Breaking the curse of dimensionality for machine learning on genomic
data

Aidan O’Brien!, Piotr Szul?, Oscar Luo'!, Andrew George?, Robert Dunne? and Denis Bauer!

1 CSIRO Health & Biosecurity
2 CSIRO Data61

Abstract

Genomic data analyses are performed on
ever larger patient cohorts. Machine
learning (ML) is employed to detect the
complex genomic interactions that can
lead to diseases like diabetes or cancer.
However, current ML approaches are un-
able to cope with these data volumes.

We introduce CursedForest, a tailored im-
plementation of random forests, designed
to handle data with extremely large num-
ber of variables per sample.

CursedForest is included in our ear-
lier genome interpretation package, Vari-
antSpark, allowing it to perform near real-
time classification of population-scale pa-
tient cohorts in “’patients like mine” sce-
narios, as well as performing GWAS anal-
ysis on large unfiltered whole genome se-
quencing cohorts.

1 Introduction

The digital revolution is seeing a dramatic increase
in data collected about almost every aspect of
life [Loebbecke and Picot, 2015]. These datasets
are not only growing vertically, by capturing more
events, but also horizontally by capturing more in-
formation about these events. The challenge of big
and “wide” data is especially pronounced in the
health space where, for example, whole genome
sequencing (WGS) technology enables researchers
to interrogate all 3 billion base pairs of the human
genome.

Hence using more sophisticated machine learn-
ing (ML) approaches, in particular tree-based mod-
els, have been successful for taking the interaction
of variables into account [Wright et al., 2016]. In
addition, random forests are well suited for process-
ing “wide” genomic data for two reasons. Firstly,
while other machine learning applications have the
propensity to overfit datasets with more features
p than samples n (a consequence of the “curse
of dimensionality” [Bauer et al., 2014]), decision
trees are resistant to overfitting. Secondly, random
forests are also very easy to parallelise. As the for-
est is a sum of decision trees, it is possible to grow
separate trees on different processors and combine
the trees.

However, the use of traditional compute infras-
tructure limits the parallelisation strategies that can
be employed. The programs are limited to utilis-
ing only CPUs that are on the same computer node
(multithreading) or farm out independent tasks to
CPUs distributed across nodes that do not require
communication between the processes (a separate
tree is grown on each node). Hadoop/Spark over-
comes these limitations by enabling programs to
scale beyond compute-node boundaries and hence
enable more sophisticated parallelisation strategies.
In the case of random forests, the computations for
each node of a tree can hence be handed off to sep-
arate processors.

Despite overcoming the node-boundary limita-
tion, the standard implementation of random for-
est in Spark ML is not able to handle the extremely
“wide” genomic data as it was developed for a large
number of samples with only modest dimension-
ality [Abuzaid er al., 2016]. Although Spark ML

can build a random forest model on a subset of the
data (chromosome 1), we show that the time taken
is excessive due to the large amount of data being
aggregated and processed by the driver node dur-
ing intermediate stages of building the model. This
unbalanced work load where the driver node be-
comes the bottleneck and worker nodes are idle pre-
vents a seamless scaling to larger datasets. We also
show that the memory requirements per executor in-
creases with dimensionality due to the data types
Spark ML uses.

Here we introduce CursedForest, a tailored
Hadoop/Spark-based implementation of random
forests specifically designed to cater for “big”
(many samples) and “wide” (many features)
datasets. CursedForest extends our previously
developed variant interpretation framework, Vari-
antSpark [O’Brien et al., 2015], to now offer su-
pervised as well as unsupervised ML algorithms
in the Spark framework. In our implementation a
Spark application runs on a “driver” node and dis-
tributes tasks to many “worker” nodes, or “execu-
tors”. By also utilising VariantSpark, which uses
Spark to read in and manipulate the standard ge-
nomic variant format (VCF) directly, CursedForest
outperforms existing tools even on small datasets
where multithreading generally performs well. Har-
nessing the virtually unlimited capability to paral-
lelise tasks, CursedForest can hence explore the so-
lution space faster by building a larger number of
diverse models to generate a consensus from.

Using this facility, CursedForest is capable of
parallelising the split for each node in a tree thereby
handling millions of features, as required to pro-
cess whole genome sequencing data or SNP array
data with unobserved genotypes imputed [Howie et
al., 2012]. This provides the potential to gener-
ate datasets of hundreds of thousands of individu-
als with millions of variants (imputing the GWAS
catalog), highlighting the need for modern compute
paradigms in the genomics space.

VariantSpark [O’Brien er al., 2015] with the
CursedForest extension therefore offers a compre-
hensive analysis toolkit that can scale to future data
demands. To showcase the framework’s ability
we demonstrate a classification as well as feature-
selection task on synthetic data in the first section.
In the second section, we demonstrate the ability
of CursedForest to successfully replicate findings
from a previous GWAS study as well as identify

novel variants associated with bone mineral den-
sity (BMD). Thirdly, we demonstrate the scalability
of CursedForest in respect to the dimensionality of
data by building a random forest model on whole-
genome data from the 1000 Genomes Project [1000
Genomes Project Consortium, 2012] to predict eth-
nicity. Finally, given the role different parameter
values can play in model construction, we explore
the effect that tuning these parameters can have on
the prediction accuracy of the model.

2 Methods
2.1 CursedForest

As is standard with Spark applications, we store our data
in a Resilient Distributed Dataset (RDD), where an RDD
is essentially a collection of elements. In the case of
Spark ML, each element in the RDD is a sample. RDDs
contribute to the scalability of Spark as they can be dis-
tributed across multiple nodes and operated on in parallel.
Even as we add more samples to a dataset, Spark can sim-
ply schedule extra tasks to handle the additional items in
the RDD.

However, within an RDD, Spark ML stores each sam-
ple as a vector. Unlike RDDs, which can be partitioned
and distributed across multiple nodes, each vector must
be present in its entirety on any node accessing it. This is
no problem with typical datasets; however, as dimension-
ality increases, the vectors eventually reach a size where
they can no longer fit into a single node’s memory.

So in the case of adding more samples, Spark ML can
simply create more tasks, keeping memory consumption
within the cluster’s bounds. However, as the dimensional-
ity of each sample grows, the memory requirements of the
job increases to enable these increasingly large vectors to
be loaded into memory.

On the other hand, CursedForest is specifically de-
signed to handle wide “cursed” data. It avoids the relation
between memory and dimensionality by avoiding calcu-
lations that rely on entire feature vectors and taking the
parallelization work down to the level of the individual
features. For each node of a tree, CursedForest will dis-
tribute tasks that consist of single features (variants), for
every individual. Each of these tasks will calculate the in-
formation gain for that specific feature. Once these tasks
have completed, the results are reduced to return the fea-
ture which gives the greatest information gain. This pro-
cess is then repeated until CursedForest has created the
entire decision tree.

2.2 Scalability

The current implementation of CursedForest uses a Gini
impurity criteria for splitting. Let f; be the fraction of

Figure 1: Scalability of the Wide Random Forest on synthetic datasets with varying number of samples

and variables.

10°

nsamples
+—e 1000
+~— 5000
== 10000

10*

trees per hour
=
1)
w

1
10° 10° 107
nvars

10°

nvars -
150000 :
500000
2500000
10000000
50000000

trees per hour

IRE

10° 10*
nsamples

(a) Number of trees build per hour when growing (b) Number of trees build per hour when growing

number of variables.
items labeled with value ¢, where ¢ = 1, ..., Q ata node.
The Gini impurity is

Q
Ia(f) =Y fa(1 = fo),

which is at a minimum when all observations at the node
are in the same class.

We were running Apache Spark 1.6.1 on a cluster
with 12 worker nodes each with 16 Intel Xeon ES5-
2660@2.20GHz CPU cores and 128 GB of memory.

2.3 Synthetic data

Each dataset consists of n samples and p variables where
n << p, and values for each variable are ordinal vari-
ables with three levels represented as numbers {0, 1,2}
(which correspond to an additive effect encoding of ge-
nomic variation) randomly generated from a uniform dis-
tribution.

The model parameters are w; = 1/v/2'=! for i =
1,...5 and we set

z = szl’z (l)

We let 02 = Var(z)(1 — 0)/0 where 0 is a parameter
controlling the fraction of variance explained by the in-
formative variables and in our study we chose § = 0.125
as used by previous approaches. Then y = z + € where
€ ~ N(0,0?2). The dichotomous response is generated by
thresholding y at the 0.5 quantile.

. [0 for y<Q2y)

Y=Y 1 for y > Q2(y)

number of samples.

2.4 Parameter settings

We consider the parameter settings for the random forest
algorithm. We use the R notation from the random forest
package [Liaw and Wiener, 2002] which incorporates the
original Fortran code by Brieman and Cutler. We incor-
porate the advice of [Liaw and Wiener, 2002], which we
have found mirrors our own experience:

e ntree — the number of trees. The number of trees
necessary for good performance grows with the
number of predictors. [Liaw and Wiener, 2002] sug-
gest that a high ntree is necessary to get stable esti-
mates of variable importance and proximity; how-
ever, even though the variable importance measures
may vary from run to run, we note that it is possi-
ble for a random forest model to have a poorer fit
and still have an accurate ranking of variable impor-
tance;

e mtry — the number of variables considered at each
split (if mtry=p, we have a boosted decision tree
model). If one has a very large number of variables
but expects only very few to be “important”, using
larger mtry may give better performance;

e the size and complexity of the individual trees is
controlled in random forest by setting nodesize,
the minimum size of terminal nodes. It is controlled
in Spark ML by setting maxDepth, the maximum
depth of each tree in the forest.

3 Results

In this section we explore the performance of
CursedForest in more detail by testing its ability to
scale to different sizes of data and computational re-
sources.

In order to assess these characteristics, we run
CursedForest classification on synthetic datasets

Figure 2: Scalability of the wide random forest on the synthetic dataset of 2.5M features and 5K

samples.
2500
ncores
—e 16
2000, . 33
=—= 64
1500|128

1000

time for 100 trees [s

8.0 01 02 03 04 05 06 07 08 09
mtry

(a) Time in seconds to build 100 trees for different
mtry fractions.

with varying numbers of variables (features) and
samples, similar to the dataset used in [Wright and
Ziegler, 2016] to evaluate ranger, allocating vary-
ing number of CPU cores to the CursedForest and
also varying the computational complexity of the
random forests by using a range of mtry values.

We investigate the different synthetic datasets
generated for Section 2.3 and measured the time
taken to build a random forest model of 100 trees.
The results reported below are averages of 5 runs,
and all the cases were executed with the same ran-
dom seed, to improve the consistency of measure-
ments.

First we look at CursedForest horizontal scalabil-
ity for a medium size dataset of 2.5 million variables
and 5000 samples, by varying the mtry fraction and
the number of CPU cores allocated to the execution.
Regardless of the number of cores used, CursedFor-
est displays approximately linear dependency be-
tween the execution time and mtry (Fig 2a).

CursedForest scales almost linearly with the
number of CPU cores for medium values of mtry
fraction but for both lower and higher values the
performance degrades slightly (Fig 2b). In the lat-
ter case the likely cause is communication overhead
(with lower mtry values the proportion of time for
parallelizable computation to the time for internode
communication is lower) while in the latter case it
is most likely caused by reaching the clusters com-
putational capacity.

Next we investigate CursedForest scalability with
regards to the size of data, by varying the number
of variables and sample for a fixed mtry fraction of
0.25 and execution of 128 CPU cores. The results

3000

2500

N
=}
=}
)

1000

trees per hour
—
w
o
o

500

0

20 40 60 80 100 120
ncores

(b) Number of trees build per hour when using a grow-
ing number of CPU cores.

are visualized in Fig 1 below (please note log scale
on the axes and the values on y axes are expressed
as trees per hour).

Generally, the number of trees per hour decreases
with an increased number of variables and samples
sizes. Some irregularities in the graph can be at-
tributed to computation vs communication tradeoff.
It is also worth noting that keeping the mtry frac-
tion constant results in higher mtry values with the
growing number of variables, and this is what drives
the performance down rather than the increase of
dataset size itself.

To conclude CursedForest is capable of process-
ing 60 trees per hour on a dataset with 50 mil-
lion variables and 10,000 samples, which is the size
range for whole genome sequencing experiments of
clinically relevant cohort sizes.

3.1 Exploring theoretical recovery rate of
wide data

Donoho and Tanner [Donoho and Tanner, 2009]
give a “universal phase change” result that has ap-
plications in a large number of areas including vari-
able selection in high dimensions. Consider Fig 3a
which shows the region where a model can recover
the important variables, plotted as a function of 6 =
n/pand p = k/n (where k is the number of signifi-
cant variables). There is a distinct boundary, shown
empirically, to the region where we can reliably re-
cover significant variables. [Donoho and Stodden,
2006] investigate the behavior of a number of re-
gression approaches for variable selection (LARS,
Lasso and forward stepwise) and make the point
that above the phase-transition line variable recov-
ery is still possible by a combinatorial approach.

Figure 3: A and B shows our calculation with the simulation in Donoho-Tanner considers 6 = n/p and
p = k/n. Here we plot the space of {4, p}, colored by the parameters n and &

kin

Combinaterial Search!

p=

P solves B,

N BB BN S BB OSNBESD
R AT KT XXX,

=nip IR EEY

(a) The Donoho-Tanner phase
change diagram.

s=np

(b k

It is not surprising that that it is more difficult to
recover the signal variable in the upper-left area of
the figure, as the problem is both under-determined
and sparse. What is surprising is the connection
with arguments from combinatorial geometry. This
suggests that we are seeing a universal rule rather
than an implementation issue. As CursedForest is
designed for extremely large numbers of variables
it is likely to be operating in difficult regions of the
figure where the ratio 6 = n/p is small.

We note several things here:

e the Donoho-Tanner phase transition arises in
recovering the 3 in data generated by a linear
model. However, in a decision tree (random
forest) there is no notion of estimating the (3

e A decision tree (random forest) is a heuristic
search. It may recover a relationship in the
space of the combinatorial search.

The existence of the Donoho-Tanner phase tran-
sition is a salutary warning. There are likely to be
limits, both computational and logical, to the recov-
ery of signals from noisy data. CursedForest is a
contribution to addressing the practical limits but
the logical limits will still apply. However in the
case of data that is both big and wide, CursedFor-
est and other VariantSpark methods may provide a
useful tool.

3.2 Biological data

We apply CursedForest to two biological datasets.
Firstly, the 1000 genomes project to test its clas-
sification accuracy and secondly, to a bone min-
eral density dataset to demonstrate a GWAS-style

N MO BD R P PPOENOLBLL S N
o PRI RIS RS

5=np

(©n

analysis. We training CursedForest on the 1000
genomes dataset, which consists of 2,504 samples
with 81,047,467 features each to predict the ethnic-
ity from genomic profiles. CursedForest achieves
an out of bag error of OOB=0.01 and completes in
36 min 54 seconds, demonstrating its capability to
run on population-scale cohorts of real world appli-
cations. Next we perform feature selection on over
7.2 million genomic variants and identify the loca-
tions associated with Bone Mineral Density (BMD)
in a previously published GWAS dataset [Duncan
et al., 2011]. We faithfully recover 5 known BMD
genes that were previously identified in GWAS
studies, however also find two probable new asso-
ciations that were previously only suggestive. This
demonstrates the utility of our approach as well as
the ability to amplify signal by taking SNP interac-
tions into account rather than limiting the analysis
to individual strong responders.

4 Conclusion

We have demonstrated that using a different paral-
lelization model can extend random forests to the
case of an extremely large number of variables.
We have treated the case of variable selection in a
p >> n model, where most of the variables are
uninformative, and have demonstrated the utility of
the model for large GWAS datasets. By comparing
this implementation to other implementations (in-
cluding those optimized for large datasets) we have
demonstrated the utility of this approach.

References

[1000 Genomes Project Consortium, 2012] 1000
Genomes Project Consortium. An integrated

map of genetic variation from 1,092 human genomes.
Nature, 491(7422):56-65, November 2012.

[Abuzaid et al., 2016] Firas Abuzaid, Joseph K Bradley,
Feynman T Liang, Andrew Feng, Lee Yang, Matei Za-
haria, and Ameet S Talwalkar. Yggdrasil: An opti-
mized system for training deep decision trees at scale.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, 1. Guyon,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 29, pages 3817-3825. Curran
Associates, Inc., 2016.

[Bauer et al., 2014] Denis C. Bauer, Clara Gaff, Mar-
cel E. Dinger, Melody Caramins, Fabian A. Buske,
Michael Fenech, David Hansen, and Lynne Co-
biac. Genomics and personalised whole-of-life health-
care. Trends in Molecular Medicine, 20(9):479-486,
September 2014.

[Donoho and Stodden, 2006] David Donoho and Victo-
ria Stodden. Breakdown point of model selection when
the number of variables exceeds the number of obser-
vations. In The 2006 IEEE International Joint Con-
ference on Neural Network Proceedings, pages 1916—
1921. IEEE, 2006.

[Donoho and Tanner, 2009] David Donoho and Jared
Tanner. Observed universality of phase transitions
in high-dimensional geometry, with implications for
modern data analysis and signal processing. Philo-
sophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences,
367(1906):4273-4293, 20009.

[Duncan er al., 2011] Emma L. Duncan, Patrick Danoy,
John P. Kemp, Paul J. Leo, Eugene McCloskey, Geof-
frey C. Nicholson, Richard Eastell, Richard L. Prince,
John A. Eisman, Graeme Jones, Philip N. Sambrook,
Ian R. Reid, Elaine M. Dennison, John Wark, J. Brent
Richards, Andre G. Uitterlinden, Tim D. Spector,
Chris Esapa, Roger D. Cox, Steve D. M. Brown, Ra-
jesh V. Thakker, Kathryn A. Addison, Linda A. Brad-
bury, Jacqueline R. Center, Cyrus Cooper, Cather-
ine Cremin, Karol Estrada, Dieter Felsenberg, Claus-
C. Gler, Johanna Hadler, Margaret J. Henry, Al-
bert Hofman, Mark A. Kotowicz, Joanna Makovey,
Sing C. Nguyen, Tuan V. Nguyen, Julie A. Pasco,
Karena Pryce, David M. Reid, Fernando Rivadeneira,
Christian Roux, Kari Stefansson, Unnur Styrkarsdot-
tir, Gudmar Thorleifsson, Rumbidzai Tichawangana,
David M. Evans, and Matthew A. Brown. Genome-
wide association study using extreme truncate selec-
tion identifies novel genes affecting bone mineral den-
sity and fracture risk. PLoS Genetics, 7(4):1-10, April
2011.

[Howie et al., 2012] Bryan Howie, Christian Fuchs-
berger, Matthew Stephens, Jonathan Marchini, and
Gongalo R. Abecasis. Fast and accurate genotype im-
putation in genome-wide association studies through
pre-phasing. Nature Genetics, 44(8):955-959, August
2012.

[Liaw and Wiener, 2002] Andy Liaw and Matthew
Wiener. Classification and regression by randomfor-
est. R News, 2(3):18-22, 2002.

[Loebbecke and Picot, 2015] Claudia Loebbecke and
Arnold Picot. Reflections on societal and business
model transformation arising from digitization and
big data analytics: A research agenda. The Journal
of Strategic Information Systems, 24(3):149-157,
September 2015.

[O’Brien et al., 2015] Aidan R. O’Brien, Neil F. W.
Saunders, Yi Guo, Fabian A. Buske, Rodney J. Scott,
and Denis C. Bauer. Variantspark: population scale
clustering of genotype information. BMC Genomics,
16(1), December 2015.

[Wright and Ziegler, 2016] M. N. Wright and A. Ziegler.
Ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Sta-
tistical Software, 2016. in press.

[Wright ef al., 2016] Marvin N. Wright, Andreas
Ziegler, and Inke R. Konig. Do little interactions get
lost in dark random forests? BMC Bioinformatics,
17(1):145, 2016.

