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Abstract 

For the integration of data that resides in autonomous data sources Software AG 
uses ontologies. Data source ontologies describe the data sources themselves. 
Business ontologies provide an integrated view of the data. F-Logic rules are used to 
describe mappings between data objects in data source or business ontologies. 
Furthermore, F-Logic is used as the query language. F-Logic rules are perfectly suited 
to describe the mappings between objects and their properties. 

In a first project we integrated data that on one side resides in a support and on the 
other side in a customer information system. 

Introduction 

Data that is essential for a company’s successful businesses often resides in a 
variety of data sources. The reasons for this are manifold, e.g. load distribution or 
independent development of business processes. But data distribution can lead to 
inconsistent data which is a problem in the development of new businesses. Thus the 
consolidation of the spread data as well as giving applications a shared picture of all 
existing data is an important challenge. The integration of such distributed data is the 
task of Software AG’s “crossvision Information Integrator” one of the components in 
the crossvision SOA suite [crossvision]. 

Information Integrator is based on ontologies. Using ontologies Information 
Integrator solves three major problems. First of all it provides all means to integrate 
different information systems. This means that comfortable tools are available to 
bring data from different systems together. This is partially already solved by systems 
like virtual or federated databases [Batini et al. 1986]. Information Integrator is more 
powerful compared to most of these systems as it not only supports databases but 
additional sources like web services, applications etc. The second problem which is 
solved is that Information Integrator allows reinterpretation of the contents of the 
information sources in business terms and thus makes these contents understandable 
by ordinary end users and not only by database administrators. Finally this semantic 
description of the business domain and the powerful mapping means from the data 
sources to the business ontology solves the semantic integration problem which is 
seen as the major problem in information integration. It maps the different semantics 



within the information sources to the shared conceptualization in the business 
ontology. 

Within Software AG Information Integrator was used for a first project Customer 
Information Gateway (CIG) whose mission was to integrate data that on one side 
resides in a support information system and on the other side is stored in a customer 
information system.  

Conceptual Layering 

Conceptually Information Integrator arranges information and the access to 
information on four different layers (cf. fig 1): 
 
• The bottom layer represents different data sources which contain or deliver the 

raw information which is semantically reinterpreted on an upper layer viz. 
ontologies. Currently relational databases, Adabas databases and web services are 
supported.  

• The second layer assigns a so called “data-source ontology” to each of the data 
sources. These “data-source ontologies” reflect only database or WSDL schemas 
of the data sources in terms of ontologies and can be created automatically. Thus 
they are not real ontologies as they do not represent a shared conceptualization of 
a domain.  

• The third layer represents the business ontology using terminology relevant to 
business users. This ontology is a real ontology, i.e. it describes the shared 
conceptualization of the domain at hand. It is a reinterpretation of the data 
described in the data-source ontologies and thus gives these data a shared 
semantics. As a consequence a mental effort is necessary for this reengineering of 
the data source contents which cannot be done automatically.  

• On a fourth layer views to the business ontologies are defined. Basically these 
views query the integration ontology for the needed information. Exposed as 
Web services they can be consumed by portals, composite applications, business 
processes or other SOA components. 

The mappings between the data-sources and the source ontologies are created 
automatically, the mappings between the ontologies are manually engineered and the 
views are manually defined queries. Mappings provide ways to restructure 
information, to rename information or to transform values. Up to now, we do not 
consider and do not plan to consider approaches which try to automatically derive 
such mappings [Rahm and Bernstein 2001]. 

This arrangement of information on different layers and the conceptual 
representation in ontologies and the mediation between the different models by 
mappings provide various advantages: 
• The reengineered information in the business ontology is a value on its own. The 

representation as an ontology is a medium to be discussed easily by non-IT 
experts. Thus aggregating data from multiple systems this business ontology 
provides a single view on relevant information in the user’s terminology.  



     

Fig 1. Conceptual Layering of Ontologies 
 

• It is easy to integrate a new data source with a new data schema into the system. 
It is sufficient to create a mapping between the corresponding source ontology 
and the integration ontology and thus does not require any programming know-
how; pure modelling is sufficient. 

• The mediation of information between data sources and applications via 
ontologies clearly separate both. Thus changes in the data source schemas do not 
affect changes in the applications, but only affect changes in the mediation layer, 
i.e. in the mappings. 

• This conceptual structure strongly increases business agility. It makes it very easy 
to restructure information and thus to react on changing requirements. Only the 
business ontology and the mappings have to be modified. Thus it minimizes the 
impact of change, eases maintenance and allows for rapid implementation of new 
strategies 

• Ontologies have powerful means to represent additional knowledge on an 
abstract level. So for instance by rules the business ontology may be extended by 
additional knowledge about the domain. Thus the business ontology is a 
reinterpretation of the data as well as a way to represent complex knowledge 
interrelating these data. So business rules are directly captured in the information 
model. 

Tool Support / Architecture 

The crossvision Information Integrator provides a full fledged tool environment for 
defining models, for mappings between these models and for running queries (cf. fig 
2). IntegratorStudio is an ontology engineering environment based on OntoStudioTM. 

It allows for defining classes with properties, instances of these classes and rules. 
Import capabilities generate “source ontologies” from underlying data sources. A 
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powerful mapping tool allows users to interactively define mappings between 
ontologies by graphical and form based means (cf. fig. 3). Rules may be defined with 
graphical diagrams. IntegratorStudio supports F-Logic [Kifer, Lausen, Wu 1995], 
RDF(S), OWL for import and export. Queries which define the mentioned views can 
be generated and may be exported as web services. 

 

Fig. 2 Architecture of the crossvision Information Integrator 
 
SemanticServer, the reasoning system, provides means for efficient reasoning in F-

Logic. SemanticServer performs a mixture of forward and backward chaining based 
on the dynamic filtering algorithm [Kifer, Lozinskii 1986] to compute (the smallest 
possible) subset of  the model for answering the query. The semantics for a set of F-
Logic statements is the well-founded semantics [Van Gelder, Ross, Schlipf 1991]. 

Meta data like ontologies, their mappings, web service descriptions and meta 
information about data sources are stored in the CentraSite repository. Also, 
IntegratorStudio stores information about exported web services in CentraSite. During 
startup the inference engine SemanticServer which is based on OntoBrokerTM loads 
the ontologies from the repository and then waits for queries from the exported web 
services. These queries are evaluated by SemanticServer and are online translated into 
calls to access connected data sources. 

Thus SemanticServer represents the run-time engine, IntegratorStudio the 
modelling environment and CentraSite the meta data repository. SemanticServer is 
also integrated into IntegratorStudio thus enabling immediate execution of queries to 
the ontologies. 
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Fig. 3 Mapping Tool in crossvision Information Integrator 

Use Case: Customer Information Gateway 

Within Software AG the Information Integrator was used for a first project whose 
mission was to integrate data that on one side resides in a support and on the other 
side in a customer information system. The support system stores customers, their 
contact information and active or closed support requests in an SQL server. The 
customer system provides information about clients, contracts etc. in an Adabas 
database. The integrated data view is exposed in a browser based application to 
various parties inside the company, for instance to support engineers. 

For illustration purposes we first sketch a very simplified excerpt of imported data 
and the business ontology. Throughout the following examples we use F-Logic 
syntax. 

First of all there are two classes which have been generated by the mentioned 
automatic mapping from Adabas files: 

F151CONTRACT [ F151AA=>string; F151AE=>date ]. 
F87CLIENT [ F87AA=>number; F87AB=>string; F87AC=>string ]. 

The cryptic names reflect the internal structure of Adabas files. The names 
“CONTRACT” and “CLIENT” have been specified by the user during the mapping 
process. Currently, the semantics of properties is only application knowledge. 

Furthermore, we consider two tables from the SQL database. The generated classes 
are: 

CUSTOMER [ id=>number; name=>string; addr=>string ]. 
CASE [ caseId=>number; customerId=>string; forCustomer=>CUSTOMER ]. 

The business ontology shall contain three classes: 
Customer [name=>string; address=>string ]. 
SupportRequest [ id=>number; status=>string; issuedBy=>Customer ]. 
Contract[contractId=>string;contractEnd=>date;contracEndFormatted=>string]. 



In the sequel we present some examples on how we used rules within our 
ontologies and derive some requirements and use cases for rule languages to be used 
in such a project. 
Data source import 

In Information Integrator user-defined built-in predicates implement access to 
external data sources. In the sequel we abstract from a concrete syntax of these built-
in predicates. Instead we illustrate this by a generic predicate “dataAccess”: 

dataAccess(ci, “tablename”, “rowid1”, X, “rowid2”, Y, …) 
where ci describes all parameters that are needed to call the data source, 

tablename, rowid1, rowid2 are names of some database tables or table columns. X, Y 
are the names of variables which are to be bound by the built-in predicate. 

In our example there are rules for ever class in the source ontologies which import 
data from external data sources. Two of these rules are: 

FORALL X, Y   c(“F151”,X) : F151CONTRACT [ F151AA→X; F151AE→Y]  
        ← dataAccess(ci, “F151”, “AA”, X, “AE”, Y). 
FORALL X, Y   c(“CASE”, X) : CASE[caseId→X; customerId → Y]  
         ← dataAccess(ci, ”CASE”, “caseId”, X,“customerId”, Y) ]. 

Every functional model needs to describe relations between objects. Object 
properties are used to express these relationships. Object identifiers serve as object 
property values which are similar to foreign keys in relational databases. The foreign 
key definitions in a schema descriptions are used to generate object properties in 
source ontologies: 

FORALL X, Y X[forCustomer→c(“CUSTOMER”, Y)] ← X:CASE[customerId→Y]. 
Source to Business model mappings 

It is very easy to define that an object in the data source model is also an object in 
the business model. Similarly mappings between properties in both models can be 
expressed. The following example combines both mappings for contract objects: 

FORALL X, Y, Z  X : Contract [ contractId → Y; contractEnd → Z ]  
      ← X : F151CONTRACT [ F151AA → Y; F151AE → Z ]. 

If the underlying data from the external sources contains such information, it is 
also easily possible to describe that two objects are the same. For example a client in 
the customer information system and a customer in the support information system 
represent the same object, if these have the same name and address. Please note, 
surrogate values as unique keys are typically not viable object identifiers across 
independent data sources. Therefore, we need to identify new identifiers: 

FORALL X, Y, Z  c(”Customer”, Y, Z) : Customer [ name → Y ; address → Z ] 
     ← X : CUSTOMER [ name → Y; addr → Z ]. 
FORALL X, Y, Z  c(“Customer”, Y, Z):Customer[ name → Y; address → Z] 
     ← X:F87CLIENT[F87AB→Y; F87AC→Z]. 

Often in independent data sources similar data can be encoded in a different ways, 
e.g. different data types or type systems. Then functions are needed which implement 
transformations: 

FORALL X, Y Y[ contractEndFormatted → X ] 
   ← EXISTS Z (Y : Contract [ contractEnd → Z ] and date2string(Z, X)). 

where date2string() transforms a date from one format into another one. 
Also, object properties need to be mapped to the business ontology: 



     

FORALL X, Y, Z1, Z2 X : SupportRequest [ issuedBy → c(“Customer”,Z1,Z2) ] 
     ← X : CASE [ forCustomer → Y ] 
         and c(“CUSTOMER”,Y) [ name → Z1; addr → Z2 ]. 

The inverse reference is also often needed. But because the foreign key constraint 
in SQL systems does not provide a name for the inverse relation this is currently 
postponed to application development. N:M relationships, implemented by two 1:N 
foreign key relations in SQL systems, could also be expressed directly. 

All these simple types of mappings are essential for specification of business 
ontologies on top of data source or other business ontologies. Most of them can be 
described in the Information Integrator with graphical means, i.e. developers do not 
need to see the F-Logic syntax. 
Queries 

To lower investments for learning new languages and to avoid impedance 
mismatches rule- and query-language should be the same. Information Integrator uses 
F-Logic for ontology definitions and as the query language. But, queries in the data 
integration scenario are much like database queries. Primarily we want to retrieve 
data. We are not so much interested in explanations or in information about which 
variable bindings lead to a result. This focus on data access requirements sometimes 
leads to quite complex query formulations. One example is different handling of not 
existing values (null values) in SQL and F-Logic. Another example are user defined 
projections. In order to minimize the number of expensive interactions between client 
and server we database folks tend to create queries which return complex structured 
results. Object relations should be contained in the result. E.g. for one customer 
having multiple contracts each having contract items, then the query result should 
contain the information which contract item belongs to which contract within a single 
result per customer.  
Performance 

Because the integrated view is used in an application where e.g. support engineers 
expect fast answers for even complex queries while talking to a customer, the 
performance of the rule and query processing is extremely important. In some cases 
response times in the range of a few seconds are not accepted. In our first project a lot 
of effort was spent to improve the responsiveness of the system. Problems that 
showed up here are very similar to query optimization problems in database systems. 

Just for illustration we give two examples. First, the data source mappings as 
shown above always addressed only a single database table or file. However, a system 
that implements access to external data sources only via such single-table access rules 
will not achieve sufficient performance. Instead access operations should use the data 
source’s query capabilities like join-operations. As a second example, the rule engine 
sometimes first retrieved all data from a table and then continued with the evaluation 
of filters. Instead, filters need to be identified first and given to the query which reads 
data from the database. 



Summary and Outlook 

A data model in Information Integrator consists of ontologies. Data source models 
describe the structure of data that resides in external data sources. Business ontologies 
provide a conceptualization of business entities. F-Logic rules are used to define 
mappings between ontologies. Furthermore, rules are the first choice to express 
semantics that is not immediately available within the data and otherwise had to be 
implemented in queries or applications. F-Logic is also used as the query language. 

With the exception of mapping rules the business ontology of our first project does 
not contain many other rules. Access to information in these models is more data 
retrieval and not so much knowledge inference. Much effort during this project was 
spent on performance improvements. 

With an increasing number of web services where some simply expose data, we 
also need to support data integration for such web services in our crossvision SOA 
suite. We are currently working on the mapping of web services and their structured 
XML data to source ontologies. 

The crossvision Information Integrator based on ontoprise OntoStudioTM and 
OntobrokerTM is the first step for Software AG in the field of semantic technologies. 
Recently we joined various EU research projects like NeOn (Lifecycle Support for 
Networked Ontologies) [NEON], “Business Register Interoperability Throughout 
Europe” and “SemanticGov: Services for Public Administration” [SemanticGov]. All 
these projects address concrete business cases. With our participation in these projects 
we intend to achieve deeper understanding of needs for adequate tooling and runtime 
systems when using semantics technologies for data integration. On the other hand we 
will contribute our knowledge about data-intensive processing. 
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