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1 Introduction

Graphs we deal with in this paper are motivated by a fundamental
problem in computational biology, that is the reconstruction of phy-
logenetic trees, i.e. trees where leaves represent known taxa while
internal nodes possible ancestors that might have led through evolu-
tion to this set of taxa [8]. The tree reconstruction problem is proved
to be NP-hard under many criteria of optimality, moreover real phy-
logenetic trees are usually huge, so testing possible heuristics on real
data is in general very difficult. This is the reason why it is common
to exploit sample techniques, extracting relatively small subsets of
taxa from large phylogenetic trees according to some biologically-
motivated constraints, and to test the reconstruction algorithms only
on the smaller subtrees induced by the sample. Using in the sample
very close or very distant taxa can create problems for phylogeny re-
construction algorithms [5] so, in selecting a sample from the leaves
of the tree, the constraint of keeping the pairwise distance between
any two leaves in the sample between two given positive integers
dmin and dmax is used. This motivates the introduction of pairwise
compatibility graphs (PCGs).

A graph G = (V,E) is a pairwise compatibility graph (PCG)
if there exists an edge-weighted tree T and two non-negative real
numbers dmin and dmax, dmin ≤ dmax, such that each node u ∈ V is
uniquely associated to a leaf of T and there is an edge (u, v) ∈ E if
and only if dmin ≤ dT (u, v) ≤ dmax, where dT (u, v) is the sum of the



weights of the edges on the unique path PT (u, v) from u to v in T .
In such a case, we say that G is a PCG of T for dmin and dmax; in
symbols, G = PCG(T, dmin, dmax) [3, 6].
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Fig. 1. a. A graph G. b. An edge-weighted caterpillar T such that G = PCG(T, 4, 5).

In Figure 1.a a small graph that is PCG(T, 4, 5) is depicted and,
in Figure 1.b, T is shown. In general, T is not unique; here T is a
caterpillar, i.e. a tree consisting of a central path to which all the
other nodes are directly connected. Due to their simple structure,
caterpillars are the most used witness trees to show that a graph is
PCG. However, it has been proven that there are some PCGs for
which it is not possible to find a caterpillar as witness tree [2].

Due to the flexibility afforded in the construction of instances (i.e.
choice of tree topology and values for dmin and dmax), when PCGs
were introduced, it was also conjectured that all graphs are PCGs [6].
This conjecture has been confuted by proving the existence of some
graphs not belonging to PCG. Namely, Yanhaona et al. [9] show a
not PCG bipartite graph with 15 nodes (Figure 2.a). More recently,
Durochet et al. [4] prove that there exists a not bipartite graph with
8 nodes that is not PCG (Figure 2.b); this is the smallest graph that
is not PCG, since all graphs with at most 7 nodes are PCGs [2].
Subsequently, Mehnaz and Rahman [7] generalize the technique in
[9] to provide a class of bipartite graphs that are not PCGs. The
authors of [4] provide also an example of a planar graph with 20
nodes that is not a PCG (Figure 2.c).

It remains unclear which is the boundary between PCGs and
not PCGs, so we focus on searching new graph classes that are not
PCGs.
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Fig. 2. a. The first graph proven not to be a PCG. b. The graph of smallest size proven
not to be a PCG. c. A planar graph that is not PCG.

Namely, we consider three classes of n-node graphs, n ≥ 8, that
are all modifications of cycles:

– graphs obtained as strong product between an n/2 cycle and K2;
– graphs obtained as the square of an n cycle;
– graphs obtained connecting the nodes of an (n−1) cycle with an

universal node (wheels).

We study the first class because naturally extends the graph in
Figure 2.b, that can be interpreted as C4�K2. The graphs in the
second class are a natural variation of cycles, that have been proved
to be PCGs [10]. Finally, we deep inside the wheels as they have
already been studied from the pairwise compatibility point of view.
Indeed, wheel W7 is PCG and it is the only graph with 7 nodes whose
witness tree is not a caterpillar [2] (see Figure 3.a). Moreover, it has
been proven in [1] that also the larger wheels up to W11 do not have
a caterpillar as a witness tree but, up to now, no other witness trees
are known for these graphs and, in general, it has been left open to
understand whether wheels with at least 8 nodes are PCGs or not.

In the following section we communicate all our results concern-
ing these three classes in relation to the pairwise compatibility prop-
erty. All the proofs are detailed in the extended version of this paper.

2 Results

Given two graphs G and H, their strong product G�H is a graph
whose node set is the cartesian product of the node sets of the two
graphs, and there is an edge between nodes (u, v) and (u′, v′) if and
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Fig. 3. a. Tree T such that W7 = PCG(T, 5, 7); b. Tree T such that W8 =
PCG(T, 9, 13).

only if either u = u′ and (v, v′) is an edge of H or v = v′ and (u, u′)
is an edge of G or both (u, u′) and (v, v′) are edges in G and H
respectively.

Theorem 1. Let k ≥ 4. The graph Ck�K2 is not PCG.

We highlight that when k = 4, Ck�K2 is the graph in Figure
2.b and it is known not to be PCG. In the extended version of this
paper we present an ad-hoc proof for k = 5 and a general proof for
k ≥ 6.

Given a graph G, its square graph G2 is a graph whose node set
coincides with the node set of G and there is an edge (u, v) in G2 if
and only if either u and v are adjacent or they are connected by a 2
length path in G.

Theorem 2. Let n ≥ 8. The square of cycle Cn is not PCG.

Also in this case, we prove separately the cases n = 8, 9 from the
general case n ≥ 10.

Let Wn be the wheel obtained by connecting all the nodes of an
(n− 1) cycle Cn−1 with a central (universal) node.

It is known that W7 is PCG (see a witness tree in Figure 3.a). In
Figure 3.b we show a witness tree for W8, so proving the following
theorem:

Theorem 3. Wheel W8 is PCG.

On the contrary, when n ≥ 8, we prove that wheels are not PCGs:



Theorem 4. Let n ≥ 9. The graph Wn is not PCG.

Our last results concern minimality of the previously defined
classes of graphs, where a not PCG is minimal if, by deleting any
node from it, we get a PCG.

Theorem 5. Let k ≥ 4. The graph obtained by removing any node
from Ck�K2 is PCG. In other words, Ck�K2 is a minimal not PCG.

Theorem 6. Let k ≥ 4. The graph obtained by removing any node
from C2 is PCG. In other words, C2 is a minimal not PCG.

Theorem 7. Let n ≥ 9. The graph obtained by removing any node
from Wn is PCG. In other words, Wn is a minimal not PCG.
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