
Real Time Summarization and Visualization of Ontology

Change in Protégé

Christopher Ochs
1
, James Geller

1
, Mark A. Musen

2
, and Yehoshua Perl

1

1 NJIT, Newark NJ 07102, USA
2 Stanford University, Stanford, CA 94305, USA

Abstract. Property restrictions play an important definitional role in an ontolo-

gy. The correct introduction and inheritance of restrictions is important for en-

suring the correct modeling of a domain. Many ontologies have large, complex

class hierarchies, and many classes are defined with restrictions. When editing

such an ontology, it is often difficult to determine the global impact of a local

change. For example, removing a subclass link (axiom) can result in the unin-

tentional loss of inherited restrictions over many levels. In this paper, we intro-

duce a dynamic summarization and visualization methodology, called a Live

Difference Taxonomy (LDT), to succinctly display a summary of the effects of

changes to the ontology. LDTs are created on-the-fly as the ontology is edited,

allowing an ontology developer to view the overall impact of their changes in a

compact, visual display. We introduce an open-source plugin for the Protégé

ontology editor that implements LDTs. It lets the users choose from several

kinds of LDT summaries and lets them control the degree of summarization.

The LDT Plugin supports heuristics-based alerts that inform the user of changes

to sets of classes that are modeled with the same types of restrictions.

Keywords: Ontology change visualization, ontology summarization, Protégé

plugin, Live Difference Taxonomy, dynamic ontology visualization

1 Introduction

In Web Ontology Language (OWL) ontologies, property restrictions are used to place

constraints on class descriptions [1]. Property restrictions express semantic relation-

ships between classes and they play a critical role in the reasoning process. A re-

striction consists of a property (e.g., an object property) and a range (e.g., a class),

along with other constraints (e.g., someValuesFrom). In a previous analysis of the

biomedical ontologies hosted on the NCBO BioPortal we found that restrictions are

widely used in class definitions [2] (i.e., 279/373=74.8% ontologies included object

property restrictions and 123/373=33.0% included data property restrictions).

Many ontologies have thousands of classes, each of which may have several prop-

erty restrictions. While editing a large and complex ontology, it can be difficult to

identify the global impact that one local change, or a sequence of changes, has on the

ontology’s structure. For example, removing an asserted superclass can affect the

inheritance of restrictions and removing a restriction may affect the inferred class

hierarchy. Identifying incorrect and unwanted changes is an important step in ensur-

75

ing the quality of an ontology. The goal of this research is to develop a principle-

based software tool that displays the global effect of local ontology editing operations.

Various diff techniques, which identify changes (“differences”) between two re-

leases of an ontology, have been developed (e.g., PromptDiff [3] and OWLDiff [4]).

These tools typically only identify individual changes (e.g., additions of asserted re-

strictions). They do not identify the overall impact of a set of changes and do not pro-

vide details about the implicit changes that occur at other classes (e.g., inferred de-

scendants). Ochs et al. [5] identified these and other deficiencies in previous ontology

diff techniques and they introduced diff partial-area taxonomies to address them.

Definition: A difference partial-area taxonomy (“diff taxonomy” for short) visual-

ly summarizes changes to subhierarchies of structurally similar ontology classes.

We have used diff taxonomies [5-7] to analyze changes in several ontologies (e.g.,

NCIt [8], SNOMED CT [9]). We were able to identify incorrect and unintended

changes in these ontologies. One major deficiency of diff taxonomies, however, is

that they need to be applied in an a posteriori change analysis process. Previously,

diff taxonomies could only be created from two fixed versions of an ontology.

In this paper, we introduce Live Difference Taxonomies (“LDTs”), which are diff

taxonomies created on-the-fly while an ontology is edited. LDTs dynamically summa-

rize and visualize changes to the introduction and inheritance of restrictions in an

ontology. To integrate LDTs into the ontology development workflow, we have de-

veloped a Plugin for Protégé [10]. Using this plugin, an ontology developer is provid-

ed with a visual summary that captures the overall impact of a set of local changes.

2 Background

Various diff techniques have been developed to identify changes between two ontolo-

gy releases. Examples include PromptDiff [3], OWLDiff [4], and Ecco [11]. These

tools display a list of individual changes or display changes in the indented hierarchy

view of an ontology. Lambrix et al. [12] describe a set of functional requirements for

tools that visualize ontology evolution. As described below, the LDT technique ad-

dresses several of the requirements identified by Lambrix et al. (e.g., summarization

of changes, identification of dependent changes, and change metrics).

Ochs et al. [5] introduced a graphical, summary-based ontology diff technique

called a difference partial-area taxonomy (or diff taxonomy), which visually summa-

rizes changes to sets of structurally and semantically similar classes (i.e., those mod-

eled with similar restrictions). We will now briefly describe, using Fig 1, how diff

taxonomies are derived using an example based on the Pizza Ontology [13]. The

complete derivation algorithm for diff taxonomies was described by Ochs et al. [5].

Definition: A diff area is a summary of changes to a set of classes that are all

modeled with restrictions that utilize the same property types.

For example, we are starting with the ontology in Fig 1(a) and apply several

changes, resulting in the ontology in Fig 1(b). Fig 1(c) shows a succinct summary,

using a diff taxonomy, of these changes. The black box (in the middle) in Fig 1(c)

summarizes two classes that had no changes to their restrictions.

Real Time Summarization and Visualization of Ontology Change in Protégé

76

Fig 1. (a) A small ontology with six classes. Pizza and Deep Dish Pizza are modeled with Has

crust someValuesFrom restrictions. (b) The ontology from (a) after several changes were ap-

plied. A subhierarchy of pizza toppings, modeled without restrictions, was added. Deep Dish

Pepperoni Pizza was added as a subclass of Deep Dish Pizza and with a Has topping someVal-

uesFrom restriction with a range of Pepperoni. (c) The diff taxonomy for going from (a) to (b).

The green (bottom) box in Fig 1(c) “summarizes” one class that was added to the

ontology when going from Fig 1(a) to Fig 1(b), and it is modeled using restrictions

with two property types. The three “outside” boxes in Fig 1(c) are diff areas. Seven

classes without restrictions (without red arrows, and without ancestors with red ar-

rows) in Fig 1(b) are summarized by Thing (7) in Fig 1(c).

Definition: The state of a diff area is one of {unmodified, modified, introduced,

removed}, depending on the differences in the set of classes of this diff area between

two ontology releases.

For example, consider the set of classes in Fig 1 without restrictions (i.e., they have

no “outgoing” red arrows and none of their ancestor classes has an outgoing red ar-

row). This set changed when three pizza topping classes were added to the ontology

(and the pizza topping classes have no restrictions). Thus, the diff area for the set of

classes with no restrictions is modified, since the set of classes is different in Fig 1(a)

and Fig 1(b). A modified area is color-coded with a yellow border.

The set of classes modeled with only Has crust restrictions did not change between

the two releases, thus, the diff area {Has crust} is unmodified (black box). In Fig 1(b)

there is a new class Deep Dish Pepperoni Pizza, which inherits a Has crust restriction

from its superclass and introduces a new Has topping restriction. In Fig 1(a) there are

no classes with both Has crust and Has topping restrictions. Thus, the diff area con-

Real Time Summarization and Visualization of Ontology Change in Protégé

77

taining Deep Dish Pepperoni Pizza is introduced (border color: green). A diff area is

removed when there are no longer any classes with a given set of properties used in

restrictions (examples will be shown in Fig 2 and Fig 3).

Within each diff area there may be one or more subhierarchies of classes that are

(or were, in the case of removed areas) modeled with the same set of property types.

In Fig 1(c), each diff area only has one such subhierarchy. However, there may be

several subhierarchies in an area. In such a case, there would be several “inner boxes”

in an “outer box.” We will now formalize this idea.

Definition: A root class of a diff area is a class where none of its superclasses ex-

ists in the same diff area.

In Fig 1, Pizza is a root in {Has crust} and Deep Dish Pepperoni Pizza is a root in

the introduced area {Has crust, Has topping}. The classes in a diff area are structural-

ly similar, since they all have restrictions with the same types of properties. Classes in

a diff area are semantically similar when they are descendants of the same root class.

Subhierarchies in a given diff area will change, in terms of the set of classes in

these subhierarchies, when an ontology is modified. For example, adding another

subclass of Pizza, Thin Crust Pizza, modeled with no additional restrictions, will re-

sult in the set of Pizza classes with only Has crust restrictions changing. We capture

this idea in the following definition.

Definition: A diff partial-area is a summary of changes to the set of classes in a

specific subhierarchy inside of a diff area.

In Fig 1(c), Thing (7), Pizza (2), and Deep Dish Pepperoni Pizza (1) are the diff

partial-areas derived from the differences between Fig 1(a) and Fig 1(b). Fig 4 below

will show examples of several diff areas that contain multiple diff partial-areas.

Definition: The state of a diff partial-area is one of {unmodified, modified, intro-

duced, removed}, according to the difference in the set of classes in the subhierarchy

between two releases (just like for a diff area).

Thing (7) is a modified diff partial-area, as the subhierarchy of classes with no re-

strictions under Thing had three additional pizza topping classes added. Pizza (2) is

unmodified, as there were no additional descendants of Pizza with only Has crust

restrictions added, and Deep Dish Pepperoni Pizza (1) is an introduced diff partial-

area, since there was previously no Deep Dish Pepperoni Pizza class and there were

no subhierarchies of classes with Has crust and Has topping restrictions in Fig 1(a).

Diff partial-areas highlight changes to the introduction of additional property types

used in restrictions. The root class of a diff partial-area has at least one additional type

of property in a restriction in comparison to all of its superclasses. Diff partial-areas

also highlight changes to the inheritance of restrictions, as all of the classes in a diff

partial-area inherit or refine the restrictions of the root class (e.g., the Deep Dish Piz-

za’s Has Crust restriction has a range of Deep Dish, more refined then Pizza Crust).

Definition: A diff taxonomy is a diagram of all of the diff areas and diff partial-

areas derived from two releases of the same ontology. It summarizes the structural

and semantic changes that occurred when going from the old to the new release.

Diff taxonomies provide a summary of changes that highlights significant differ-

ences in the introduction and inheritance of restrictions, while hiding other infor-

mation (e.g., lists of changes to individual classes).

Real Time Summarization and Visualization of Ontology Change in Protégé

78

Diff taxonomies are represented as graphical diagrams as follows. Diff areas are

shown as boxes with a bold outline, labeled with the set of properties used in re-

strictions. Diff areas are organized into levels according the number of property types.

The box of a diff area is black for unmodified, yellow for modified, green for intro-

duced, and red for removed. For example, in Fig 1(c), the diff area for the set of clas-

ses with no restrictions is outlined in yellow, since it is modified.

Diff partial-areas are shown embedded in their respective diff areas. Each diff par-

tial-area is labeled with the name of the subhierarchy’s root class and the number of

classes in the subhierarchy (in parenthesis) in the current ontology release. The fill

color of diff partial-areas is white for unmodified, and the same as for areas otherwise.

Thus, diff taxonomies visually identify changes to the introduction and inheritance

of restrictions (according to the types of properties in the restrictions; Fig 1(c)). For

example, the introduced partial-area Deep Dish Pepperoni Pizza (1), with a green

background in a green bordered diff area, identifies a new combination of properties

used in restrictions in the ontology. The diff partial-area of Pizza classes in the diff

area Has crust did not change, as it has a white fill in a diff area with a black outline.

3 Methods

Given an ontology O, we define Obefore as O prior to a sequence of changes being ap-

plied. Similarly, we define Oafter as O after one or more changes have been applied.

For the example, Fig 1(a) is Obefore and Fig 1(b) is Oafter. Diff taxonomies summarize

the changes between Obefore and Oafter. In our previous research, both Obefore and Oafter

had to be completely known. This requirement severely limited the utility of diff tax-

onomies, as they could not be applied dynamically during the ontology development

process. In this section, we describe how we overcame this limiting restriction.

We define a Live Difference Taxonomy (LDT) as a diff taxonomy that is updated

dynamically, as changes are applied to its underlying ontology. Given a sequence of n

changes C = {c1, c2, c3, …, cn} an LDT highlights the effect of each change immedi-

ately in a visual manner (following the graphical scheme described in the Key of Fig

1). The development of LDTs required significant enhancements to the diff taxonomy

methodology, which we will now describe in detail.

3.1 Fixed-point LDT and Progressive LDT

As changes are applied, an ontology developer may be interested in viewing the over-

all effects of a sequence of changes or the intermediate effects of every individual

change. To accommodate these different needs we define two types of LDTs:

A Progressive LDT is an LDT that shows the effects of exactly one change. Given

a change c, in a Progressive LDT, Obefore is the ontology before c was applied and

Oafter is the ontology after c was applied. Using a Progressive LDT will show the in-

termediate effects of each change. Fig 2 illustrates a series of six changes and the six

corresponding Progressive LDTs, starting with the class Thing only, and no re-

strictions.

Real Time Summarization and Visualization of Ontology Change in Protégé

79

Fig 2. An example of a Progressive LDT, where, for each change {c1, c2, c3, …, c6}, the on-

tology is shown to the left and the corresponding Progressive LDT to the right.

Fig 3. An example of a Fixed-Point LDT, using Obefore in Fig 2 as the starting point. For each

change in Fig 2, the Fixed-Point LDT is shown.

A Fixed-Point LDT is an LDT generated according to a selected “starting point” s,

which defines Obefore. All changes prior to s are ignored. As each change is applied,

the LDT is updated to capture the effects of the whole sequence of changes up to the

current change. When deriving a Fixed-Point LDT Oafter is the ontology resulting from

the sequence of changes up to the current change. A Fixed-Point LDT, thus, summa-

rizes the overall effects of several changes. Fig 3 illustrates the sequence of Fixed-

Point LDTs for the same sequence of six changes, again starting with Thing only.

Real Time Summarization and Visualization of Ontology Change in Protégé

80

3.2 Subsets of Live Difference Taxonomies

For large ontologies it may be impractical, or undesirable, to view an LDT for the

complete ontology. An ontology developer may only be interested in specific parts of

the ontology or in specific change operations. We have developed four such special-

ized LDTs which we will now describe.

Subhierarchy LDT: An ontology developer may want to focus on changes in a

specific subhierarchy of classes (e.g., only the Pizza Topping subhierarchy). In a Sub-

hierarchy LDT a class c is selected and the subhierarchy of classes rooted at c is used

when deriving the LDT.

Property Type and Use LDT: An ontology developer may only be interested in

the changes of a specific type of restriction (e.g., a restriction with an object property

or a restriction with a data property). Restrictions may be used in different ways. Uses

include restrictions that appear as superclasses and restrictions that appear in class

equivalences (i.e., as necessary conditions or as necessary and sufficient conditions).

Further refinements (e.g., only someValuesFrom or allValuesFrom) are also possible.

In a Property Type and Use LDT a type of property and a use of that property, are

selected. The LDT is derived using only the restrictions that meet the selected criteria;

all other restrictions are ignored.

Property Subset LDT: A developer may only be interested in restrictions that uti-

lize a certain subset of property types (e.g., only restrictions with the Has crust prop-

erty). In a Property Subset LDT a subset of properties is selected and the LDT is de-

rived using restrictions that utilize these selected properties.

Combinations of the above three LDTs can be expressed by a developer to specify

subset(s) of an ontology, from which an LDT is derived and displayed. This will al-

low the developer to focus in on small, specific areas of the ontology that are of inter-

est. Given the large size of ontologies such as NCIt and SNOMED CT, such focusing

mechanisms are essential. Lastly, when deriving an LDT, an ontology developer may

only be interested in specific kinds of changes.

Change Type LDT: In a Change Type LDT a subset of diff areas and diff partial-

areas is selected according to their state. An ontology developer can create a display

containing only introduced areas. A Change Type LDT allows an ontology developer

to focus on specific types of changes in the LDT. For example, in Fig 3, only green

(i.e., introduced) diff areas and green diff partial-areas would appear in this case.

3.3 Asserted LDTs and Inferred LDTs

In prior research we derived diff taxonomies using an ontology’s inferred class hier-

archy, as we were interested in how classes changed from the perspective of an end

user. However, ontology developers modify the asserted axioms of an ontology. Thus,

it is necessary to provide an LDT view that can also capture changes to the asserted

class hierarchy. For each of the above-described LDT types, the asserted class hierar-

chy or the inferred class hierarchy can be utilized as the starting point.

Real Time Summarization and Visualization of Ontology Change in Protégé

81

3.4 Protégé LDT Plugin

Protégé [10] is a widely used software tool for editing OWL ontologies. To integrate

LDTs into the ontology development workflow, we have designed and implemented a

plugin for Desktop Protégé. The LDT Plugin provides an interactive, graphical dis-

play for LDTs. Whenever a user makes a change to the ontology in Protégé, the LDT

Plugin immediately displays the corresponding LDT. Using the LDT Plugin, devel-

opers can immediately see the impact of the changes as they affect the ontology. The

plugin was developed using components from the Ontology Abstraction Framework

(OAF) [14], our software framework for creating visual summaries of ontologies, the

OWL API [15], and Protégé’s APIs.

Unlike the Ontology Abstraction Network (OAF) software tool, which shows on-

tology summaries in a full screen display, the Live Difference Taxonomy Plugin was

designed to be included anywhere in the Protégé user interface. A user may even in-

clude multiple LDT displays on one Protégé tab, e.g., one for an Asserted LDT and

one for an Inferred LDT, or one for a Subhierarchy LDT and another one for a Prop-

erty Type and Use LDT.

The guiding design principle for the LDT Plugin was the minimization of infor-

mation displayed to avoid information overload of the user. The options menus were

also designed to enable one-click functionality (e.g., for resetting the starting point of

a Fixed-Point LDT, switching between different types of LDTs, and switching be-

tween asserted and inferred axioms).

LDT-based Alerts: According to the type(s) of changes applied to an ontology,

and the resulting LDT, we can define various heuristics that can be used to alert on-

tology developers to potentially unintended consequences of their changes. These

heuristics are partially based on findings from our previous change analysis [5-7] of

NCIt, SNOMED CT, etc.

For example, in NCIt we found [6] that when a class moves to the special diff area

for classes with zero restrictions in an Inferred LDT, this may be unintended, as the

class previously had at least one restriction (either an asserted restriction or an inherit-

ed restriction) and now it has none. If an ontology developer did not explicitly remove

the restriction from the class, the LDT plugin can display an alert that identifies the

details of the change. It is up to the developer to undo or keep the change.

Source code: The Live Difference Taxonomy plugin is provided as open source

software on the GitHub web site (https://github.com/NJITSABOC/oaf-protege) and

reference implementations of the algorithms for the above LDT types are available in

the source code.

In SNOMED CT we identified [7] significant (unintended) changes in the ontolo-

gy’s inferred hierarchy after a subset of classes had their asserted modeling changed.

These unintended changes were captured as over 100 introduced partial-areas that

contained only classes with no changes in their asserted axioms. When introduced and

removed diff partial-areas appear in an Inferred LDT, and none of the classes in the

diff partial-areas were edited by the developer, the changes exposed by the LDT may

have been unintentional, and the ontology developer should be alerted.

Real Time Summarization and Visualization of Ontology Change in Protégé

82

Fig 4. The Protégé Live Diff Taxonomy Plugin (right side) included on Protégé’s Entities tab,

displaying a Fixed-Point Asserted LDT for the Pizza Ontology after a hasCrust restriction was

added to Pizza. The AmericanHotPizza (1) introduced partial-area has been selected.

Real Time Summarization and Visualization of Ontology Change in Protégé

83

Fig 5. (a) LDT change details for the introduced area {hasCrust, hasTopping}. (b) LDT change

details for Pizza introduced partial-area, showing LDT state of more/less refined diff partial-

areas. (c) Change explanation for AmericanHotPizza(1) introduced partial-area.

4 Results

Live Difference Taxonomies, and Subset LDTs, have been implemented in the Proté-

gé LDT Plugin. The Protégé LDT Plugin is available as open source software. A beta

version of the plugin is available at http://saboc.njit.edu/software.php for Protégé 5.

Fig 4 shows the user interface of the LDT Plugin with the Pizza Ontology. The

LDT displayed in this example is an Asserted Fixed-Point LDT after hasCrust re-

strictions were added to Pizza and its descendants. At the bottom left of the plugin the

LDT options panel is displayed. From this options panel a user can reset the starting

point for a Fixed-Point LDT, choose between Fixed-Point LDTs and Progressive

LDTs (Section 3.1), toggle the use of inferred axioms (after a reasoner had been ap-

plied; Section 3.3), and choose to view a subset of an LDT (Section 3.2).

Clicking on any diff area (“outer box”) or diff partial-area (“inner box”) provides

a menu for obtaining information about it and more details about what it represents.

Fig 5(a) shows details for the diff area {hasCrust, hasTopping}. Fig 5(b) shows de-

tails for the set of classes with hasCrust and hasTopping restrictions.

When selecting an LDT diff area or diff partial-area, a list of ontology changes that

affected its classes can also be displayed. For example, for each class in the {has-

Crust, hasTopping} diff area, the addition of the hasCrust restriction caused the diff

area, and its diff partial-areas, to be introduced. The plugin identifies the addition of

the hasCrust restriction on Pizza, and its inheritance by its descendants, as the cause

for the introduction of the diff area and diff partial-areas (Fig 5(c)).

Selecting a class from within Protégé will center the LDT Plugin view on the diff

area that contains the selected class. Similarly, selecting a class from within the LDT

Plugin display will display the selected class in the Protégé editor. This allows a user

to quickly transition between the Protégé view and the LDT Plugin view.

Real Time Summarization and Visualization of Ontology Change in Protégé

84

5 Discussion and Future Work

As part of a long-term research project, we have developed various types of ontology

summaries called abstraction networks [16] to compactly visualize the structure and

semantics of an ontology. In this paper, we have extended this notion from abstraction

networks of ontologies to dynamic abstraction networks of changes in ontologies.

While we have previously investigated diff taxonomy abstractions networks, those

were always static. The algorithms for deriving such abstractions networks had to be

applied a posteriori to two fixed versions of an ontology.

Live Difference Taxonomies, and the development of the Protégé LDT Plugin, are

important steps toward (1) creating dynamic, visual summaries of an ontology’s struc-

ture and how that structure changes, (2) integrating abstraction networks (and abstrac-

tion-network-based methodologies) into the ontology development workflow, and (3)

developing software tools for dynamic ontology summarization.

LDTs allow an ontology developer to zero in on the effects of changes immediate-

ly after making them and let her/him identify incorrect and inconsistent changes in the

asserted and inferred relationships in the ontology and, ideally, correct them. This

study has covered the underlying theory and implementation of the LDT Plugin. We

are planning evaluation studies to investigate the usability of the Plugin user interface

and its efficacy for enabling the correction of errors during ontology development.

One issue we are currently investigating is the scalability of the LDT user interface

and derivation methodology to large ontologies. In terms of the user interface, the

subset LDTs described in this paper can control the amount of information displayed

on screen. We are investigating a heuristic-based system for automatically creating

subset LDTs that focus-in on the most important changes in a large ontology.

The current LDT derivation methodology requires two copies of the ontology (Obe-

fore and Oafter). For very large ontologies, with tens of thousands of classes, this causes

slowdowns in the LDT Plugin, (i.e., when creating inferred LDTs, as the entire ontol-

ogy has to be reasoned before the inferred LDT is derived). Optimizations for large

ontologies will be investigated during the continued development of the LDT Plugin.

6 Conclusions

Live Difference Taxonomies dynamically summarize, in a visual way, changes to the

introduction and inheritance of restrictions in an ontology. Several types of LDTs can

be derived using both asserted and inferred axioms. An LDT Plugin for Protégé was

described and is available for download. Any changes of the ontology in Protégé are

dynamically reflected in the Live Difference Taxonomy displayed in its own tab.

Acknowledgements

We thank Hao Liu and Kevyn Jaremko for their contributions to the LDT Plugin.

Research reported in this publication was supported by the National Cancer Institute

of the National Institutes of Health under Award Number R01 CA190779. The con-

Real Time Summarization and Visualization of Ontology Change in Protégé

85

tent is solely the responsibility of the authors and does not necessarily represent the

official views of the National Institutes of Health.

References

1. Motik, B., Patel-Schneider, P. F., Parsia, B. OWL 2 Web Ontology Language

Structural Specification and Functional Style Syntax. W3C -- World Wide Web

Consortium, 2009.

2. Ochs, C., He, Z., Zheng, L., et al. Utilizing a structural meta-ontology for family-

based quality assurance of the BioPortal ontologies. J Biomed Inform.

2016;61:63-76.

3. Noy, N. F., Musen, M. Promptdiff: A fixed-point algorithm for comparing

ontology versions. AAAI/IAAI 2002. 2002:744-50.

4. Kremen, P., Smid, M., Kouba, Z. OWLDiff: A Practical Tool for Comparison

and Merge of OWL ontologies. 22nd International Workshop on Database and

Expert Systems Applications. 2011:229-33.

5. Ochs, C., Perl, Y., Geller, J., et al. Summarizing and Visualizing Structural

Changes during the Evolution of Biomedical Ontologies Using a Diff Abstraction

Network. Journal Of Biomedical Informatics. 2015;56:127-44.

6. Perl, Y., Ochs, C., Coronado, S. d., et al. Visualizing the “Big Picture” of Change

in NCIt’s Biological Processes. ICBO. 2016.

7. Ochs, C., Case, J. T., Perl, Y. Analyzing Structural Changes in SNOMED CT’s

Bacterial Infectious Diseases Using a Visual Semantic Delta. J Biomed Inform.

2017:101-16.

8. Fragoso, G., de Coronado, S., Haber, M., et al. Overview and utilization of the

NCI thesaurus. Comp Funct Genomics. 2004;5(8):648-54.

9. Stearns, M. Q., Price, C., Spackman, K. A., et al. SNOMED clinical terms:

overview of the development process and project status. Proc AMIA Annu Symp.

2001:662-6.

10. Musen, M. A. The protégé project: a look back and a look forward. AI Matters.

2015;1(4):4-12.

11. Gonçalves, R. S., Parsia, B., Sattler, U. Ecco: A Hybrid Diff Tool for OWL 2

ontologies. OWLED. 2012.

12. Lambrix, P., Dragisic, Z., Ivanova, V., et al. Visualization for Ontology

Evolution. VOILA. 2016:54-67.

13. Horridge, M. A Practical Guide to Building OWL Ontologies Using Protege 4

and CO-ODE Tools: University of Manchester; 2011.

14. Ochs, C., Geller, J., Perl, Y., et al. A Unified Software Framework for Deriving,

Visualizing, and Exploring Abstraction Networks for Ontologies. J Biomed

Inform. 2016;62:90-105.

15. Horridge, M., Bechhofer, S. The OWL API: A Java API for Working with OWL

2 Ontologies. OWLED. 2009;529:11-21.

16. Halper, M., Gu, H., Perl, Y., et al. Abstraction Networks for Terminologies:

Supporting Management of “Big Knowledge”. Artificial intelligence in medicine.

2015;64(1):1-16.

Real Time Summarization and Visualization of Ontology Change in Protégé

86

