Aquacold — a crowdsourced query understanding
and query construction tool for the linked data web

Nick Collis and Ingo Frommholz

University of Bedfordshire, Luton, UK

Abstract. The Linked Data Web promises a disseminated, dynamic, ever
expanding knowledge base where relationships between content and entities
can be expressed and queried using formal logic rules. The data formats and
exchange protocols that comprise the Linked Data Web have existed for over
15 years and grown to incorporate over 149 billion triples but there is no
established ‘mainstream’ system that allows regular non-technical users to
query the linked data web using natural language. In this paper we intro-
duce Aquacold (Aggregated Query Understanding And Construction Over
Linked Data), a novel Linked Data query tool designed to fill this gap. Aqua-
cold combines a simple browsing interface for exploring, filtering and sorting
linked data with query labelling which allows the user to store a natural lan-
guage representation of the underlying SPARQL query. A search interface
allows users to write guided natural language queries, which are converted
into SPARQL queries to retrieve results from the linked data source. A set of
voting tools are presented for each query and associated result set to surface
the most accurate templates and relegate those that are less accurate. This
crowdsourced approach for labelling, saving and voting on linked data query
templates enables regular, non-technical users to make complex natural lan-
guage queries over the linked data web without having to use a structured
language such as SPARQL. In this paper we provide an overview of the system
and discuss an early prototype.

1 Introduction

Linked Data has been described by Tim Berners-Lee as “The Semantic Web Done
Right” [1]. The term refers to a technology stack (RDF, OWL, SPARQL) that pro-
vides a mechanism for data to be published, queried and inferred, on the web [2]. One
of the promises of the semantic web is that the additional structure present in linked
data should enable systems to better understand user queries and provide direct an-
swers to questions, rather than returning links to webpages. Providing direct answers
has shown to be preferable to users [3]. A critical factor preventing widespread adop-
tion of linked data amongst regular ‘non-technical’ users is the lack of an intuitive
user interfaces to search, sort and link this information. In other words [4]:

...the lack of technical knowledge and an understanding of the intricacies of
the semantic technology stack limit such users in their ability to interpret
and make use of the Web of Data. The key solution in overcoming this hurdle
is to visualise Linked Data in a coherent and legible manner, allowing non-
domain and non-technical audiences also to obtain a good understanding of
its structure, and therefore implicitly compose queries, identify links between
resources and intuitively discover new pieces of information

At present, in order to query the linked data web, users must either learn a formal
query language such as SPARQL or rely on a narrow set of common queries which
can be understood by search engines which often draw on linked data sources [5].
There is a need for a linked data search tool which can return answers from the linked
data web based on natural language queries that can be written by non-technical
users.

Aquacold aims to fill that gap by providing a novel combination of features that
enables users to author, search and rank linked data queries represented by natural
language through an efficient and simple interface. The system is designed to over-
come the challenges faced by similar crowdsourced and /or programmatic approaches
(see Section 5 for further details).

The paper is structured as follows. In the next section we discuss some related
work. In Section 3 we introduce the Aquacold system. Section 5 reflects benefits and
limitations of the current system, then we discuss future work in Section 6.

2 Related Work

The field of Linked Data search has been active in recent years, with work undertaken
in a variety of different areas to increase usability and effectiveness. Natural Language
Interfaces (NLI), User Interfaces (UI) and query search templates are amongst the
approaches explored.

Query Builders are a subset of Linked Data search UI which enforce a strict for-
mal syntax for users to formulate their search query. These include faceted search
interfaces which use filter controls. Systems such as the CODE: Linked Data Query
Wizard [6] and VisiNav [7] provide users with intuitive controls that enable queries
and result sets to be manipulated in realtime. Although beneficial in terms of us-
ability, faceted search interfaces are, by nature, limited in expressivity due to the
increased level of extraction from the query itself. Each facet/filter must be prede-
fined to control one aspect of the query so typically only small numbers of facets are
made available through the UI to control the most common query elements.

Natural Language Interfaces allow users to compose their queries using regular
text instead of relying on a Ul to build queries or manipulate results based on prede-
fined elements. NLIs allow for more expressive queries which are easy to understand
and produce for non-expert users, however result accuracy is limited unless only basic
queries are used. Few systems support more complex operations such as aggregation
or comparatives.

NLI approaches for querying Linked Data range from sophisticated attempts to
understand the query in its entirety as used in PowerAqua [8] and Pythia [9] to
keyword based NLI used in NLP-Reduce [10] which employs a simpler ‘bag of words’
approach to query analysis. PowerAqua merges linked data from multiple sources
and uses iterative algorithms and ranking analytics to answer natural language ques-
tions. The system performs well on large discordant data sets, but is limited in its
capacity to parse more complex natural language and cannot process aggregation
modifiers such as ‘the most’ or ‘the least’. Pythia has stronger natural language
parsing capabilities and can handle more advanced questions, including aggregation
modifiers. The key limitation of the system is that it requires a manual lexicon to
be constructed, which causes scalability problems.

Modern major search engines such as Google and Bing can now provide answers
to natural language questions such as ‘What is the capital of Egypt?’. However, these
types of simple queries form the minority of searches [11], which highlights the need
for a system which can understand more complex natural language complex and
return relevant answers.

Systems such as Atomate [12] and Sparklis [13] combine a UI with NLI to form
a hybrid query builder / NLI that utilises the readability of the latter with the
guidance of the former. Sparklis allows users to explore SPARQL endpoints through
guided query construction, combining the readability of Query Builders with the
granularity of faceted search, whilst retaining much of the expressivity of SPARQL.
As such, queries such as ‘Give me the number of pages of War and Peace’ can be built
one expression at a time, requiring no knowledge of either the SPARQL language
or the underlying data schema. Although a high level of accuracy is reported when
testing the system against benchmark queries [14], the system does not scale well
when query complexity increases. In addition, the immutable structure, wording and

syntax of the Natural Language representation of Sparklis queries does not allow for
differences in expression between users and the system as a whole is not immediately
intuitive and requires some time investment to learn.

Decomposing natural language queries into SPARQL using generic query tem-
plates is another approach for improving the usability of linked data search. Pro-
grammatic techniques have been developed to parse NL queries into a SPARQL
template which can be used to answer user questions. TBSL [15] parses natural lan-
guage to produce a SPARQL template which defines the query structure including
aggregation operators such as MAX, MIN and COUNT, including variables that will
be converted into URISs related to the entities in the original query. For example, the
query ‘Show all Universities located in the South-East of England’ would result in
the following template shown in Fig. 1, which includes a variable for the class ‘Uni-
versities’, a variable for the resource ‘South-East of England’ and a variable for the
relation ‘located in’.

A number of potential queries are produced from the
template, which are ranked according to string similar-

SELECT ?x WHERE { ity, data schema conformance and prominence. Queries
Xy with a high ranking are run against the underlying triple
?x rdfitype 7z store, with the best answer returned. TBSL answered 19
} questions out of 50 correctly in the QALD-1 test. This il-
p: Located in lustrates the problem with programmatic query template

y: South-East of England

generation in general - these methods produce results of
z: Universities

insufficient accuracy to scale to ‘mainstream’ use, partic-
Fig. 1: Example SPARQL Tilar.ly with longer, more complex querie.s. Another lim-
template used in TBSL itation of such template based systems is that they are

not robust enough to handle queries on rapidly evolving
knowledge bases, where there are regular updates/deletions/additions.

A potential solution to this is to harness the power of the crowd. This is ex-
plored in CrowdQ [16], which uses a hybrid machine / crowd approach, producing
programmatic suggestions to linked data queries, with the crowd confirming the cor-
rect answers. Although results show that the crowd could be successfully leveraged
to provide structured answers to an unstructured query, the system is limited to
answering short queries only and cannot process queries that involve more advanced
operators such as aggregation, MIN/MAX and GROUP BY. [17] follows a similar
approach, asking the crowd to pick the most appropriate URI for a given query from
shortlist selected by an algorithm. One criticism leveled at this approach is that the
end user is not always a subject expert and is therefore not always able to make the
correct selection for the given data model and vocabulary.

Aquacold implicitly links entities in the label text with URIS and filters displayed
in the data browser utilising a combination of basic pattern matching and user vot-
ing to establish the mapping. Entity linking (also Named Entity Recognition
and Disambiguation) refers to entities from disparate sources that refer to the
same object in the subject domain. Significant work has been done in the area of
algorithmic entity analysis [18] and common challenges for such systems have been
identified: [19] Entity ambiguity - the same string referring to multiple entities;
Name variation - an entity which can be describe by multiple distinct words; Ab-
sence - text that cannot be resolved to a specific entity. By focusing on the parallel
approach of crowdsourced entity linking, Aquacold avoids many of these challenges.
For more details, see Section 5.

3 Aquacold — System Overview

Aquacold is a Linked Data search tool that combines a linked dataset explorer (con-
sisting of customisable filters and a results grid), natural language input and crowd-
sourced SPARQL templates to enable non expert users to successfully query linked

data with no knowledge of the SPARQL query language or the underlying data
schema. Aquacold employs a multi stage approach.

Tanks used in World War 2 o searche

aURI o URILabel type used in war

Renault 4

)) :)) manufacturers (11) > Renault
http://dbpedia.orgiresource/Hotchkiss_H35 Hotchkiss H35 Light tank World War Il, Israeli War o
manufacturer (8) > Renault

http://dbpedia.orgiresource/Renault_FT Renault FT Light tank 1948 Arab—Israeli War, C..
http:fidbpedia.orgiresource/T-70 T-70 Light tank World War Il
http://dbpedia.org/resource/Lgichttraktor Leichttraktor Light tank World War Il
http:/idbpedia org/resource/38M_Toldi o 38M Toldi Light tank World War Il
http://dbpedia.org/resource/7TP 7P Light tank Waorld War Il
http://dbpedia.orgiresource/Panzer_35(t) Panzer 35(t) Light tank World War Il
http://dbpedia.org/resource/Vickers_6-Ton Vickers 6-Ton Light tank Winter War, World War I, _..
http:fidbpedia.orgiresource/BT_tank BT tank Light tank Winter War, World War Il
http://dbpedia.orgiresource/T-60_tank T-60 tank Light tank World War Il

save query o

u Search / Labelling box — Users can type a natural language Results grid — Lists the results for this query. These can be
query here and also label the results grid using natural language. manipulated using the filters.

Searc[h button — On clicking this, the results grid will be E Results grid voting — The accuracy of these results for this query
refreshed with the results of the query. label can be voted on using these controls. The overall user 'score’
for this grid is displayed here (currently 1891).

E Property filters — These can be used to search for specific filters Save query button — On clicking this button, the query is saved
of an object, such as type, age, weight, date of birth etc,, to the database with the label defined in box 1.

n Subject & property filters — Used to search for a property /
value pair. Here, the user begins to type ‘Renault” and is shown that
afilter is available for this value underthe ‘manufacturer” property.

Fig. 2: Screenshot of the Aquacold interface with key

Figure 2 shows a screenshot of the system. Main components are a search and
labelling box (section 1 and 2 in the figure) and a data browser (sections 3, 4 & 5),
incorporating a results grid and set of customisable filters, which can explore a given
linked data source, retrieving node labels and linking to related nodes, building up a
result set based on the filters entered by the user. Once complete, the result grid and
filters can be labeled using natural language (1 in the figure) with autocompletion
suggestions for wording and terminology based on the labels entered by other users.

Query templates are produced based on pattern matching between queries and
labels with a similar structure. These templates are used to answer natural language
queries entered by users based on their similarity to labels entered by others, return-
ing results from the linked data web to the results grid. As users compose natural
language queries, they are guided using autocompletion which indicates the data
available from the linked data source and the labels used to describe them. Finally,
a voting system is provided to rank the results, allowing the most accurate results
sets to appear first to users alongside the most accurate query labels.

It is this reciprocal combination of elements: the freedom of natural language
search queries; the robustness of filtered query builders and the power of the crowd
to surface relevant results; that enables non-expert users to query the linked data
web. This is the novel aspect of this work. In the following we describe typical steps
in the Aquacold system.

3.1 Step 1: Selecting a Linked Data source

Users begin by selecting a SPARQL endpoint for the linked data source they wish to
query. At present, only one source can be explored and queried at a time, although the

system could conceivably support querying and linking from multiple data sources
with further development (see Section 6). Aquacold has been successfully tested
against the DBPedia, Mondial and Nobel prize endpoints.

3.2 Step 2: Building the results grid using filters

Users seed the Aquacold knowledgebase by building grids of linked data using a
series of filters on subjects (e.g. Robert DeNiro, Panzer Tank, London) properties
(e.g. Birthdate, Location, Manufacturer) and/or property/value pairs (e.g. Birth-
date:24/11/78, Location:Bedfordshire, Manufacturer: Vauzhall) and labelling these
grids using natural language (see Step 3). Graph and tree visualisations are of-
ten used to visualise SPARQL graphs, but these have limitations when expressing
aggregation, negation or union operations, for which a grid based visualisation is
preferable.

As users enter each filter (e.g. “Starring: Pacino” or “Birthdate > 03/04,/1980”),
a SPARQL query containing the filter information is run against the selected link
data source (Fig. 3) the results of which populate the results grid (Fig. 4).

Py ?
URI URILabel | property SELECT ?y 7z
WHERE {
Al Pacino . .

2 . - .
i director (4) = A Pacno ?z rdf:type <dbpedia-owl:film> .
portrayes (3) > Al Packio ?z <dbpedia-owl:starring> ?y .
2y <rdfsslabel> ‘Al Pacino’}

writer (3) > Al Pacino

Fig. 3: Users build linked data result grids using search filters

URI URILabel astarring
http:/idbpedi And Justice for Al (film) John Forsythe, John Forsythe, Lee Strasberg, Lee Strasberg, Al Pacino,
http://dbpedi Author! Author! (film) Tuesday Weld, Dyan Cannon, Bob Dishy, Al Pacino, Alan King (comedian

http://dbpedi Glengarry Glen Ross (film) Jack Lemmon, Kevin Spacey, Alan Arkin, Jonathan Pryce, Al Pacino, Alec
Fig. 4: The query is run against the linked data cloud and results are returned

Additional filters can then be added, or multiple criteria can be added to ex-
isting filters. More advanced operators such as AND / OR / MAX / MIN (Fig 5) are
under development. Each filter highlights valid values that can be entered as the user

URI URILabel astarring producer
Al Pacino AND Robert DeNiro
http://dbpedi... The Godfather Saga Marion Brando, Robert Duvall, Robert De Niro, John... Albert S. Ru
hitp://dbpedi Heat (1995 film) Jon Voight, Tom Sizemore, Ted Levine, Robert De N... Matthias Go..
http://dbpedi... The Godfather (film series) Eli Wallach, Marlon Brando, Robert Duvall, Sofia Co... Fred Fuchs,.

Fig. 5: Operators such as AND, OR, MIN, MAX, AVERAGE can be used to expand
the query

types using autocompletion suggestions (Fig. 6). Invalid values are not permitted.
Basic fuzzy text matching, using the regex feature in SPARQL 1.1, is used to match
text entered by the user with available values from the linked data set. This approach
has its limitations, and could be improved with the addition of more sophisticated
entity recognition techniques in a future version (see the discussion in Section 6). Dif-
ferent filter operators are provided depending on the filter datatype. This is retrieved

using the SPARQL 1.1 datatype function. For example, if the datatype is zsd:integer
operators such as < and > can be used and if the datatype is zsd:dateTime only
valid dateTime values will be permitted.

In the examples above, each result row is formed of one linked data node that
has properties (e.g. label, starring, producer) linked directly to it. This is sufficient
for simple queries, but the real value of linked data is in linking subgraphs and the
more complex queries that can be performed based on this linking. Aquacold filters
allow users to link nodes that share related properties, eg “starring actors born in
Ttaly”. To create such a filter, the user would enter “Starring: * Italy” in the filter
definition, the asterisk wildcard character instructs Aquacold to search for all labels
matching the text Italy directly linked to nodes that are connected to the original
node by the starring property.

Employing a linked data browsing Ul such as this helps non-expert users explore
linked data without having to code SPARQL and ensures the underlying SPARQL
code formed by the Ul is produced in a consistent format, which is necessary for the
template generation (see Subsection 3.4) to work correctly.

3.3 Step 3: Labeling the results grid

Whilst the filters are being defined, Aquacold offers suggestions for labels to describe
the result set. These suggestions are based on the labels that other users have entered
who have used the same filters as the current user. For example, if other users who
used the filters ‘starring: Al Pacino’ and ‘starring: Robert DeNiro’ had labelled
their results ‘Films starring Al Pacino and Robert DeNiro’, this would be offered by
the system as a label suggestion when a user adds the filters ‘starring: Al Pacino’
and ‘starring: Robert DeNiro’ to their results grid (Fig. 7). The order in which the
suggestions are presented is dictated by the score assigned by user voting (see step
6).

3.4 Step 4: Template generation

This is a back-end process that is not visible to the user. When a new label is created,
the label and associated SPARQL code generated by the results grid are saved to the
Aquacold database. Aquacold then compares the label — and the associated SPARQL
query — with labels and templates on the database. Where partial matches are found
that contain unmatched elements at the same location in both the labels and the
SPARQL query, a template query is created and stored (Fig. 8). Each template
query contains the same SPARQL structure as the queries on which it is based,
but replaces the unmatched entity with a variable data binding. Each corresponding
label contains the same text as the original title but replaces the unmatched entity
with a wildcard e.g. [ACTOR|J.

3.5 Step 5: Searching linked data

The search component of the Aquacold system is powered by the query templates
(which are in turn powered by the data browsing and result grid labelling com-
ponents). Users enter their search query in natural language, then Aquacold will

SELECT ?property ?y

WHERE { URI URILabe property

?x Pproperty ?y . Al Pac

Py rdf:label ?z . fim director (4) > Al Pacno
FILTER regex(?z, "Al Pac”, "i") portrayer (3) > Al Pacino

)

writer (3 Al Pacino

Fig. 6: Example of partial match autocompletion in a filter

SUGGESTION: Films starring Al Pacino and Robert DeNiro

URI URILabel starring
http://dbpedi... The Godfather Saga Marlon Brande, Robert Duvall, Robert De Niro, J
hitp:fidbpedi... Heat (1995 fim) Jon Voight, Tom Sizemore, Ted Levine, Robert D
http:/dbpedi... The Godfather (film series) Eli Wallach, Marlon Brando, Robert Duvall, Sofia
b Pl bl ok B lam Llainid Blarhin Casrsans Diskhsed Pessdioss D
' NEW QUERY DBCHECK SIMILAR QUERY WITH DIFFERENT ENTITIES

Films starring Al Pacino and Robert DeNiro |—r| Films starring Tom Cruise and Nicole Kidman

! '

SPARQL QUERY NEW SPARQL TEMPLATE CREATED SPARQL QUERY
SELECT ?x ?y 2z SELECT ?x ?y 2z SELECT ?x ?y 2z
WHERE { WHERE { WHERE{
?z rdf:type <dbpedia-owl:Film> . ?z rdf:type <dbpedia-owl:Film> . ?z rdf:type <dbpedia-owl:Film> .
?z <dbpedia-owl:starring>?y. 4 | ?z<dbpedia-owl: starring>?y. «— ?z<dbpedia-owl:starring>?y .
?z <dbpedia-owl:starring>?x. ?z <dbpedia-owl:starring> ?x. ?z <dbpedia-owl:starring> ?x.
Py <rdfs:label> ‘Al Pacino’ . Py <rdfs:label> Pvariablel . ?y <rdfs:label> Tom Cruise’.
?x <rdfs:label> ‘Al Robert DeNiro’ . ?x <rdfs:label> ?variable2 . ?x <rdfs:label> ‘Nicole Kidman'.
} } l }

NEW QUERY TEMPLATE CREATED

Films starring [ACTOR] and [ACTOR]

Fig. 8: Query template generation process

attempt to match the query against the template database, replacing the variables
present in the template with entities from the query that appear in place of the wild-
cards. Aquacold will then run this query against the linked data source to retrieve
the results. Whilst constructing their query, users are guided with suggestions of

Films starring Tom | search |
Tom Arnold
URI Tom Hardy operty

Tom Hiddleston
Tommy Lee Jones

Fig. 9: Entity autocompletion suggestions

potential words and phrases based on labels entered by other users. When a user’s
query matches a label template up until the wildcard portion of the label, Aquacold
will retrieve all possible URIs where the rdf:label value matches the text the user has
entered for the wildcard.

In the example above, the user begins by entering the text ‘Films starring’,
which matches the template ‘Films starring [ACTOR]’ up until the wildcard
[ACTOR]. This triggers the query autocompletion component, retrieving all entities
from the linked data source that match a) the constraints applied by the SPARQL
template (in this instance, they must exist as a subject of the property <dbpedia-
owl:starring>) and b) the text the user has entered so far — in this instance an
rdf:label that contains the string ‘Tom’ (see Figure 10).

If the user continues to match the template ‘Films starring [ACTOR] and
[ACTOR]’ up until the second [ACTOR] they will again be prompted with an
autocomplete option for the second actor and so on.

SELECT ?x ?y ?z e Tom Arnold
WHERE {

?z rdf:type <dbpedia-owl:Film>.

?z <dbpedia-owl:starring>?y . » SPARQLQUERY TEMPLATE —
?z <dbpedia-owl:starring> ?x. RETRIEVES MATCHING ENTITIES e Tom Hiddleston
?y <rdfs:label> ?variablel . * Tommy Lee Jones
?y bif:contains Tom’

}

e Tom Cruise
® Tom Hardy

e Tom Waits

Fig. 10: Entity autocompletion SPARQL

When users submit a query, the grid interface is populated with the results.
A message is displayed to the user if no results are returned. Provided results are
returned, the grid can then be further manipulated to expand on the existing results
sets (e.g. adding a filter director:MartinScorsese) and an updated label can assigned
accordingly (e.g. Films starring Al Pacino and Robert DeNiro directed by
Martin Scorcese).

3.6 Step 6: Voting

A vote up / vote down interface is provided to users to rank result sets returned
by queries, improving the visibility of accurate templates and relegating those that
are less successful. Consider the following scenario: User A could create a result
grid returning all Grand National Winners since 1901 and apply the label ‘Grand
National Winners since 1901°. However, they make a mistake and apply the date
> 1910 filter instead of date > 1901. User B then searches for ‘Grand National
Winners since 1901’ and receives the incorrect results that user A defined. User
B corrects the filter and saves the grid with the same label ‘Grand National
Winners since 1901°. Next, User C arrives at the site and makes the same query.
They are presented with both result sets created by user A and user B. On viewing
both, user C' can see the mistake made by user A and votes down their version of
the results set (giving it a score of -1) whilst voting up the correct version made by
user B (giving it a score of +1). Now, when subsequent users make the same query,
they are shown user B’s version initially as it has a higher score. This is a simple
example that highlights how user voting can be used to surface preferred result sets
when many are available. Future updates could introduce more sophisticated voting
and ranking mechanisms.

4 Details of the AQUACOLD Interaction process

Consider the following scenario as an example of this ecosystem (Fig 11):

1. User A arrives at the site looking for information on the type of tanks that
were used in World War 1. He/she enters ‘Tanks used in World War 1’ into the
AQUACOLD search box. No results are found for this query.

2. Unable to find any pre-existing results, User A builds the results grid themselves
by adding the filters dbpedia:type = : Tank and dbpedia:usedIn War = :world Warl.
As each filter is applied, the grid is populated with results.

3. The results grid complete, User A adds the label ‘Tanks used in World War 1°.

4. Aquacold populates the database with User A’s query label and the associated
SPARQL code from the results grid, together with possible variations formed by
replacing all entities in the query with wildcards e.g. Tanks used in [*].

5. Another user, User B searches for ‘Tanks used in World War 2°. Although a
result grid for this query has not been explicitly created by another user, results
are returned by the template created in step 4, substituting the entity ‘World
War 17 with ‘World War 2.

H User A submits query H User A builfis datagrid containing
1 but no data exists answers using the AquaCold Ul

Query Grid label Entities Filters Templates
.]
Tanks used in i The filters are built .
World War One ' i as the user builds the select S WHERE
. results grid
F {
atching g
or entities {"1":"dbpedia:usedinWar" } .
" 1 ?property1 =
World War One H {*1":*dbpedia:worldWar 1"} |: typeOrlightTank .
. . ?property2 =
Tanks used in The entities are extracted World War One*filtsr typeOf.conflict .
from the label and linked
World War One to the filters from the grid ?property2:label LIKE
% World War Two %
{"2":"dbpedia:type" }
| Tanks {"2":"dbpedialightTank"} '; }
No mat hing grid la | ‘Tank’ filter |
r ser o er
N One entity match is found in the query, so the corresponding
Tanks used in L - template is used with an additional modifier which searches
World War Two for label text matching the ‘World War Two’ entity
M\ User B submits query, results are H User A labels new
4 \ returned based on template formed 3 datagrid with title
> by User A's datagrid and label
| WV

Fig. 11: Users interacting with the Aquacold ecosystem
5 Benefits and Limitations

5.1 Benefits

The Aquacold ecosystem of result grid construction through filtering, result grid
labelling, template generation, guided query construction and result ranking through
voting can continue indefinitely, providing an effective and easy to use search tool
for a wide range of queries over a linked data source which requires no knowledge
of SPARQL or the underlying data schema. As more people use the system and the
volume of query templates and user votes in the database increases, higher quality
results should be available for queries of increasing complexity, which in turn should
drive more people to use the system, which will in turn increase volume and quality,
and so forth.

Aquacold offers a number of benefits over comparable linked data search sys-
tems. Free natural language can be used to label Aquacold queries, enabling greater
expressivity than systems such as SPARKLIS [13] which rely on guided query con-
struction using rigid, formal vocabularies, which can result in overly verbose labels
which may not reflect a user’s preferred description. E.g. the user may wish to express
their query as ‘How many languages are spoken in Columbia?’ whereas SPARKLIS
enforces ‘give me every language spoken in Colombia and give me the number of lan-
guage’. With Aquacold users can define their own labels, with crowdsourced voting
tools promoting quality control.

By employing a crowdsourced approach for translating between natural language
and SPARQL, more flexibility is provided than using algorithmic methods such
Quepy [20], allowing synonyms, slang and multiple language variations to be recog-
nised. Once a user has labeled a results grid with a particular term, it is instantly
available for other users to access.

Aquacold incorporates a similar filter controlled results grid to the CODE: Linked
Data Query Wizard [6], but offers several benefits by combining this with a natural
language interface for labeling result sets. A primary benefit is improved discover-
ability of results by allowing users to relabel existing results sets and vote on which
of the alternative labels is more accurate. With systems such as CODE, query labels
are set by the original result set author and are immutable.

They also require results sets to be labeled individually, e.g. "All books written
by Stephen King", which limits the utility as a search tool by requiring thousands

of labels to be manually assigned before a dataset of sufficient size is available. A
key benefit of the Aquacold template system is that labels and associated results
sets will be automatically generated for all related queries e.g. "All books written by
Peter Straub”, "All books by Michael Crichton” etc, significantly increasing the rate
at which the database is populated by queries and in turn, its utility as a search
tool.

The crowdsourced approach employed by Aquacold avoids the inherent challenges
of algorithmic entity recognition (as identified by [19]) Entity ambiguity - the
same string referring to multiple entities; Name variation - an entity which can
be describe by multiple distinct words; Absence - text that cannot be resolved to
a specific entity;

Entity ambiguity is handled through free text labeling and user voting. Con-
sider the label “Timezone in Birmingham”. The entity Birmingham is ambiguous as
it may refer to both Birmingham, UK or Birmingham, Alabama (and potentially
other locations). By allowing separate result grids to be created by users that con-
tain the timezone details of both locations, and allowing the same label “Timezone
in Birmingham” to be used for both, user voting can ensure that the most popular
location appears at the top of the list, with alternatives easily selectable. The crowd-
sourced approach enables name variation to be handled similarly. Consider the
label “Films starring Robert DeNiro”. Aquacold allows users to apply multiple labels
to the same result grid, eg “Films starring DeNiro”, “Films starring Bob DeNiro”.
Voting would again be used to surface the most popular variation. In cases of ab-
sence - where labels cannot be resolved to a specific entity - users are able to use the
data browsing tools to build their own results set and apply their own labels (see Fig
11). The chances of this happening are mitigated through the use of guided query
construction, which suggests valid, recognised terms to the user as they construct
their query.

Current crowdsourcing approaches to formulating and answering queries over
linked data [21,16] have several limitations. Many used paid microservice platforms
such as Amazon’s Mechanical Turk to source, manage and pay ‘workers’ for their
contributions. This often results in biased results [21] that indicate many workers
favour options that are quick to select and do not bother to read all options available.
There is also the cost of using microservices for crowdsourcing to consider, which
can be significant when large datasets are used.

AquaCold avoids these issues of bias and cost present in paid-for crowdsourcing
as users have an intrinsic incentive to use the system, rather than a profit motive.
After querying the system, if users receive results they believe to be incorrect, they
can adjust the results grid using the data browsing interface to correct the results
set and resave it. This will store the updated results set as an alternative answer to
the original query which will be accessible to all users and can be voted up or down
accordingly. Aquacold offers a sustainable ecosystem of data discovery, query con-
struction, query refinement, labeling, searching and voting that results in a organic
and scalable incentive for users to engage with the system.

A further advantage of Aquacold’s unrestrained labeling system is that queries
of any size and complexity can be answered, whereas systems that use a program-
matic approach are more limited. Even CrowdQ [16] which uses the crowd for query
understanding is limited to answering short queries only.

It is hypothesised that Aquacold’s human labelled result sets and crowdsourced
quality control will result in higher precision compared with systems which use pro-
grammatic translation of Natural Language Queries to retrieve linked data results.

5.2 Limitations

Aquacold is early in development and faces a number of challenges to expand beyond
the testing phase.

Due to the reliance on user generated queries for template seeding, Aquacold is
unable to produce results from a ‘cold start’, therefore the usefulness of the system
is limited initially until sufficient data has been seeded by users. This is a limitation
when compared to pure NLI approaches such as PowerAqua [8]. This ’cold start’
problem is faced by all crowdsourced systems. The amount of time required for
manual curation and annotation is significant. One potential solution may be to
analyse logs of existing search queries (as explored in [16]) and ingest these into the
system by means of an automated or semi-automated process.

Trust is a related challenge shared by all systems that rely on crowdsourcing.
The simple vote up +1, vote down -1 system employed by Aquacold is sufficient for
an early proof of concept stage, but more sophisticated methods will be required to
account for issues of trust, prevent manipulation and incorporate different levels of
user rights. These issues are common for all systems that involve open curation of a
knowledgebase such as Wikipedia.

It could be argued that a limitation of allowing users free reign in labelling
result sets in Aquacold is that multiple different labels can be attached to the same
query which increasing ambiguity, whereas the formalised structure employed by
guided query construction tools such as SPARKLIS [13] ensures a 1:1 relationship
between labels and queries. The use of crowdsourced tools goes some way towards
ameliorating this however, as the most accurate labels will be surfaced by the crowd
over time.

At present Aquacold works with a single linked data source only. Most of the
testing to this stage has been completed using DBpedia, however the system will
work with any SPARQL endpoint, provided the entities have an associated rdf:label
property. This reliance on one property type is a further limitation of the system.
Aquacold could be expanded to incorporate other label types to address this defi-
ciency.

Although the voting system should provide some level of quality control, there is a
danger that the same issues with disparity that affect existing linked data ontologies
could be transferred to the Aquacold system. Consider the query ‘Nobel prize winners
from 1989 to 1998°. This label could be applied to a result grid containing this
data from the DBPedia linked data source. However, the same label containing the
same results could also be built from the data.nobelprize.org data source. As both
contain identical information, user voting would not result in the more accurate
result set being surfaced. One potential remedy that could be applied if Aquacold
was developed to work with multiple linked data sources (see Future work), would
be to include an equivalency function such as owl:sameAs in the filters to define
a direct relation between the URIs from different linked data sources. To support
cross domain queries that link between different data sources, some redevelopment
is required (see Future Work).

The filters used to build result grids have a number of limitations. Fuzzy text
matching is used to match the text a user enters in the filter box with a linked data
node’s rdf:label property. This is inherently limited as labels that do not contain the
exact string that users enter are not returned. There is no allowance for polysemy
(multiple meanings of a word), potential typos the user may make or related words
that may be relevant.

Although text based filtering is supported, more advanced filtering on datatype
specific operators such as <> for integers and BETWEEN expressions for dates, or
OPTIONAL elements, UNIONS and CONTRUCTS are not yet possible, which is a
limitation when compared with tools such as TBSL [15]. There are plans to support
these features in a later version of Aquacold. No matter how feature rich the filter UI
becomes, as a Query Builder interface, it will never match the expressivity possible
in a SPARQL query.

6 Conclusion and Future Work

Aquacold exists as an early prototype and has yet to be tested. The next stage of de-
velopment will be to compare effectiveness against similar systems, Aquacold will be
evaluated using questions from the QALD [22] challenge, an established benchmark
for comparing and assessing NLI interfaces for linked data. Many comparable sys-
tems such as SPARKLIS [13], Crowdq [23] and TBSL [24] have employed questions
from the QALD challenge to measure their effectiveness.

This measure will be broken down into several metrics including: Expressivity
- The proportion of questions that can be answered successfully; Scalability - The
total interaction time to retrieve successful answers and Usability - How the partici-
pants found using the system (e.g. how easy or difficult they found getting answers).
Each metric will evaluated by participants with a range of technical abilities and
subject knowledge.

At present, Aquacold works with one linked data source at a time, but could be
developed to enable query answering and query construction across multiple linked
data sources that can be connected in the same way as connections to related linked
data nodes are made within the current system. Once this development is completed,
data from an additional datasets can be incorporated into the results grid where a
object URI is shared between the two. Further improvements could also be made to
the filters to enable them to produce queries using more advanced elements of the
SPARQL language such as OPTIONAL elements, UNIONS and CONTRUCTS.

Another avenue to explore for future development is to augment Aquacold with
external tools such as Silk [25] which could be used to discover related entities from
different data sources. This could be combined with interlinking to enable filters to
interlink related entities without them being explicitly defined.

References

1. Berners-Lee, T.: The Great Unveiling (2009)

2. W3: W3c Ontology definition. (2015)

3. Bernstein, M.S., Teevan, J., Dumais, S., Liebling, D., Horvitz, E.: Direct answers for
search queries in the long tail. Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems (2012) 237-246

4. Dadzie, A.s., Rowe, M.: Approaches to Visualising Linked Data: A Survey |
www.semantic-web-journal.net. 1 (2011) 1-2

5. Chilton, L.B., Teevan, J.: Addressing People ’ s Information Needs Directly in a Web
Search Result Page. Www2011 (2011) 27-36

6. Hoefler, P., Granitzer, M., Veas, E., Seifert, C.: Linked data query wizard: A novel
interface for accessing sparql endpoints. CEUR Workshop Proceedings 1184 (2014)

7. Harth, A.: VisiNav: A system for visual search and navigation on web data. Journal
of Web Semantics 8(4) (2010) 348-354

8. Lopez, V., Fernandez, M., Stieler, N., Motta, E., Hall, W., Mkaa, M.K., Kingdom, U.:
PowerAqua : supporting users in querying and exploring the Semantic Web content.
(2011)

9. Unger, C., Cimiano, P.: Pythia: Compositional meaning construction for ontology-based
question answering on the semantic web. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
6716 LNCS (2011) 153-160

10. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query lan-
guages and interfaces to Semantic Web knowledge bases. J. Web Sem. 8(4) (2010)
377-393

11. White, R.W., Bilenko, M., Cucerzan, S.: Studying the Use of Popular Destinations to
Enhance Web Search Interaction. Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval - SIGIR ’07
(2007) 159-166

12. Van, M., Kleek, M.V., Moore, B., Karger, D.: heterogeneous information sources on the
web Citation Accessed Citable Link Detailed Terms Atomate It ! End-user Context-
Sensitive Automation using Heterogeneous Information Sources on the Web. (2017)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Track, D.: Sparklis : a SPARQL Endpoint Explorer for Expressive Question Answering.
(2015)

Cabrio, E., Cimiano, P., Lopez, V., Ngomo, A.C.N., Unger, C., Walter, S.: QALD-4:
Multilingual question answering over linked data. CEUR Workshop Proceedings 1179
(2013) 1172-1180

Walter, S., Unger, C., Cimiano, P., Daniel, B.: Evaluation of a layered approach to
question answering over linked data. (00) (2012)

Demartini, G., Kraska, B., Franklin, M.: CrowdQ: Crowdsourced Query Understanding.
Conference on Innovative Data Systems Research (CIDR) (2013) 4

Damljanovic, D., Agatonovic, M., Cunningham, H.: FREyA: An interactive way of
querying linked data using natural language. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 7117 LINCS (2012) 125-138

Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: Issues, techniques,
and solutions. IEEE Transactions on Knowledge and Data Engineering 27(2) (2015)
443-460

Wu, H.j.D.C.y., Tsai, R.T.h.: From Entity Recognition to Entity Linking : A Survey
of Advanced Entity Linking Techniques. The 26th Annual Conference of the Japanese
Society for Artitifical Intelligence (2012) 1-10

Bansal, R., Chawla, S.: An Approach for Semantic Information Retrieval from Ontology
in Computer Science Domain Query for. (2) (2014) 58-65

Damljanovic, D., Petrak, J., Lupu, M., Cunningham, H., Carlsson, M., Engstrom, G.,
Andersson, B.: Random Indexing for Finding Similar Nodes within Large RDF graphs.
(2012) 1-15

Unger, C., Forascu, C., Lopez, V., Ngonga Ngomo, A.C., Cabrio, E., Cimiano, P.,
Walter, S.: Question Answering over Linked Data (QALD-4). Nicola Ferro (2014)
Haas, D., Bruckner, D., Harper, J.: Crowd(Q : A Search Engine with Crowdsourced
Query Understanding

Unger, C., Lehmann, J., Gerber, D.: Template-based Question Answering over RDF
Data. (2012) 639-648

Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk — A Link Discovery Framework for
the Web of Data. (2009)

	Aquacold – a crowdsourced query understanding and query construction tool for the linked data web

