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Abstract. Drawing on ideas from game theory and quantum physics,
we investigate nonlocal correlations from the point of view of equilibria
in games of incomplete information. These equilibria can be classified
in decreasing power as general communication equilibria, belief-invariant
equilibria and correlated equilibria, all of which contain Nash equilibria.
The notion of belief-invariant equilibrium has appeared in game theory
before (in the 1990s). However, the class of non-signalling correlations
associated to belief-invariance arose naturally already in the 1980s in the
foundations of quantum mechanics.
In the present work, we explain and unify these two origins of the idea
and study the above classes of equilibria. We present a general framework
of belief-invariant communication equilibria, which contains correlated
equilibria as special cases. We then use our framework to show new
results related to the social welfare of games. Namely, we exhibit a game
where belief-invariance is socially better than any correlated equilibrium,
and a game where all non-belief-invariant communication equilibria have
a suboptimal social welfare. We also show that optimal social welfare can
in certain cases be achieved by quantum mechanical correlations, which
do not need an informed mediator to be implemented, and go beyond
the classical “sunspot” or shared randomness approach.

1 Introduction

The notion of equilibrium of a strategic game and the mathematical formula-
tion of rational behaviour are among the most fruitful ideas of the last century.
The topic was initiated by the classic treatment of von Neumann and Morgen-
stern [13], and one of the fundamental milestones has been the definition of
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Nash equilibrium [12] and Nash’s proof that finite games always have such an
equilibrium. These pioneering results were followed by a multitude of further
investigations into other concepts of equilibrium and their properties. For exam-
ple, great attention has been devoted to the question of how the players, knowing
the game, can find an equilibrium [2,11]. The realization that Nash equilibria
sometimes can be “bad” both individually and collectively for the players, has
motivated a major direction in game theory, i.e., to explore how players can be
induced to a more beneficial equilibrium [14]. One important idea is that giv-
ing the players some advice, in the form of a random variable generated by a
correlation device, can change the landscape of equilibria. This generalizes the
concept of Nash equilibrium to correlated equilibria [2].

The present paper deals with advice in the setting of games of incomplete
information. As it turns out, this is a subject of considerable complexity, since
correlation devices can be far more general than in the complete information
setting. In games of incomplete information, or Bayesian games, each player
has a type which is not perfectly known to, but only estimated by, the other
players. Depending on what the game models, a type can represent different
properties: e.g., a characteristic of the player (strong, weak, rich, poor, etc.) or
a secret objective of the player (interest in one particular outcome). For these
games, a relevant solution concept is the communication equilibrium [6]. Here,
the players privately communicate their type to a mediator, who implements a
correlation and gives each player advice for a convenient action. It is reasonable
to assume that players are comfortable with revealing their private information
to a trusted mediator if this gives them an advantage. However, the advices of
the mediator can reveal a player’s private information even to other players,
and there are situations where it is crucial for players that this never occurs
(e.g., trade secrets). Thus, it would be interesting to study correlation devices
that do not allow that the information about the private type of one player is
leaked by the other players. These devices have been already introduced in game
theory: e.g., in [7] equilibria based on these devices are called “belief-invariant”.
However, the property of these devices is usually adopted to make the analysis
of the equilibria more convenient, and is not highlighted as interesting in its
own right. From a completely different angle, belief-invariance has been a topic
of research in physics (motivated by questions in the foundations of quantum
mechanics [15]) and theoretical computer science (motivated by multi-prover
interactive proof systems [10] and parallel repetition of games [3]), under the
name of non-signalling correlations. Here, belief-invariance is relevant because
it describes the largest class of correlations that obey relativistic causality.

Here, we bring together the strands of thought coming from these two back-
grounds. On the one hand, this results in a more general and much richer picture
of non-locality as a resource and, on the other hand, allows us to import findings
from literature in physics and theoretical computer science about non-locality
and non-signalling to game theory.

In this paper we study the class of belief-invariant communication equilib-
ria and compare it with the classes of communication equilibria and correlated



equilibria. In particular, we will evaluate these classes with respect to privacy,
computational complexity, and social welfare of games. Specifically, we high-
light that these three equilibrium concepts have different requirements about
who can leak information about players’ private type. Moreover, we report the
known hardness results for these equilibria, by highlighting some interesting open
problems that may be of independent interest to the TCS community. Finally,
we exhibit a game where belief-invariance is socially better than any correlated
equilibrium, and a game where all non-belief-invariant communication equilib-
ria have a suboptimal social welfare. That is, belief-invariant equilibria, even if
they are more constrained than communication equilibria, still they can perform
better than the latter for what concerns social welfare.

Next we formally introduce the concepts of interest of this paper.

2 Definitions

A general correlation is a joint conditional probability distribution Q(s | r),
where r = (r1, . . . , rn) is a tuple of inputs ri for each player i, with ri drawn
from an alphabet Ri, and s = (s1, . . . , sn) is a tuple of outputs si for each player
i, with si drawn from an alphabet Si. A joint conditional probability distribution
Q is belief-invariant (also called non-signalling) if the distribution of the output
variable si given ri does not give any information about rj , with j 6= i. This class
is easily seen to be strictly contained in the general class of correlations. A joint
conditional probability distribution Q is called local if it can be simulated locally
by each party i, by observing (their part of) a random variable γ = (γ1, . . . , γn)
(with distribution V (γ)) independent of r, and doing local operations depending
only on ri and γi.

A game with incomplete information G is defined by the following objects: a
finite set of players N of size n; a finite set of type profiles T := ×iTi; a finite set
of action profiles A := ×iAi; A prior probability distribution P (t) on the types
t ∈ T ; For each player i ∈ N , a payoff function vi : T ×A→ R. A strategy gi for
the player i is a map from the information known to i to an action ai ∈ Ai.

The game goes as follows. The types t = (t1, . . . , tn) are sampled according
to P . Each player i learns his type ti, uses his strategy gi to select an action
ai ∈ Ai, and is awarded according to his payoff function vi (which can depend on
the other players’ actions and types). The expected utility of player i is 〈vi〉 =∑

t,a P (t)vi(t,a)
∏n

i=1 gi(ai | ti), where g = (g1, . . . , gn) and a = (a1, . . . , an).
A solution is a family of strategies g = (g1, . . . , gn), one for each player.

A solution is then said to be an equilibrium (more precisely, a Nash equilib-
rium) if no player has an incentive to change the adopted strategy. I.e., 〈vi〉 =
Et,g−i

vi
(
t,g(t)gi(ti)

)
≥ EtEg−ivi

(
t,g−i(t−i)χi(ti)

)
, for all i and χi ∈ ATi

i .
A solution with communication for G studies the behaviour of players who

have access to a correlation device that depends on inputs communicated by the
players during the game. The most common operational interpretation of this
setting is that a trusted mediator, who has private communication channels with
all the players, collects from each player i the input ri, samples s according to



Q(s | r) and sends to each i the output si. Formally, we add to the strategies of
the players the use of a correlation Q(s | r). In this setting, a pure strategy for
each player i is a pair of functions, fi : Ti → Ri and gi : Ti×Si → Ai; and a mixed
strategy is a pair of jointly distributed random functions (fi, gi) ∈ RTi

i ×A
Ti×Si
i .

The game now goes as follows. The types t = (t1, . . . , tn) are sampled ac-
cording to P . Each player i learns his type ti, and sends the input ri = fi(ti)
to the correlation device. He then gets the correlation output si and plays
the action ai = gi(ti, si). The expected payoff of i is: 〈vi〉 =

∑
t,s P (t)Q

(
s |

f1(t1), . . . , fn(tn)
)
vi
(
t, g1(t1, s1), . . . , gn(tn, sn)

)
.

The most general class we consider here is the class of communication equi-
libria. Formally, a solution (f ,g, Q) is a communication equilibrium of G if
for each i we have

∑
t,s P (t)Q(s | fi(ti)f−i(t−i))vi(t, gi(ti, si)g−i(t−i, s−i)) ≥∑

t,s P (t)Q(s | ϕi(ti)f−i(t−i))vi(t, χi(ti, si)g−i(t−i, s−i)), for all random func-
tions ϕi : Ti → Ri and χi : Si → Ai

We obtain some subclasses of communication equilibria by restricting the
kind of correlation used in the equilibrium. A solution (f ,g, Q) is called belief-
invariant if Q is a belief-invariant correlation. If (f ,g, Q) is a communication
equilibrium, we call it a belief-invariant (communication) equilibrium. A solu-
tion (f ,g, Q) is, instead, called correlated if the output distribution of Q is in-
dependent of the input: Q(s | r) = Q(s) for all r and s. If it is a communication
equilibrium, we speak of a correlated (communication) equilibrium.

3 Properties of equilibria

Privacy. Clearly, in order to implement a correlated equilibrium, no player ex-
cept i needs to learn the type ti. The belief-invariant class allows for a larger set
of correlations at the price that a trusted mediator might learn something about
the types. The use of a belief-invariant correlation guarantees however that the
mediator will be the only one learning the types and no player except i can learn
ti. It is not always possible to respect this requirement in the more general class
of communication equilibria.

Computational complexity. N ash equilibria of complete information games are
hard to find: in fact, it is known that the problem is PPAD-hard even for two-
player games [5,4]. Since games of incomplete information contain complete-
information games as a special case, they are at least as hard. C orrelated equi-
libria of complete information games can be found in time that is polynomial
in the size of the game specification through linear programming [9]. It is left
open to understand if the above result can be extended to games of incomplete
information. Belief-invariant equilibria of full coordination games of incomplete
information can be instead found in time that is polynomial in the size of game
description via linear programming. This is because the set of non-signalling
correlations is defined by polynomially many non-negative variables subject to
polynomially many linear inequalities. (See, for example, the LP in [3, page 8].)
It is left open to understand if this extends to other games.



Social welfare. Finally, we consider the expected social welfare SW(g) of a solution
g, i.e., the sum of the expected payoffs of all players, SW(g) =

∑
i 〈vi〉. We show

that no-signalling correlation can have a positive impact on the social welfare of
a game.

Indeed, we present a n-player game with conflict of interests in which a
belief-invariant equilibrium exists that is better than any correlated equilibrium.
Interestingly, our game is a variant of the GHZ game, a game motivated from
quantum mechanics [8].

Since the class of belief-invariant equilibria strictly contains the class of cor-
related equilibria, it may be expected that the former contains equilibria that are
better than the ones in the latter class. It is instead surprising that a correlated
equilibrium can perform better than any other equilibrium in the class, even un-
restricted ones. However, we show that there is a game (a special generalization
of the Prisoners’ Dilemma), for which this is the case. In other word, we prove
that locality is not only a desirable requirement, but it is sometimes necessary
in order to achieve high social welfare.
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