StreamConnect: Ingesting Historic and Real-Time
Data into Unified Streaming Architectures

Philipp Zehnder and Dominik Riemer

FZI Research Center for Information Technology
Haid und Neu Str. 10 14
76131 Karlsruhe, Germany 76131 Karlsruhe, Germany,
zehnder@fzi.de,
riemer@fzi.de,
https://www.fzi.de/en/

Abstract. The web of things provides a steadily increasing amount of
both real-time and historic data sources. Yet widespread standards are
missing and the heterogeneity of data formats and communication pro-
tocols makes the integration of such sources a challenging task often
requiring for manual programming effort.

This paper presents a novel, lightweight semantics-based approach to
quickly connect heterogeneous data sources to stream processing sys-
tems. Our main contributions are i) a new model to represent char-
acteristics of data streams and data sets such as schema and quality
independent from the actual run-time format, ii) generic data adapters
and methods to automatically discover these characteristics at runtime
and iii) a distributed architecture to pre-process (e.g. clean and filter)
raw data coming from these adapters directly on the edge before data is
processed by a stream processing engine.

Our contribution eases the ingestion of batch and real-time data into

unified streaming architectures.

Keywords: Stream Processing, Data Ingestion, Semantic Web

1 Introduction

In recent years, emerging trends such as the web of things have led to an
enormous data growth. For instance, manufacturing companies more and more
gather, besides existing data sources such as master and customer data, also
massive amounts of real-time data sources coming directly from shop floors. At
the same time, the web benefits from many data sources that are publicly made
available by means of open APIs.

One major benefit of this trend is the ability to integrate and process such
sources in real-time as a basis for advanced analytic operations, enabling com-
panies to find correlations such as incident patterns early or even ahead of time.

From an information management perspective, architectural patterns such as
publish /subscribe systems have gained popularity, enabling enterprises to estab-
lish so-called data backbones that collect data in a single, yet distributed mes-
saging system such as Apache Kafka [1]. At the same time, modern distributed

streaming engines such as Apache Flink [2] are able to process both real-time
and historical data in a unified streaming architecture. Such architectures, also
known as Kappa architecture [3], reduce the effort to deploy and maintain two
different code bases for batch processing of historical data and stream processing
for quickly computing real-time views required by other Big Data architectures
such as the Lambda architecture [3].

However, a still remaining open problem is the accessibility and ingestion of
data sources into such architectures for further processing. The development of
adapters for individual data sources is still a highly manual task [4] due to the
heterogeneity of protocols and diversity of data formats. This usually requires
for both technological expertise as well as domain knowledge to understand the
meaning of gathered data. The main objective of this paper is to reduce the tech-
nical effort for the integration of new data sources into a big data streaming-only
infrastructure by introducing a semantics-based adapter concept. This objective
poses a number of technical challenges and requirements that need to be consid-
ered:

— Temporal Aspect: Adapters need to be able to handle both real-time and
historical data.

— Adapter Configuration: A solution must provide a higher level of abstrac-
tion to enable domain experts to configure adapters, which still requires a
lot of technical understanding.

— Data Cleaning: Since adapters are often long running processes, they
should ensure that the quality of the data does not change over time.

— (Edge) Pre-Processing: Simple pre-processing steps such as filtering, trans-
forming or aggregating data should be executed locally close to the sensor
to avoid sending noisy data to the messaging system.

This paper is structured as follows: In section 2, we present a motivating sce-
nario that illustrates the need and general approach of our contribution. Section
3 introduces an event model we developed for both raw-data and semantically de-
scribed virtual sensors. After defining the model, section 4 describes the adapter
architecture and illustrates how a new adapter can be modeled. Finally, section
5 presents the related work followed by section 6, conclusion and outlook.

2 DMotivating Scenario

This section provides an illustrative scenario that shows the challenges that
must be solved when integrating multiple heterogeneous data sources with a
single adapter concept. As an example we will present how an adapter for a
new temperature sensor on an oil rig is created. The events are stored in a
message broker, like Apache Kafka, and can then be used by other systems like
StreamPipes! [5] to build and execute processing pipelines, shown in figure 1.

! http://streampipes.fzi.de

(" <event>) 2) §) 8 B) B) o«) w
<timestamp>1500391623</timestamp> o —
<temperature>10</temperature> ‘ !

\</event> ~ L -b, d *

[TR

| m)
Protocol L poo i @

Format conversion I

Raw-Data Pipeline Virtual-Sensor
timestamp - 1500391623 | ™ ‘ if (temperature < 350) || tolson() ‘ [7| | {timestamp’: 1500391623,
temperature - 10 "temperature’: 10}

RDF-Description of RDF-Description of Virtual-

Raw-Data Sensor

Fig. 1: Example: Functionality of the adapter

To create a new adapter, the user makes use of a model editor, which realizes
a guided process where the user has to provide mandatory information about the
data in a graphical interface. As a first step in the modeling process, it must be
defined what kind of data should be processed: Real-time data or historic data
(e.g. a CSV file). In our example, we assume that the temperature sensor origi-
nates from a real-time data source. Afterwards, the communication protocol for
accessing the data source needs to be selected based on several available options.
In our example, the temperature sensor provides a REST interface that must
be polled every second. The modeling process is semi-automatic and the system
tries to guess as much as possible, like the format of data and semantic content.
This is done based on the available meta data or by extracting sample data from
the source. Once the adapter has been initialized, raw data is processed in the
pipeline according to rules that are inferred from the model and is transformed
into the virtual sensor representation. In our example, the pipeline filters out all
events with a temperature higher then 350. This rule is automatically created by
the framework due to the RDF description of the virtual sensor which describes
the measurement range to be lower then 350. Furthermore, the raw data event
is transformed into JSON. Finally, events are emitted by the adapter and put
onto a message broker. They can then be consumed by processing engines, like
for example StreamPipes or Apache Spark [6].

3 Event Model

This section introduces an RDFS-based event model, which is based on the
Semantic Event Producer model of |7, section 7.3] and further re-uses parts
of the Semantic Sensor Network Ontology [§8] and the QUDT Ontology [9] for
representing measurement units. We present two variations of the model, the

raw data model and the virtual sensor. The raw data model is a subset of the
virtual sensor model, which contains only basic information about the data.
Both models can be seen in figure 2, with the raw data model highlighted in
bold. The event model is instantiated in a design phase, once a new adapter is
being created by a domain expert.

The raw data model has two types of data sequences, a Data Set and a Data
Stream, each of them has a grounding, the protocol and a format. Further, it has
a simple event schema that consist of a runtimeName, for example the column
name of a CSV table, and the according runtimeType, the type of data that
is stored in the table column (e.g. String or Integer). Besides primitive types,
an event schema can also describe nested structures and lists. Additionally, a
measurement unit for properties can be provided (e.g. temperature measured in
degrees celsius or fahrenheit).

‘ Data Producer
H hasGr - X
v© - Grounding

-
| Data Set Data Sequence I—- = = _ _hassi

numberEvent, —= V" hasschema
Event
S
~ runti 1 roperty ‘
rdf:Property

hasEventPi 1, -
as-v_en__rtiee_y____ -

ssn-system:Frequency

ssn-system:Latency

-
- - ~ S~
4 N ‘1 PropertyQuality ‘
\ I
\ Event Event Event ’ .
™~ Property Property Property |
Nested Primitive List
——r— ssn-system:Accuracy
- - ’/’ : =~ ...rﬂ:tr‘me?’ype
. . L o
hasUnig, = o valueSpecicatign | ssn-system:Drift |7
udt:Unit 3 :
d - ;\a\‘“ Y ‘ ssn-system:Resolution lf
. %S(\:’\\ Value
. ’g;"' Specification o
L5 ssn-system:Precision
Y

Enumeration
N, hasRuntimeValue
------ e >
! Sa. 0 TTmme=eal
step Sso maxValue

/
~o so:Integer
so:Integer Virtual Sensor ——
so:Integer
Raw Data Model =

Fig. 2: Model of virtual sensor

Functionality
Enumeration

The virtual sensor has a more detailed semantic description as shown in
figure 2. The Data Sequence is produced by a Data Producer. Further qualities,
like the frequency of a Data Sequences can be described and it has one event
schema, consisting of multiple EventProperties. They can have different Prop-
ertyQualities (e.g. accuracy or precision of a sensor measurement), a runtime
name (often the same as the runtime name of the raw data model), and a do-
main property for example "http://schema.org/location’. Properties might also
be modeled as lists or nested structures. The FEventPropertyPrimitives have a
runtime type and a unit. The Functionality Enumeration can be used to mark a
property for example as a timestamp. Furthermore, the ValueSpecification can
be used in order to restrict possible values of the property.

4 Adapter Architecture and Modeling

This section describes the runtime-architecture of the adapters. Adapters are
modeled via a graphical user interface by a domain expert and are automatically
instantiated.

Figure 3 shows the different components of the adapter architecture. In the
beginning, a data converter has the main task to establish a connection to the
data source, collect data and transform it into the internal raw data format. After
data is available in the internal format, it is transformed into the virtual sensor
data representation via the raw data pipeline. This pipeline is explained in more
detail later in this section. The last component of the adapter is a broker, where
virtual sensor events are sent to in order to be consumed by other applications
and tools. All adapters have two interfaces, one for accessing real-time data and
one for providing the schema description. Data set adapters have an additional
interface to start a data replay and to serve data from different time-slots to
multiple consumers. This is not needed for real-time data since all events are
immediately emitted as they are produced.

uonduasag

Oemaqas

» Sensor
Fle| - S

Data-Converter SourceContainer

Raw-Data Broker Pipeline Virtual-Sensor Broker
e (OB O~ 0O o I

[21doy] <-
eleqgiso
eleg-awnuny

O

Fig. 3: Architecture of the adapter

4.1 Raw Data Pipeline

Each adapter has its own individual raw data pipeline. Those pipelines are cre-
ated automatically according to the model defined by the user and consists of
multiple processing agents, which are based on previous work we have imple-
mented in StreamPipes. A user can use and configure the agents via a graphical
user interface. In this work, agents are configured automatically according to the
model description.

Within a pipeline, multiple data transformations can take place. In general,
our idea is to use the defined semantics to automatically transform data during
runtime. Such transformations could be enrichments with context information,
filter out unreasonable values and transformations to ensure that the result-
ing events always have the same schema and quality. The first component in
a pipeline is always the source providing raw-data while the last one is always
a sink that writes the virtual sensor values to the resulting broker. Currently
there is support for five kinds of agents in the pipeline, a structural transformer,
a unit transformer, a filter, a frequency reducer and a schema agent. Agents are
developed in a way that it is possible to add more at a later point in time. First,
we will describe the structural transformer agent:

Structural Transformer Agent The task of the Structural Transformer Agent
is to transform the internal raw-data representation into the structure required
by the virtual sensor. This is done via mappings between the two model schema’s.
One example would be to a flat data structure into a nested structure or vice
versa. Another example could be to flatten a property list into primitive proper-
ties. All operations are performed on the internal format and are inferred from
the models based on the provided runtime name. At runtime, each data point is
transformed individually in a stateless manner.

Unit Transform Agent The Unit Transformer Agent uses the unit informa-
tion of the EwventPropertyPrimitive to automatically provide the correct mea-
surement unit. Users only need to model the structure of the required format
for the event property and the system automatically transforms the data. This
is accomplished using the QUDT Ontology [9], that provides information about
different units and also contains a conversion formula for individual conversions.
First, the measurement values are transformed into a standard metric, afterwards
this standard metric is further transformed into the goal unit.

Filter Agent The Filter Agent filters data values out that are not compatible
to the virtual sensor description. Filter rules are extracted from the semantic
model, for example the PropertyQualities and the ValueSpecification as described
in section 3. For instance, if a quantitative value has a modeled range from 0 to
10 and the measured value is 11, the system infers that this is a false value and
can automatically remove it from the output stream. This agent ensures that
data consumers can expect only semantically correct data, which reduces the
probability of run-time errors.

Frequency Reducer Agent This agent changes the frequency of the data,
according to the actual values of the properties. When the user activates this
agent during the design phase, all values of the events are monitored during
runtime. If the agent detects that values of the events do not change over a
period of time, the frequency for emitting new events is reduced. With this
agent, it is possible to reduce the amount of data sent over the network without
loosing information.

Schema Agent Some information about the stream must not be modeled by
the user, but is inferred automatically at run-time. In this case, the schema
description is adapted accordingly. This agent does not transform data, it mon-
itors runtime data and changes the schema description. Two such examples are
frequency and latency of the produced events. These values are measured at
runtime and are constantly updated in the schema description.

5 Related Work

Integrating semantic web technologies and big data streaming architectures is
becoming more and more relevant. One example is Strider [10], which consumes
data from Apache Kafka and uses Apache Spark to optimize query planning.
Our approach is complementary and could be used to easily integrate new data
sources into Kafka and process it with this framework.

There are also other solutions leveraging from semantic data models for
streaming data from sensors like for example [11], the sensor middleware for
OpenloT [12]. The authors use the SSN ontology and also have the concept of
virtual sensors. One difference is that we mainly use semantics during the design
process to automatically transform data later during runtime, but we do not
focus on processing RDF data at runtime.

A programming model that is related to our overall architecture are foglets
[13]. This architecture consists of a central cloud computing instance and several
edge nodes located closer to the sensors in the networking stack. With foglets, it is
possible to distribute programs across all the computing instances and perform
some processing steps on edge nodes an some in the cloud. Our approach is
similar, but our programming model is more lightweight as we clean data directly
on the edge nodes, where no further programming is required.

6 Conclusion and Outlook

In this paper, we presented a framework for data adapters that are capable of in-
gesting real-time and historic batch data into unified stream processing engines.
We introduced a lightweight, RDFS-based model for raw data sources and an ex-
tended model to represent virtual sensors. These models can be instantiated by
domain experts with little technical knowledge using a graphical user interface.

Based on these models, our contribution consists of a generic adapter architec-
ture to automatically consume, pre-process and harmonize data. Our approach
bridges the gap between a large variety of data sources and the processing engine
that performs the actual algorithms.

In our future work, we plan to further extend our framework by supporting

more protocols and formats and also extending the (semi-) automatic transfor-
mation capabilities of our raw-data pipeline.

References

1.

2.

10.

11.

12.

13.

J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging system for
log processing,” in Proceedings of the NetDB, 2011, pp. 1-7.

P. Carbone, A. Katsifodimos et al., “Apache flink: Stream and batch processing in
a single engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

R. C. Fernandez, P. R. Pietzuch et al., “Liquid: Unifying nearline and offline big
data integration,” in CIDR 2015, Seventh Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA,, 2015.

S. Bischof, C. Martin, A. Polleres, and P. Schneider, Collecting, In-
tegrating, Enriching and Republishing Open City Data as Linked Data.
Cham: Springer International Publishing, 2015, pp. 57-75. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-25010-6 4

D. Riemer, F. Kaulfersch, R. Hutmacher, and L. Stojanovic, “Streampipes:
Solving the challenge with semantic stream processing pipelines,” in Proceedings
of the 9th ACM International Conference on Distributed Fvent-Based Systems, ser.
DEBS ’15. New York, NY, USA: ACM, 2015, pp. 330-331. [Online|. Available:
http://doi.acm.org/10.1145/2675743.2776765

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets.” HotCloud, vol. 10, no. 10-10, p. 95, 2010.
D. Riemer, “Methods and tools for management of distributed event processing
applications,” Ph.D. dissertation, Dissertation, Karlsruhe, Karlsruher Institut fiir
Technologie (KIT),, 2016.

. K. Taylor, S. Cox, K. Janowicz, D. L. Phuoc, A. Haller, and M. Lefrangois, “Se-

mantic sensor network ontology,” W3C, Candidate Recommendation, Jul. 2017,
https://www.w3.org/TR /2017 /CR-~vocab-ssn-20170711/.

R. Hodgson, P. J. Keller, J. Hodges, and J. Spivak, “Qudt - quantities, units,
dimensions and data types ontologies,” Tech. Rep., 2017, http://www.qudt.org/.
X. Ren and O. Curé, “Strider: A Hybrid Adaptive Distributed
RDF Stream Processing Engine,” pp. 1-17, 2017. [Ounline]. Available:
http://arxiv.org/abs/1705.05688

J.-P. Calbimonte, S. Sarni, J. Eberle, and K. Aberer, “Xgsn: An open-source se-
mantic sensing middleware for the web of things.” in TC/SSN@ ISWC, 2014, pp.
51-66.

J. Soldatos, N. Kefalakis et al., “Openiot: Open source internet-of-things in the
cloud,” in Interoperability and open-source solutions for the internet of things.
Springer, 2015, pp. 13-25.

E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwélder, “In-
cremental deployment and migration of geo-distributed situation awareness appli-
cations in the fog,” in Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems. ACM, 2016, pp. 258-269.

