 2 provides an overview of Blockchains,
Cryptocurrencies and Bitcoin transactions; section 3 describes previous efforts
on embedding data in Bitcoin, carried out by users and commercial service
providers; section 4 compares the Cryptocurrency transaction motivation for
RDF-compression with the the IoT and Publish/Exchange scenarios; section 5
describes our experimental setup and results; section 6 concludes the paper and
provides future work directions.

2 Blockchains and Bitcoin-like cryptocurrencies

A Blockchain is a reversed linked list of sets of transactions called Blocks. Each
Block stores a pointer to the immediately preceding one. Blocks model the pages
of a ledger, while the links represent the order on which sets of transactions are
written in the ledger. In the case of currency transactions, banks are trusted to
maintain the Blockchain3 such that no transaction is lost, no fake transactions
are registered, and that no one can double-spend, that is, spend the same unit
of currency twice.

Bitcoin [10], the first cryptocurrency, was developed to answer the question:
How to maintain a ledger without relying on a single central organisation? Bit-
coin’s approach combines a game-theory argument with cryptographic hashing
techniques. Instead of having the bank verifying the validity of transactions and
deciding the order on which they are committed to the ledger, Bitcoin opens that
task to any peer in the network willing to do so, in exchange of a transaction
fee. Peers that take this task are known as miners. To overcome the possibility
of a Sybil attack, where an attacker creates several different identities to control
the transactions committed to the ledger, miners need to prove that they solved
a CPU-intensive cryptographic puzzle that is attached to each transaction (so-
called Proof-of-Work) to earn the transaction fee. The first miner that solves
the puzzle claims the fee, creating competition among them. This way, to gain
control of the ledger, an attacker needs to have a substantial amount of com-
puting power with respect to the rest of the miners in the network, to be able
to consistently solve the puzzles before them. A detailed analysis of the Bitcoin
protocol for ledger maintenance is presented in [7].

To better understand how transactions work, the following preliminary defi-
nitions are required. Some of them are borrowed from the Bitcoin Wiki4, while
others are of our own5

Definition 1 (Base Address). A base address is a pair of ECDSA public/pri-
vate keys.

3 For simplicity, we assume that banks store the record of transactions in a Blockchain
4 http://en.bitcoinwiki.org
5 We credit https://www.cryptocoinsnews.com/bitcoin-transaction-really-works/

as a resource that helped with the development of our definitions



Definition 2 (Address). An address is a hashing of the public key of a Base
Address.

In Bitcoin, addresses are computed with a sequence of hashing operations
described in http://en.bitcoinwiki.org/Bitcoin_address

Definition 3 (Value Container). A value container is a pair (Address, V alue),
where value is a real number representing the amount of cryptocurrency assigned
to Address.

A value container can be seen as analogous of a bank note represented as a
pair (serial number,face value)

Definition 4 (Lock Script). A lock script is a boolean function that takes a
finite number of arguments as input. We call the Pre-Image of True in the lock
script a combination.

In Bitcoin, lock scripts are written in a special language called Script6.

Definition 5 (Value Lockbox). A value lockbox is a pair (V alueContainer, LockScript).
To be able to use the value container as input for a transaction, one needs to
provide a combination for the lock script. This can be seen as a voucher that
requires a code to be redeemed.

Definition 6 (Transaction). A transaction is a transfer of value to be ap-
pended to the Blockchain. It is comprised by:

1. An unique identifier txid
2. An address R, called the Receiving Address. In Bitcoin, R is generated from

a Base Address created by the receiving peer.
3. A set of value lockboxes In = I1, ..., In called the inputs of the transactions
4. A set of combinations C = C1, ..., Cn such that C1 is a combination of I1

and so on.
5. A set of value lockboxes Out = O1, , On called the outputs of the transaction.

At least one of the outputs must have R as address of its value container.

To be appended to the ledger, a transaction must be valid. In Bitcoin, the
validation check-list is quite long and includes several items related to efficiency.
For the sake of simplicity, we highlight the two critical checks: first, the sum
of the values of the value containers of the inputs must be greater than the
sum of the values of the value containers of the outputs. This is analogous to
a merchant checking that one did not attempt to pay a 15 euro bill with a
10 euro note; second, no input must appear as input of a transaction already
recorded in the ledger, i.e., reject double spending attempts. Figure 1 shows
a simplified graphical representation of a transaction that receives as input two
value lockboxes, each one containing one coin, creating one output value lockbox
containing two coins.

6 https://en.bitcoin.it/wiki/Script



  

Input Output

Address 1xf

Address 2xf

Address 3rx

Combinations

Transaction fee

Bitcoin Network

Fig. 1. Graphical representation of a Bitcoin transaction

3 Embedding data in the Bitcoin Blockchain

After Bitcoin became a mass phenomenon, adopters started to ask themselves
if it was possible to record in the ledger data beyond transactions to satisfy two
use cases:

1. Blockchains are perceived as secure, trustable, permanent and decentralized
store of transactions. I have a very important piece of data that I would like
to save in a store having exactly those characteristics.

2. Attach the context of transactions (e.g., what is being paid for, who is paying,
etc). One could store the context locally and have a link to the transaction
identifier, however, this means that the context will not be stored with the
same security, trust, permanence and decentralization of the transaction. Fol-
lowing the previous use case, some users considered that transaction context
is important enough to be stored together with the transaction.

[2] summarizes it as follows: small payloads with high value need to be publicly
broadcasted and permanently recorded in an asynchronous and pay-as-you-go
way.

Bitcoin adopters started to devise “creative ways” of realizing these use cases
by making use of the elements at their disposal, that is, encoding data into



  

Input Output

Address 1xf

Address 2xf

Address 3rx

Combinations

Transaction fee
Data Output

Bitcoin Network

Fig. 2. Graphical representation of a Bitcoin transaction including a data output

addresses, values and lock scripts (see [3] for a compilation of techniques). After
a long internal debate, the Bitcoin community reached consensus on letting users
attach data to a transaction through a special kind of output in the transaction,
commonly known as OP RETURN . OP RETURN is a single instruction of
the Script language that implements a lock script that always returns False. As
such, any value container locked with OP RETURN cannot be used as input
in any other transaction. In our formalisation, we define this as a special output.

Definition 7 (Data Output). A data output is a value lockbox of the form
((null, data), OP RETURN), where data is a hex value.

Figure 2 extends Figure 1 to include a data output. Note that the data output
lock script only prevents its reuse as input to another transaction, anyone can
read the data.

The Bitcoin protocol limits by default the number of data outputs to one
per transaction, however, miners may choose to ignore transactions including
data outputs or accept to validate transactions with more than one data output
(up to the maximum limit of 11 outputs). For the rest of the paper, we assume
that all miners implement the default behaviour. A recent study[1] analyses the
metadata embedded in the blockchain using the OP RETURN code, finding



that 1% of transactions make use of it, representing 0.3% of the size of the
Ledger.

In general, there are two strategies to use the small amount of data allowed
per transaction. The first, that we call max-compression, is to compress data
as much as possible, ideally to fit in the transaction being described. If this is
not possible, split the compressed data in several chunks and create transactions
(for example from the sender to itself, to minimise the currency cost) that carry
the rest of the chunks. The sender keeps references to the set of transactions
carrying data chunks, to be able to reconstruct the data from the payloads on
different transactions, sharing them when necessary.

The second strategy, that we call hash-out, uses a single data output to
store a hash of the data. The hash is then used both as a key to retrieve the
document from a external store, and to verify that data has not been altered
by the manager of the external store. Several companies that offer services on
top of Bitcoin use either strategy to link transactions to several objects, random
short string messages (Eternity Wall7), pdf documents (CoinSpark8), or other
abstract digital assets that use Bitcoin as an underlying transaction layer (Open
Assets 9, CounterParty10)

Table 1 compares both strategies. Those who choose to maximize compression
are sure that data outputs have the same guarantees that the transactions they
are attached to, but are either limited to 83 bytes or forced to pay a transaction
fee for every extra chunk required. Those who choose to hash-out have space
bounded by the limit of the external storage (for sure more than 83 bytes), but
only the hash has the same guarantees than the transaction. If the external
storage fails and data gets corrupted, there is no way to recover it, one can only
use the hash to certify the corruption.

Table 1. Comparison of strategies to attach metadata to transactions

Max-Compress Hash-Out

Write-Latency
Time to confirm all transactions
carrying a chunk of data

Time to confirm transaction
being described

Write-Cost
Sum of fees of all transactions
carrying a chunk of data

Fee of transaction
being described

Integrity Same as transaction Same as transaction

Persistence Same as transaction
Same as transaction for hash
Same as external storage for data

In this paper, we aim at exploring the limits of the max-compression strategy
for the special case of data encoded in RDF.

7 https://eternitywall.it/
8 http://coinspark.org/
9 http://www.openassets.org/

10 https://counterparty.io/



4 RDF compression for Bitcoin

Several compression algorithms have been developed for RDF data, but none of
them for the Cryptocurrency transaction scenario. RDF compression algorithms
can be divided in two categories according to their purpose: IoT devices and
Publication and Exchange. Compression for IoT devices is motivated by the
semantization to the Internet of Things, to make devices compatible with the
Web of Data. As IoT devices have limited computing power, communication,
memory and energy resources, a whole corpus of research has been devoted
to the most appropriate data formats, processing algorithms and protocols to
manage Semantic data for IoT (see [12] for an overview).

In the Publication and Exchange scenario, semantic sata publishers are look-
ing to optimize the way on which they archive, store and serve Semantic Data.
As opposed to the IoT device scenario, publishers have far more computing,
communication, memory and energy resources available, but need to serve large
amounts of data to a large number of clients. The focus in this scenario is the
binary representation of Big Semantic Data, the development of streamable for-
mats that improve data transference between publishers and consumers, and the
provision of query interfaces on top of these compressed formats.

To provide insight on what should be the most appropriate compression al-
gorithm for Bitcoin transaction, we compare side by side the scenarios of IoT
devices, Publish and Exchange and Bitcoin transactions across the key parame-
ters of both use cases

– Input data: In an IoT device, one is interested in storing the description of
the device and its capabilities, and to store/send measures in RDF format.
A Semantic Publisher usually store a large RDF-Graph (e.g. DBpedia) or
large collections of content-heterogeneous data (e.g. LOD Laundromat). In
Bitcoin, we are interested on small description of a transaction, therefore,
closer to the IoT scenario.

– Memory: A typical IoT device has 64kb of RAM and 128Kb of ROM,
where besides data, all software required for the device functioning needs
to be stored. Semantic publishers have large amount of space, but want
to optimize them to be able store more and larger datasets. The Bitcoin
scenario allows only for 83 bytes per transaction, a restricted version of the
IoT scenario.

– Who compresses?: This refers to which actor (client or server) has to
perform data compression and de-compression. In both IoT and publish/ex-
change context, there are use cases on which both the client and the server/de-
vice have to perform both tasks. In Bitcoin, there is currently no way to add
to the system a compression functionality, and is probably unreasonable to
think that the miners would also take that task. As such, both tasks are
always responsibility of the client.

– Communication In Semantic Publishing, communication is bound by http,
however, as large datasets are involved, there is motivation to develop stream-
able formats. In IoT devices, communication across devices is often through



a 6LowPan network, that limits packet-size to 80 bytes. In Bitcoin, commu-
nication is through http via an API, as data is small, there is no need for
streamability. However, note that the packet-size constraint in IoT devices
is similar to the space constraint in Bitcoin.

– Energy: For IoT devices, a critical design aspect is to keep the energy con-
sumption as low as possible. For semantic publishers, this is not an issue
per-se, but connected to the amount of computational resources (CPU) used
to serve data. In Bitcoin, this is not an issue, as the difference in energy
consumption between a transaction with or without an OP Return is neg-
ligible.

– Query Interface We refer here to the means to provide querying capabil-
ities on the stored data, both from the expressiveness of the programming
language and computational resources point of view. In IoT devices, these
resources are limited. In Semantic Publishing, they are less limited, but still
a concern, as the size of the underlying data and the number of clients is
much larger than in IoT devices (see [13] for a comparison of approaches to
limit the query interface to increase availability). Bitcoin does not offer any
possibility to implement a query interface on the server side, clients need to
download, decompress, load and query data themselves. Following the clas-
sification provided in [13], Bitcoin falls in the category of the most limited
servers, that only provide dumps to the clients.

– Read Cost This refers to the cost of reading data in each scenario. In
IoT devices, reads are paid with energy of the device. In publish/exchange,
this is paid in computational resources of both server and client. In Bitcoin,
getting a transaction through its ID is unexpensive, and as the amount of
data requested is small, the de-compression cost is negligible.

– Write Cost This refers to the cost of writing data in each scenario. The cost
is the same than for reading for IoT devices and publish/exchange: energy
and computational resources respectively. In Bitcoin, this is included with
the transaction fee for the first 83 bytes, but any further data would need
to be written through separate transactions, each of them incurring in a
transaction fee to be paid in cryptocurrency

Table 4 summarizes the comparison between scenarios. The Bitcoin scenario
shares with the IoT device scenario the small input data size, the limited mem-
ory (very limited for Bitcoin), and with the public/exchange scenario the non-
importance of the communication and energy parameters. Regarding query in-
terface, we can consider Bitcoin as the extremely limited case of the publish/ex-
change scenario. The key difference among the three scenarios lies on the domi-
nant cost for write, which, in combination with the differences along the memory
dimension, impact the design of compression algorithms. For example, in the IoT
context, it is possible to sacrifice some compression ratio for energy savings in
the processing device, which does not make sense in the Bitcoin scenario. Along
the same lines, some algorithms for Publish/Exchange add extra data to enable
the implementation of query interfaces on top of them without decompressing,
again, something that does not make sense in Bitcoin.



Table 2. Comparison of RDF compression motivating scenarios

IoT Device Publish/Exchange Bitcoin-like transaction

Input data size Small Very Large Small

Memory
64kb RAM +
128kb ROM

GBs of RAM +
TBs of ROM

83 bytes

Who processes? Client and Server Client and Server Only Client

Communication
6LowPan bound
(limited)

Http/FTP bound Http bound

Energy Limited Plenty Not an issue

Query Interface Limited Expressive
Very Limited
(get transaction)

Dominant cost for read Energy
Computational
resources

Negligible

Dominant cost for write Energy
Computational
resources

Cryptocurrency

5 Experimental Study

In this section, we test current state-of-the-art RDF compression algorithms on
the Bitcoin transaction scenario. Following from table 4, the key parameter for
the Bitcoin scenario is the compression ratio. As such, we focus our experiment
in answering the question which algorithm offers maximal compression for input
documents that we might want to attach to transactions?

We believe that documents that one would attach to transactions differs
from the ones used to benchmark current algorithms. Algorithms designed for
Publish/Exchange are tested against Big Data RDF documents, while algorithms
for IoT devices are tested against documents expressed with ontologies describing
sensing, with a large amount of numeric literals representing the measures of
the sensors. As such, we created two documents based on the PROV ontology,
providing metadata about a fictional transaction. We assume that transactions
have URIs minted from the namespace http://bitcoin.org/ plus a transaction id.

The first document (see Listing 1.1) describes the transaction as a prov:activity
and contained a reasonable set of information about it. The second (Listing 1.2)
contained the minimum amount of information for valid RDF, including two
statements (besides type), a prov : informedBy and a rdfs : seeAlso declara-
tion.

Listing 1.1. The complete RDF/XML document used, referred to as ”Full Document”

<rd f :RDF
xmlns : rd f=”http ://www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : prov=”http ://www. w3 . org /ns/prov#”>

<prov : Ac t i v i ty rd f : about=”http :// b i t c o i n . org /56754644”>
<prov : wasDerivedFrom>

<prov : Entity rd f : about=”http :// b i t c o i n . org /41565751”/>
</prov : wasDerivedFrom>
<prov : wasStartedBy>



<prov : Agent rd f : about=”http :// example . com/bob−from−f i n a n c e ”/>
</prov : wasStartedBy>
<prov : wasAssociatedWith>

<prov : Agent rd f : about=”http :// example . com/ a l i c e −from−f i n a n c e ”/>
</prov : wasAssociatedWith>
<prov : wasInformedBy>

<prov : Ac t i v i ty rd f : about=”http :// example . com/procurement−t i c k e t ”/>
</prov : wasInformedBy>
<rd f : type rd f : r e s ou r c e=”http ://www. w3 . org /ns/prov#Entity”/>

</prov : Act iv i ty>
</rd f :RDF>

Listing 1.2. Stripped down document with one piece of information, and a seeAlso
reference. Referred to as ‘Small Document’

<rd f :RDF
xmlns : rd f=”http ://www. w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns : r d f s=”http ://www. w3 . org /2000/01/ rdf−schema#”
xmlns : prov=”http ://www. w3 . org /ns/prov#”

xml : base=”http :// example . com/”>
<prov : Ac t i v i ty rd f : about=”http :// b i t c o i n . org /56754644”>

<prov : wasInformedBy>
<prov : Ac t i v i ty rd f : about=”/procurement−t i c k e t ”/>

</prov : wasInformedBy>
<r d f s : s eeAl so rd f : r e s ou r c e=”http :// b i t c o i n . org /41565751”/>

</prov : Act iv i ty>

</rd f :RDF>

We now briefly describe the compression algorithms considered in the liter-
ature.

HDT [5] is a binary representation designed for the Publish/Exchange use case.
HDT decomposes an RDF dataset in three parts: a header that holds metadata
describing an HDT semantic dataset using plain RDF. It acts as an entry point
for the consumer, who can have an initial idea of key properties of the content
even before retrieving the whole dataset. The main motivation behind HDT is
the ability to provide a simple query interface to large datasets that otherwise
wouldn’t fit in memory, as such, we expected to not perform well in this use
case. For the experiment, we used the HDT CPP Docker container with version
1.1.1, commit 421165e.

SHDT [8] is a simplified version of HDT, adapted for working on IoT devices,
that improves the memory and energy footprint of HDT in exchange of lower
compression ratio. As is the case with HDT, this tradeoff is in principle not
appropriate for our scenario. This application is part of the Wiselib library11

which targets embedded devices, and as such difficulties were encountered in
compiling for a PC so this algorithm was not run.

11 https://github.com/ibr-alg/wiselib



RDF4J Binary RDF (Formerly Sesame) 12 was the algorithm for binary encod-
ing in the Sesame library, which is now continued in RDF4J13. We used the Java
RDF4J library version 2.2.0.

RDSZ [6] is another approach focused on reducing communication and process-
ing overhead when streaming RDF data. Is based on the combination of differen-
tial encoding with the wide-known ZLib compression algorithm. We used RDSZ
from the bitbucket repository 14 at commit c4da3b2. We used the default size
for batch (5), cache (128), and buffer (32 * 1024), and used the Zlib compression
algorithm.

ERI [4] aims at improving over RDSZ by exploiting structural information that
is known before hand between publisher and consumer. ERI and RDSZ have
similar performance, one being better than the other depending on the under-
lying distribution of predicates and entities of the input RDF dataset. We used
the prototype release of the GitHub repository15,at commit a99ff03, without ad-
ditional configuration. Both RDSZ and ERI were only tested with large input
datasets, therefore, we did not know what to expect on our setup.

RDF-Thrift 16 is a binary encoding for fast machine encoding and decoding
based on Apache Thrift, and Google’s Protocol Buffers. The main goal is to re-
duce the communication and compression-decompression overhead between pub-
lishers and consumers or between co-operating processes. We used the Apache
Jena 3.3.0 implementation of Apache Thrift for RDF.

EXI for RDF [9] leverages W3C’s Efficient XML Interchange (EXI) format [11]
to achieve an efficient binary representation of RDF from its XML representa-
tion. EXI uses a grammar-driven approach to represent XML-based data in an
efficient binary form and vice versa. The grammar is derived from given XML
Schema where each defined complex type is represented as a deterministic fi-
nite automaton. [9] explores the use of two type of grammars: a generic one
that allows the encoding of an RDF using several vocabularies, but with limited
compression ratio; and with concrete grammars. The generic grammars follow
EXI by using string tables, to map unknown elements and attributes, as well as
strings to an ID, which is then managed to ensure consistency with the repos-
itory. This store allows the a triple to be represented in a compact form based
on these IDs. Using this format allows a compressed RDF to be queried by the
client, without the client having pre-existing knowledge of the RDF graph[9].
The concrete grammars remove the need for this, since the available elements
are almost entirely known from the schema, and can be defined accordingly, re-
moving the need for storage and processing of strings [9]. EXI with a concrete

12 http://rdf4j.org/
13 http://docs.rdf4j.org/rdf4j-binary/
14 https://bitbucket.org/norbertofdz/rdsz
15 https://github.com/webdata/ERI
16 https://afs.github.io/rdf-thrift/rdf-binary-thrift.html



grammar was reported to compress 20 triples in 78 bytes, orders of magnitude
better than Thrift. 17. As such, we expected it to be the best performer in our
setup.

We used the Exificient GUI18 obtained on 24 July 2017. The GUI provides
the ability of creating grammars from XML Schemas. We re-used the generic
schema of the uRDF store19. To generate a concrete grammar, we input to the
GUI the XMLSchema representation of the PROV ontology 20.

Table 3. The size of the input document in different RDF formats (bytes)

RDF Representation Full Document
(10 triples)

Small Document
(4 triples)

RDF/XML 769 502

Turtle 911 529

NTriples 1190 476

JSON LD 1316 670

Prior to testing the specific algorithms, we tested standard Linux command
line compression applications: GZip, BZip2, and xz in order to provide a base-
line for the ability for naive compression without underlying knowledge of the
structure of the data. These were run to be the most aggressive compression
available at the expense of higher memory and CPU usage. Since the file sizes
were small, and the processing environment was not constrained, this is not a
problem for our use case.

Table 3 reports the size of the compressed Full and Short Documents achieved
with each approach. For the standard compression applications, we report the
compression over the Ntriples format, that was the best. Figures 3 and 4 show
data in Table 3 as a bar chart. The horizontal line represents the the uncom-
pressed size of the smallest format for each case. To better understand the dif-
ferences among the approaches that improve over the baseline, we set the length
of the y-axis to the next round value above the baseline.

The majority of compression techniques performed poorly on our setup, and
none came close to the required 83 bytes. Notably, for Full Document, neither
technique was able to improve over the naive gzip compression over Ntriples. For
Small Document, RDSZ and EXI for RDF using the grammar generated from
the public PROV XML schema were able to improve over the gzip baseline.

Poor performance was expected for the techniques that add metadata to
enable a query interface (HDT, RDF4JBinary). On the other hand, our expec-

17 Unfortunately, neither the ontology or the data used in the evaluation is openly
available

18 http://exificient.github.io/java/exificient-gui-jar-with-dependencies.

jar
19 https://github.com/vcharpenay/urdf-store-exp/blob/master/lubm/schema/

basic_rdf_for_exi_v03.xsd
20 https://www.w3.org/TR/prov-xml/



Table 4. Size of compressed document and (compression ratio) of RDF compression
techniques when applied to our test documents. The compression ratio is computed
using the smallest size representation as uncompressed size: NTriples for the small
document and RDF/XML for the full document.

Compression
Technique

Full Document Small Document

gzip over NT 267 (2.88) 256 (1.85)

bzip2 over NT 327 (2.35) 297 (1.6)

xz over NT 304 (2.52) 288 (1.65)

HDT 2305 2329

RDF-Thrift 942 563

RDF4J Binary 1386 1169

RDSZ 279 (2.75) 215 (2.21)

ERI 654 (1.175) 573

EXI for RDF
(schemaless)

397 (1.93) 261 (1.82)

EXI for RDF
(PROV schema)

306 (2.51) 217 (2.19)

tation was that EXI for RDF would outperform the others, due to the results
obtained by [9], who succeeded in compressing 20 triples down to 78 bytes. The
results we obtained are less impressive, although we have two possible areas for
improving this:

– The use case for the EXI format is focused on sensors, and is heavily biased
in favour of numerical data representing sensor measures

– The concrete grammar was more comprehensively implemented than we were
able to with the PROV XML schema. By taking a subset of the ontology, or
including stricter rules, we might increase compression efficiency.

In regards to the first item, we have some indication that this is the case,
with some preliminary testing. By changing the rdf:about to numbers, that is,
crafting a document with triples with literal numeric values as objects, the com-
pression ratio improved from 44% of the size of XML to 19% of the XML (down
to 120 bytes). This indicates that in this setup, where every byte counts, the
characteristics of the input document become critical.

The good performance of RDSZ came as a surprise to us. RDSZ was not
compared against EXI due to being unsuitable for embedded devices, owing to
the loss of the RDF triple structure, and the use of the energy-inefficient Zlib[9].
However, as energy is not a factor in our setup, our results suggest that sacrificing
triple structure is beneficial to our scenario. The good result of the naive gzip
seems to reinforce this hypothesis.



Fig. 3. Compression sizes achieved for the Full Document. The horizontal line repre-
sents the uncompressed size of the smallest format (RDF/XML)

6 Conclusion and Future Work

In this paper we have studied the problem of attaching RDF metadata to trans-
actions in Cryptocurrency Blockchains, so that metadata and transaction are
stored in the same Blockchain, with special emphasis on the Bitcoin family,
where each transaction can carry by default 83 bytes of data. The problem
is related to the RDF-Compression problems motivated by Publish/Exchange
of Big Semantic Data collections and for Semantic Data management in IoT
devices. We compared the key dimensions considered for the design of those
algorithms with the Bitcoin transaction scenario, uncovering that it is not com-
pletely aligned with any of the other two. In Bitcoin transactions, the critical
aspect is the compression ratio on a small size input, with factors like energy or
provision of a query interface being irrelevant.



Fig. 4. Compression sizes achieved for the small Document. The horizontal line repre-
sents the uncompressed size of the smallest format (NT)

Finally, we tested seven state-of-the-art RDF compression algorithms on two
sample documents describing the provenance of a transaction in 10 and 4 triples
respectively, to test how well they generalize to the Bitcoin scenario. The results
are largely negative, as most approaches did not improve over the naive approach
of compressing the NTriples representation with gzip. Only RDSZ and EXI with
concrete grammar were able to improve in the document with 4 triples. Our
results also suggest that, in the current state of the art, only a very limited
class of RDF Documents could be attached to a Bitcoin transaction without
requiring additional transactions. We believe this motivates research for new
RDF compression algorithms specifically tailored to this use case.

As future work, besides the aforementioned development of specifically tai-
lored RDF-Compression algorithms, we consider of interest the study of which
classes of RDF documents can be better compressed by which algorithm, and



the optimal way to split and compress a document to minimize the number of
required extra transactions. An intelligent client would then be able to com-
bine different approaches depending on the structure of the document to be
attached to the transaction. Furthermore, domain-specific vocabularies designed
with compressibility in mind, perhaps derived from existing vocabularies and
from which mappings exist, enabling intelligent clients to bridge between the
two worlds.

Finally, another interesting direction is repeating this same analysis for the
case of Smart Contract Blockchains like Ethereum, where additional data regis-
ters are available and is possible to create a server-side query/update interface.

Acknowledgements We thank Javier D. Fernández for making the code
of ERI available on github. We thank Victor Charpenay for kindly answering
inquiries about the EXI format and the EXIficient GUI.

References

1. Bartoletti, M., Pompianu, L.: An analysis of Bitcoin OP return metadata (2017)
2. Coin Sciences Ltd: Metadata in the Blockchain: The

OP return Explosion, https://www.slideshare.net/coinspark/

bitcoin-2-and-opreturns-the-blockchain-as-tcpip

3. Colored Coins Team: Data storage on the blockchain, https://github.

com/Colored-Coins/Colored-Coins-Protocol-Specification/wiki/

Data-Storage-Methods

4. Fernández, J.D., Llaves, A., Corcho, O.: Efficient RDF Interchange (ERI) Format
for RDF Data Streams. In: The Semantic Web – ISWC 2014. pp. 244–259. Lecture
Notes in Computer Science, Springer, Cham (Oct 2014), https://link.springer.
com/chapter/10.1007/978-3-319-11915-1_16

5. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF representation for publication and exchange (HDT). Web Semantics:
Science, Services and Agents on the World Wide Web 19, 22–41 (Mar 2013), http:
//www.sciencedirect.com/science/article/pii/S1570826813000036

6. Fernández, N., Arias, J., Sánchez, L., Fuentes-Lorenzo, D., Corcho, O.: RDSZ:
An Approach for Lossless RDF Stream Compression. In: The Semantic
Web: Trends and Challenges. pp. 52–67. Lecture Notes in Computer Science,
Springer, Cham (May 2014), https://link.springer.com/chapter/10.1007/

978-3-319-07443-6_5

7. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis
and Applications. In: Advances in Cryptology - EUROCRYPT 2015. pp. 281–
310. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (Apr 2015),
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10

8. Hasemann, H., Kröller, A., Pagel, M.: RDF provisioning for the Internet of Things.
In: 2012 3rd IEEE International Conference on the Internet of Things. pp. 143–150
(Oct 2012)

9. Käbisch, S., Peintner, D., Anicic, D.: Standardized and Efficient RDF Encod-
ing for Constrained Embedded Networks. In: The Semantic Web. Latest Ad-
vances and New Domains. pp. 437–452. Lecture Notes in Computer Science,
Springer, Cham (May 2015), https://link.springer.com/chapter/10.1007/

978-3-319-18818-8_27



10. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep. (2008)
11. Schneider, J., Kamiya, T., Peintner, D., Kyusakov, R.: Efficient XML Inter-

change (EXI) Format 1.0. Tech. rep., W3C (2014), https://www.w3.org/TR/2014/
REC-exi-20140211/

12. Su, X., Riekki, J., Nurminen, J.K., Nieminen, J., Koskimies, M.: Adding seman-
tics to internet of things. Concurrency and Computation: Practice and Experience
27(8), 1844–1860 (Jun 2015), http://onlinelibrary.wiley.com/doi/10.1002/

cpe.3203/abstract

13. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: A
low-cost knowledge graph interface for the Web. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web 37, 184–206 (Mar 2016), http://www.
sciencedirect.com/science/article/pii/S1570826816000214


