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Abstract. The RSP-QL model explains and unifies RDF Stream Pro-
cessing (RSP) approaches into a more general semantics. It was suc-
cessfully applied to model C-SPARQL, CQELS-QL and SPARQLstream

taking into account the operational semantics of the existing implemen-
tations. In this paper, we present Yasper 1.0, an RSP engine that imple-
ments RSP-QL semantics. Moreover, we present the challenges we found
during our implementation experience and we discuss the research op-
portunities they imply. For each of these challenges, we also formulate
some hypotheses that will drive our future work empirical studies on
RSP.

1 Introduction

The Stream Reasoning (SR) community is reaching an agreement on RSP-QL .–
the reference model proposed by Dell’Aglio et al [9] – as a unifying semantics of
existing continuous SPARQL extensions and the operational semantics. More-
over, RSP-QL was successfully applied to explain the operational semantics of
three popular RSP engines, i.e., C-SPARQL engine, CQELS, and Morphstream

and the semantics of the continuous extensions of SPARQL, they implement,
i.e., respectively C-SPARQL, CEQLS-QL, and SPARQLstream.

These RSP engines had a crucial role in fostering the popularity of SR re-
search. Their adoption also supported empirical comparative research and con-
sequently more foundational investigations [10] (§ 2). Similarly, we believe that
an RSP-QL engine that fully supports RSP-QL will push the model towards its
limits, unveiling new challenges and opportunities.

In this paper, we introduce Yasper 1.0 (Yet Another RSP Engine)1, i.e. an
RSP engine that implements RSP-QL semantics. We present the challenges that
we found during our implementation experience and we discuss research oppor-
tunities that these challenges unveiled. Moreover, for each challenge we formulate
some hypotheses that we aim at empirically testing as future work.

The remainder of the paper is organized as follow. Section 2 presents the
background information required to understand this work. Section 3 discusses
Yasper architecture and implementation details. Section 4 presents the challenges
and Section 5 discusses the research opportunities w.r.t. the presented challenges
and Section 6 concludes the paper.

1 https://github.com/streamreasoning/yasper.
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2 Background

In this section, we present the background information required to understand
the content of the paper.

We adopt a generic definition of RDF Stream, i.e. a sequence of pairs (Oi,
ti), where ti is a non-decreasing timestamp and Oi is either a named RDF Graph
or a timestamped RDF triple.

RSP-QL [9] is a unifying model for RSP dialects and engines. RDF Stream are
pair of named RDF Graph as Oi and timestamps.

A time-based sliding window operator W is a Stream-to-Relation (S2R) op-
erator [2] defined by the triple (α, β, t0). W determines a series of windows of
width (α) and sliding parameter (β) starting from t0. A Time-Varying Graph
(TVG) is a function that takes a time instant as input and outputs an Instanta-
neous RDF Graph. The application of W on a RDF Stream is a Time-Varying
Graph that for any given time instant t at which W is defined coalesces the RDF
Graphs in the current window2 into an Instantaneous RDF Graph.

A streaming dataset SDS is a set composed by an optional default element
A0, n (n ≥ 0) named Time-Varying Graphs and m (m ≥ 0) named sliding
window operators over k (k ≤ m) streams.

RSP-QL evaluation semantics is defined as eval(SDS(G), SE, t), where SDS
is a streaming dataset having G as active Time-Varying Graph, SE is an al-
gebraic expression and t is a time instant. Accordingly, the extension to multi-
window queries involves more than one active Time-Varying Graphs, i.e. eval(SDS(Gi

... Gn), SE, t). The evaluation is computed over the instantaneous graphs Gi(t),
i.e., eval(SDS(Gi, t), SE). An RSP-QL query is continuously evaluated against
a SDS by an RSP engine. The set ET of evaluation time instants is determined
by the RSP engine according to a reporting policy that, in RSP-QL, consists of
the composition of the following strategies: CC Content Change – the engine
reports if the content of the current window changes –, WC Window Close –
the engine reports if the current window closes –, NC Non-empty Content – the
engine reports if the current window is not empty –, and P Periodic – the engine
reports at regular intervals.

The output of the RSP-QL query evaluation is an instantaneous multiset of
solution mappings for each evaluation time instant in ”ET”. Time-aware opera-
tors called Relation-to-Stream (R2S) are required to transform the instantaneous
multiset of solution mappings into a Time-Varying multiset of solution mappings.
RSP-QL comprises the following R2S operators: the RStream, which emits each
solution mappings; the IStream, which emits the difference between the cur-
rent solution mappings and previous ones, and; the DStream, which emits the
difference between the previous solution mappings and the current ones.

C-SPARQL [6] is a continuous extension of SPARQL for registering queries
over RDF Streams represented as timestamped RDF triples, i.e., Oi is an RDF

2 The current window identified by W with the oldest closing time instant at t
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Triple. Queries written C-SPARQL are executed by an RSP engine3 that pipes
a Data Stream Management System (DSMS) with a SPARQL engine. The C-
SPARQL engine delegates the window execution to the DSMS and the remainder
of the query to the SPARQL engine. C-SPARQL reporting policy is on window
close and non-empty content (WCNC). C-SPARQL provides only the RStream
operator.

SPARQLstream [7] is an extension of SPARQL to query virtual RDF streams
where Oi is an RDF triple. Morphstream translates SPARQLstream queries into
several DSMSs queries by means of mappings. The mapping language is S2O, and
ad-hoc extension of R2O to include the time semantics (windows). Morphstream

reporting policy is on window close and non-empty content (WC.NC.). Morphstream

provides all the R2S operators.

CQELS-QL [12] extends SPARQL with continuous semantics adding special
operators to deal with streams and define windows. RDF streams are repre-
sented by timestamped RDF triples as Oi. CQELS ports DSMS concepts into
a SPARQL engine and, thus, it not only executes CQELS-QL queries but also
applies optimizations by adapting the execution of the query to the stream ve-
locity. CQELS reports results on content change (CC). CQELS provides only
the IStream operator.

3 YASPER: Yet Another RDF Stream Processing Engine

In this section, we introduce Yasper’s architecture and how it implements RSP-
QL concepts. Figure 1 shows the following modules of Yasper 1.0 Streams, Win-
dowing, SDS, Querying and Reasoning. Modules that exposes Yasper as a REST
service [3] are also available but not discussed.

The Stream module, Figure 1 (a), contains the classes to represent a Stream.
Yasper adopts a generic data stream model [5]. Each stream is identified by an
URI and its content is a generic stream item si=< ti, te, O > where ti is the
time when s entered the system (ingestion time); te is the time when s occurred
(event time) and O is a generic data element.

Thanks to this representation, Yasper can replicate the two RDF stream
models4 studied in RSP, i.e. unbounded sequence of timestamped RDF triples
as in C-SPARQL vs. unbounded sequence of RDF graphs as in SLD [4].

The Windowing module, Figure 1 (b), is based on Esper5, an open-source
DSMS that relies on the Event Processing Language (EPL) and special objects
called listeners that continuously receive the EPL queries outputs. We repre-
sent the RSP-QL Time-Based Sliding Window Operator (henceforth referred
to as window operator) as an EPL statement on an RDF Stream plus a lis-
tener that continuously receives its results. Each window operator maintains a

3 https://github.com/streamreasoning/CSPARQL-engine
4 The current implementation uses Apache Jena 3.
5 www.espertech.com
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Fig. 1: Yasper’s Modules: (a) Streams, (b) Windowing, (c) SDS, (d) Querying
and (e) Reasoning. Only relevant architectural details are represented.

Time-Varying Graph that is responsible for generating an Instantaneous RDF
Graph. The windowing is performed by means of temporal annotations of the
StreamItems. Therefore Yasper can refer either to the ingestion–time – the time
of arrival of a Stream Item – or to the event–time – the time each Stream Item
is annotated with. Yasper works by default using Event Time that, notably,
does not guarantee total ordering of Stream Items and, thus, requires further
synchronization mechanisms in an open Web environment.

A streaming dataset SDS, Figure 1 (c), contains all the Time-Varying RDF
Graphs. For each evaluation time t, each window operator w pushes StreamItems
into a Time-Varying RDF Graph tvg, which reactively generates an Instanta-
neous RDF Graph g The streaming dataset SDS can be consolidated into an
equivalent instantaneous dataset DI, i.e. a set of instantaneous RDF Graphs.
The content of an instantaneous RDF graph gi belongs to the current window
identified by their window operator wi at time t; wi might be a sub-window [2].
Notably, slowly evolving RDF graphs are represented as a (named) Time-Varying
Graph too. The SDS implementation extends Apache Jena 3 in-memory Dataset.

As described in Section 2, RSP-QL comprises four strategies to define an
RSP engine reporting policy. As of the time of the submission, Yasper reports
the results on Window Close (WC) and Non-empty Content (NC). However,
how policies work with multi window queries is not obvious. RSP-QL [9] implies
that any reporting policies could be mixed and introduces also the notion of
sub-windows to support this claim. It is worth to notice that the set ET of
evaluation time instants is tightly coupled with the arrival of new data, unless
the RSP engine exploits an internal clock. In a real streaming setting, this is true
even if the reporting policy define ET a-priori, e.g. periodic. For this reason, the
creation of the SDS and the query evaluation are computed reactively to the
arrival of a new Stream Item. This simple difference unveils several issues that
we will discuss in the next section.
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REGISTER STREAM <example> AS CONSTRUCT ISTREAM {? s ?p ?o}
FROMNAMEDWINDOW : w1 [RANGE 5s , SLIDE 2 s ] ON STREAM : stream1
FROMNAMEDWINDOW : w2 [RANGE 5s , SLIDE 5 s ] ON STREAM : stream2
WHERE { WINDOW ?w1 {? s ?p ?o}

WINDOW ?w2 {? s ?p ?o} FILTER (?w1 != ?w2) }

Listing 1.1: An example of RSP-QL Query.

The Querying module, Figure 1 (d), contains the elements for query instan-
tiation and continuous execution. At this stage of development, Yasper accepts
only SELECT and CONSTRUCT queries; the R2S operators R-, I- and DStream
are available [2] and it also supports multi-window queries. Listing 1.1 presents
the currently supported syntax, which is inspired to [8] and the W3C RSP CG6.

The reasoning module, Figure 1 (e), supports continuous query answering
under entailment regime. For each evaluation time instant t, before evaluating
an RSP-QL query q, Yasper computes the closure under the entailment e of each
instantaneous RDF Graph in SDS(t) using the Jena Generic Rule Reasoner.
Future work in this direction comprise the integration of RDFox and Ontop.

4 Challenges

In this section, we present the challenges unveiled by our implementation expe-
rience. Yasper relies on some design decisions that require to be discussed with
the SR/RSP community. In particular, we found issues about the streams item
representation, stream item order, and multi-window queries evaluation, which
relates to the notion of RSP-QL dataset SDS. We summarize these issues with
the following questions:

(Q1) What is the best way to model the stream content?
(Q2) How does the time model impact the processing?
(Q3) What does define the current SDS at time t?
(Q4) Is there an efficient way to maintain the SDS?

(C1) Stream Content. RSP-QL assumes that stream items are timestamped
(named) RDF Graphs. Actually, this assumption contrasts with how most of the
existing RSP approaches work in practice. Indeed, [6, 7, 12] adopt timestamped
RDF triples and only SLD [4] uses timestamped named graphs. Moreover, Bal-
duini et al. [5] recently highlighted the benefits of a generic data model combined
to a lazy-transformation approach.

Although the theoretical equivalence between the two approaches has been
proved [9], we still have to identify their impact on performance. (Q1) highlights
the need to identify an optimum if any. To support this investigation, we propose
the following hypotheses:

– Hp.0 Streams represented as RDF statement and those represented as Named
graph are equal under the assumptions of non-decreasing timestamps for the
RDF statement stream.

6 https://github.com/streamreasoning/rsp-ql
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– Hp.1 The cost of translating a stream of timestamped RDF statement to a
stream of named RDF graph is negligible.

(C2) Stream Ordering. RSP approaches typically assume the stream items
arrive with non-decreasing timestamps. Although this assumption is reasonable
for monolithic infrastructure, it does not hold for distributed or federated archi-
tectures [1]. (Q2) highlights the need to study the consequences of alternative
time representations [1], especially in those settings where is not possible to
guarantee synchronization nor absence of out-of-order arrivals. To support this
investigation, we propose the following hypotheses:

– Hp.2 Event–time and ingestion–time are equivalent for partially ordered
streams.

– Hp.3 Event–time and ingestion–time are not equivalent for totally ordered
streams.

(C3) SDS Consolidation & Maintenance. RSP-QL assumes that an In-
stantaneous Graph IG can be generated by a Time-Varying Graph TVG for any
instant t for which the window operator W is defined. This assumption implies
that IG can be accessed even if the window is not closed. Although this approach
theoretically promises always up-to-date results, it requires the RSP engine to
maintain sub-windows accessible [1]. This surely has an impact on performance
in terms of operations and memory. Moreover, if we consider existing RSP di-
alect syntaxes or RSP-QL proposals [8], the sub-window definition is transparent
to the system user. This introduces ambiguity in the intended semantics. (Q3)
highlights this issue from the point of view of the dataset SDS.

We name the problem SDS Consolidation and we introduce the notion of
Active SDS – i.e. the SDS against which an RSP-QL query q is evaluated at
time t. Dell’Aglio et al. [9] defined an SDS that relies on the notion of sub-
windows. Since this consolidation semantics always considers the current status
of all the windows, we refer to it as Current Active SDS. We identified two
consolidations semantics that do not rely on sub-windows: (1.) the Closed Active
SDS, as the name suggests, considers only the instantaneous RDF graphs that
were derived from closed active windows. (2.) The Cached Active SDS considers
the instantaneous RDF graphs that were derived from the latest closed active
window. To support this investigation we formulate the following hypotheses:

– Hp.4 The Current Active SDS is always more efficient in terms of resource
usage than Closed and the Cached.

– Hp.5 The Current Active SDS is not more responsive than the Closed and
the Cached ones.

In order to better understand the impact on the results of the different SDS
consolidations semantics, let us consider the example illustrated in Figure 2:
:w1 and :w2 are two window operators applied to two streams. By definition,
they define many windows with opening and closing time instants (o,c). Let
us consider now the SDS at three relevant time instants: t = 30 where only a
window defined by :w1 is closed; t = 35 where both :w1 and :w2 define two
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Fig. 2: Windowing Examples: (a) Window [RANGE 5s STEP 5s], (b) Window
[RANGE 5s STEP 2s]. Cfr Listing 1.1.

closed windows, and; t = 36 where neither :w1 nor :w2 defines a closed windows
Table 1 summarizes the results for each different SDS consolidations semantics
and the reader can observe big differences for t = 30 and t = 36.

SDS(t) Current Closed Cached
w1 w2 w1 w2 w1 w2

SDS(30) x1 y1,y2 x1 ∅ x1 y1
SDS(35) x2,x3 y3,y4 x2,x3 y3,y4 x2,x3 y3,y4
SDS(36) x4 y5 ∅ ∅ x2,x3 y3,y4

Table 1: Differences between Active SDS respec-
tively Current, Closed and Cached.

A second issues that arose
from our implementation ex-
perience, summarized by (Q4),
regards the problem of SDS
maintenance. Once fixed the
consolidation semantics, we
need to identify an efficient7

way to set up the Active SDS.

To this extent, we intro-
duce the notion of Mainte-
nance Strategy, i.e. the proce-
dure to apply the SDS consol-
idation semantics. A maintenance strategy describes how a Time-Varying Graph
generates and Instantaneous Graph. We identified two alternative maintenance
strategies: (i) Snapshot – i.e. Time-Varying Graph the trashes the whole Instan-
taneous Graph content – and (ii) Deltas – i.e. the Time-Varying Graph updates
the Instantaneous Graph considering the differences between the current con-
tent and the previous one in terms of additions and deletions. To support this
investigation, we formulate the following hypotheses

– Hp.6 Once fixed the SDS consolidation approach, the Maintenance Strategy
does not influence the correctness of an RSP-QL query.

– Hp.7 the performance of the delta Maintenance Strategy is always comparable
to those of the snapshot.

7 We consider efficient an approach that performs better than a naive solution that
rebuild SDS.
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Challenges RSP-QL Variants

C1 Stream Content Named Graph RDF Statement Virtual

C2 Stream Ordering Non-Decreasing Monotonic Late Items

C3 SDS Consolidation Current Closed Cached

SDS Maintenance / Snapshot Deltas

Table 2: Five challenges in the RSP-QL model and variants to them.

5 Discussion

In this section we discuss the research opportunities that each of the presented
challenges highlights.

Challenge C1, and partially C3, indicate that the RSP solution space is not
yet systematically explored and there is room for optimization driven by RSP-
QL insights. The community efforts on empirical research should continue, also
supported by new resources like Yasper and the recent RSPLab [14]. Moreover,
we need to define uniform evaluation methodologies based on choke-points [11],
that guide the evaluation of new approaches.

Challenge C2 suggests that some typical SR/RSP assumptions are inade-
quate for distributed or federated environments. The management of out-of-order
data arrival is an open challenge for mature systems like Spark8 and Flink9 and
so should be for the SR/RSP community. Federated RSP is another appealing
idea; networks of engines that exchange data and queries require to relax these
assumptions and rethink the model.

We advocate the use of reasoning to deal with the challenges, i.e. out-of-
order data arrival and federation and planning. Moreover, correctness must be
redefined to include relevant notions such as maximum delay, watermark and
multiple active windows [1].

Challenge C3 reveals that designing a syntax that takes into account all the
aspects of RSP is hard. Especially because we, as a community, did not inves-
tigate what is the intended semantics of a query. A universal syntax might not
exist, while task-specific syntaxes that capture fragments of RSP-QL semantics
can better fit the user needs.

Specifically for querying, we must focus on usability. For a query language,
we need to reduce ambiguity and improve efficiency as much as possible even if
it means trading expressiveness and usability if necessary.

Our intuition is that some window operators are easier to use in combination
with specific policies and our proposal is to reflect these preferred relations in
the RSP-QL syntax. In Listing 1.2 we present three alternative syntaxes that
we believe are tightly coupled. The window at line 1 suggests that the reporting
will happen on window close (i.e. when the window slides). The window at line
2 is meaningful only when the system reports on content change. The window

8 https://spark.apache.org/
9 https://flink.apache.org/
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at line 3 might be a possible syntax that highlights that sub-windows of a given
size are allowed.

1 FROMNAMEDWINDOW : a [RANGE 5s , STEP 2 s ] ON STREAM : s t r 1
2 FROMNAMEDWINDOW : b [RANGE 5 s ] ON STREAM : s t r 2
3 FROMNAMEDWINDOW : c [RANGE 5s , SLIDE 5s , SPLIT 1 s ] ON STREAM : s t r 3

Listing 1.2: An example of RSP-QL Query.

6 Conclusion

In this paper we presented Yasper 1.0, i.e. an RSP-QL compliant RSP engine,
and the challenges we faced during our implementation experience.

At the moment of writing, Yasper supports the proposed syntax [8] and can
answer multi-stream SELECT and CONSTRUCT queries. The support of ASK
queries is a work in progress whereas the DESCRIBE clause requires further
investigation. Yasper supports all the RSP-QL streaming operators while it’s
reporting policy is On Window Close and Non-Empty Content. We are work-
ing to make the reporting policy also configurable in order to support all the
combinations.

Regarding the presented challenges and our hypotheses, our goals is to per-
form a descriptive study on RSP engines. To this extent, we will formulate
statistical tests to investigate our hypotheses and we will extensively evaluate
Yasper 1.0 and the other relevant RSP engines [13, 9].

Acknowledgments. We thank Daniele Dell’Aglio for the supporting discus-
sions and brainstorming regarding RSP-QL.
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