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Abstract. MKNF-based Hybrid Knowledge Bases (HKBs) integrate
Logic Programming (LP) and Description Logics (DLs) offering the com-
bined expressiveness of the two formalisms. In particular, HKB allow to
make different closure assumptions for different predicates. HKBs have
been given a well-founded semantics in terms of an alternate fixpoint.
In this paper we provide an alternative definition of the semantics using
an iterated fixpoint. In this way the computation of the well-founded
model proceeds uniformly bottom-up, making the semantics easier to
understand, to reason with and to automate. We also present slightly
different but equivalent versions of our definition. We then discuss the
relationships of HKBs with other formalisms. The results show that over-
all HKBs seem to be those that more tightly integrate LP and DL, even if
there exist incomparable languages such as the recent FO(ID) formalism.

Keywords: Hybrid Knowledge Bases, MKNF, Well-foudned semantics, De-
scription Logics

1 Introduction

Logic Programming (LP) languages and Description Logic (DL) languages are
successful tools for modeling complex domains. They are both based on first
order logic but differ for the domain closure assumption: LP makes the closed-
world assumption while DLs make the open-world assumption.

In some domains, such as in legal reasoning [1], there is information requiring
open world assumption and information requiring closed world assumption, so
there is a considerable interest in combining LP and DL.

Among the several integration approaches proposed in the last decades, one
of the most effective is Hybrid Knowledge Bases (HKBs) [13], composed of a logic
program and a DL Knowledge Base (KB), with a semantics based on the logic of
Minimal Knowledge with Negation as Failure (MKNF) [12]. As argued by [13],
this approach is faithful, tight, flexible and decidable; the other approaches lack
one or more of those properties.



Recently, HKBs have been given a well-founded semantics (WFS) [11] which
is an extension of the WFS [18] for LP. The WFS assigns a three-valued model to
a normal logic program, i.e., it identifies a consistent three-valued interpretation
as the meaning of the program. The WFS interprets negation in LP in a way that
has become a standard, together with the alternative interpretation offered by
stable models [7]. The two semantics, while closely related, serve different pur-
poses and differ for their computational cost: while computing the well-founded
model of a propositional program has polynomial complexity, the stable model
semantics is more expensive, for example, determining if a propositional program
has a stable model is NP-complete.

The WFS for logic programs was given in [18] in terms of the least fixpoint of
an operator that is composed by two sub-operators, one computing consequences
and the other computing unfounded sets. The definition of second sub-operator
is not constructive so a different, fully constructive definition was given in [6]
that alternates between the computation of the fixpoint of two operators con-
structively defined. Another constructive definition was given in [14], where the
model is built bottom-up by iterating an inner fixpoint computation until an
outer fixpoint is achieved. This definition is more intuitive because it allows a
fully bottom-up computation of the model, without the need to alternate oper-
ators.

The WFS for HKBs of [11] is given in terms of an alternating fixpoint. In
this paper we aim at providing at iterating fixpoint definition of the well-founded
semantics of HKB that is equivalent to that of [11]. In this way, we aim at giving
a more intuitive definition of the semantics together with a more straightforward
way of building the model bottom-up. This sheds some light on the properties
of the semantics and provides new tools for reasoning on HKBs. We also provide
slightly different but equivalent formulations of the iterative definition that can
be useful in specific contexts.

We also discuss the relationships between HKBs and other formalisms for
combining DL and LP, concentrating on FO(ID) [19] which integrates inductive
definitions into FOL and that was not compared to HKBs before. We show that,
while the two formalisms are related, there is no obvious mapping between them
and thus they can be viewed as complementary tools.

The paper is structured as follows: in Section 2 we provide some background
notions. In Section 3 we introduce our iterated fixpoint definition of the semantics
of HKB. Section 4 presents alternative but equivalent formulations. Section 5
discusses related work and Section 6 concludes the paper.

2 Background and notation

This section is devoted to introducing the background notions. We first discuss
fixpoints and LP in Sections 2.1 and 2.2 following [15]. Then we present DLs in
Section 2.3 and HKBs in Section 2.4.



2.1 Partial orders, complete lattices, fixpoints

A relation on a set S is a partial order if it is reflexive, antisymmetric and
transitive. In the following, let S be a set with a partial order ≤. a ∈ S is an
upper bound of a subset X of S if x ≤ a for all x ∈ X. Similarly, b ∈ S is a lower
bound of X if b ≤ x for all x ∈ X.

An element a ∈ S is the least upper bound of a subset X of S if a is an upper
bound of X and, for all upper bounds a′ of X, we have a ≤ a′. Similarly, b ∈ S
is the greatest lower bound of a subset X of S if b is a lower bound of X and, for
all lower bounds b′ of X, we have b′ ≤ b. The least upper bound of X is unique,
if it exists, and is denoted by lub(X). Similarly, the greatest lower bound of X
is unique, if it exists, and is denoted by glb(X).

A partially ordered set L is a complete lattice if lub(X) and glb(X) exist for
every subset X of L. We let > denote the top element lub(L) and ⊥ denote the
bottom element glb(L) of the complete lattice L.

Let L be a complete lattice and T : L → L be a mapping. We say T is
monotonic if T (x) ≤ T (y), whenever x ≤ y. We say that a ∈ L is a fixpoint of
T if T (a) = a. We say that a ∈ L is the least fixpoint of T if a is a fixpoint and,
for all fixpoints b of T , we have a ≤ b. Similarly, we define greatest fixpoint.

Let L be a complete lattice and T : L → L be monotonic. Then we define
T ↑ 0 = ⊥; T ↑ α = T (T ↑ (α− 1)), if α is a successor ordinal; T ↑ α = lub({T ↑
β|β < α}), if α is a limit ordinal; T ↓ 0 = >; T ↓ α = T (T ↓ (α − 1)), if α is a
successor ordinal; T ↓ α = glb({T ↓ β|β < α}), if α is a limit ordinal.

Proposition 1. Let L be a complete lattice and T : L→ L be monotonic. Then
T has a least fixpoint lfp(T ) and a greatest fixpoint gfp(T ).

2.2 Logic programming

A normal program P is a set of normal rules. A normal rule has the form

r = h← b1, . . . , bn,¬c1, . . . ,¬cm (1)

where h, b1, . . . , bn, c1, . . . , cm are atoms.
The set of ground atoms that can be built with the symbols of a program P

is called the Herbrand base and is denoted as BP .
A two-valued interpretation I is a subset of BP . I is the set of true atoms,

so a is true in I if a ∈ I and is false if a 6∈ I. The set Int2 of two-valued
interpretations for a program P forms a complete lattice where the partial order
≤ is given by the subset relation ⊆. The least upper bound and greatest lower
bound are defined as lub(X) =

⋃
I∈X I and glb(X) =

⋂
I∈X I. The bottom and

top element are respectively ∅ and BP .
A three-valued interpretation I is a pair 〈IT ; IF 〉 where IT and IF are subsets

of BP and represent respectively the set of true and false atoms. So a is true in I
if a ∈ IT and is false in I if a ∈ IF . A consistent three-valued interpretation I =
〈IT ; IF 〉 is such that IT ∩ IF = ∅. The union of two three-valued interpretations
〈IT , IF 〉 and 〈JT , JF 〉 is defined as 〈IT , IF 〉 ∪ 〈JT , JF 〉 = 〈IT ∪ JT , IF ∪ JF 〉.



The intersection of two three-valued interpretations 〈IT , IF 〉 and 〈JT , JF 〉 is
defined as 〈IT , IF 〉 ∩ 〈JT , JF 〉 = 〈IT ∩ JT , IF ∩ JF 〉. The set Int3 of three-valued
interpretations for a program P forms a complete lattice where the partial order
≤ is defined as 〈IT , IF 〉 ≤ 〈JT , JF 〉 if IT ⊆ JT and IF ⊆ JF . The least upper
bound and greatest lower bound are defined as lub(X) =

⋃
I∈X I and glb(X) =⋂

I∈X I. The bottom and top element are respectively 〈∅, ∅〉 and 〈BP ,BP 〉.
The WFS assigns a three-valued model to a program, i.e., it identifies a

consistent three-valued interpretation as the meaning of the program. The WFS
was given in [18] in terms of the least fixpoint of an operator that is composed
by two sub-operators, one computing consequences and the other computing
unfounded sets. We give here the alternative definition of the WFS of [14] that
is based on a different iterated fixpoint.

Definition 1. For a normal program P , sets Tr and Fa of ground atoms, and
a 3-valued interpretation I we define the operators OpTruePI : Int2 → Int2 and

OpFalseP
I : Int2 → Int2 as

OpTruePI (Tr) = {a|a is not true in I; and there is a clause b← l1, ..., ln in P ,
a grounding substitution θ such that a = bθ and for every 1 ≤ i ≤ n either
liθ is true in I, or liθ ∈ Tr};

OpFalseP
I (Fa) = {a|a is not false in I; and for every clause b ← l1, ..., ln in P

and grounding substitution θ such that a = bθ there is some i (1 ≤ i ≤ n)
such that liθ is false in I or liθ ∈ Fa}.

In words, the operator OpTruePI (Tr) extends the interpretation I to add the
new true atoms that can be derived from P knowing I and true atoms Tr , while
OpFalseP

I (Fa) computes new false atoms in P by knowing I and false atoms
Fa. OpTruePI and OpFalseP

I are both monotonic [14], so they both have least
and greatest fixpoints. An iterated fixpoint operator builds up dynamic strata
by constructing successive three-valued interpretations as follows.

Definition 2 (Iterated Fixed Point). For a normal program P , let IFPP :
Int3 → Int3 be defined as IFPP (I) = I ∪ 〈lfp(OpTruePI ), gfp(OpFalseP

I )〉.

IFPP is monotonic [14] and thus has a least fixed point lfp(IFPP ). Moreover,
the well-founded model WFM (P ) of P is in fact lfp(IFPP ). Let δ be the smallest
ordinal such that WFM (P ) = IFPP ↑ δ. We refer to δ as the depth of P . The
stratum of atom a is the least ordinal β such that a ∈ IFPP ↑ β (where a may
be either in the true or false component of IFPP ↑ β). Undefined atoms of the
well-founded model do not belong to any stratum – i.e. they are not added to
IFPP ↑ δ for any ordinal δ.

2.3 Description logics

Description Logics (DLs) are a fragment of First Order Logic (FOL) used to
model ontologies [2]. Usually, their syntax is based on concepts and roles, cor-
responding respectively to sets of individuals and sets of pairs of individuals of



the domain. In the following we briefly recall the DL ALC, one of the most used
and a basis for many other DLs.

Let us consider a set C of atomic concepts, a set R of atomic roles and a set
I of individuals. A concept C is defined by the syntax rule:

C ::=C1|⊥|>|(C u C)|(C t C)|¬C|∃R.C|∀R.C

where C1 ∈ C, R ∈ R.

A TBox T is a finite set of concept inclusion axioms C v D, where C and
D are concepts. An ABox A is a finite set of concept membership axioms a : C
and role membership axioms (a, b) : R, where C ∈ C, R ∈ R and a, b ∈ I.

A ALC KB K = (T ,A) consists of a TBox T and an ABox A. It is usually
assigned a semantics in terms of interpretations I = (∆I , ·I), where ∆I is a
non-empty domain and ·I is the interpretation function. This function assigns
an element in ∆I to each a ∈ I, a subset of ∆I to each C ∈ C and a subset of
∆I ×∆I to each R ∈ R.

DLs can be translated into FOL by defining a function π, which maps axioms
to first order formulas.

2.4 MKNF hybrid knowledge bases

The logic of MKNF was introduced in [12]. The syntax of MKNF is the syntax of
first order logic augmented with modal operators K and not . In the following,
∆ is the universe of the signature at hand.

The original MKNF semantics is two-valued; we now recap the three-valued
semantics for MKNF formulas proposed in [11], which is the base for the well-
founded semantics of HKBs, introduced later in this section.

A three-valued MKNF structure (I,M,N ) consists of a first-order interpre-
tation I and two pairs M = (M,M1) and N = (N,N1) of sets of first-order
interpretations where M1 ⊆ M and N1 ⊆ N . Satisfaction of a closed formula
by a three-valued MKNF structure is defined as follows (where p is an atom
and ψ is a formula and the values true, undefined and false follow the order
false < undefined < true):

(I,M,N )(p) true ⇔ p ∈ I
false ⇔ p 6∈ I

(I,M,N )(¬ψ) true ⇔ (I,M,N )ψ = false,
undefined ⇔ (I,M,N )ψ = undefined ,
false ⇔ (I,M,N )ψ = true

(I,M,N )(ψ1 ∧ ψ2) min{(I,M,N )ψ1, (I,M,N )ψ2}
(I,M,N )(ψ1 ⊃ ψ2) true ⇔ (I,M,N )ψ1 < (I,M,N )ψ2,

false otherwise
(I,M,N )(∃x : ψ) max{(I,M,N )ψ[α/x]} of the α ∈ ∆



(I,M,N )(Kψ) true ⇔ (J, (M,M1),N )ψ = true for all J ∈M,
false ⇔ (J, (M,M1),N )ψ = false for some J ∈M1,
undefined otherwise

(I,M,N )(notψ) true ⇔ (J,M, (N,N1))ψ = false for some J ∈ N1,
false ⇔ (J,M, (N,N1))ψ = true for all J ∈ N,
undefined otherwise

An MKNF interpretation pair (M,N) consists of two MKNF interpretations M ,
N with ∅ ⊂ N ⊆ M . An MKNF interpretation pair satisfies a closed MKNF
formula ψ iff (I, (M,N), (M,N))(ψ) = true for each I ∈ M . If M = N , then
the MKNF interpretation pair (M,N) is called total. If there exists an MKNF
interpretation pair satisfying ψ, then ψ is consistent. An MKNF interpretation
pair (M,N) is a three-valued MKNF model for a given closed MKNF formula
ψ if

– (M,N) satisfies ψ, and
– for each MKNF interpretation pair (M ′, N ′) with M ⊆ M ′ and N ⊆ N ′,

where at least one of the inclusions is proper and M ′ = N ′ if M = N , there
is an I ′ ∈M ′ such that (I ′, (M ′, N ′), (M,N))(ψ) 6= true.

An MKNF HKB [13] is a pair K = 〈O,P〉 where O is a DL knowledge base (see
Section 2.3) and P is a set of LP rules of the form h← a1, . . . , an,∼b1, . . . ,∼bm,
where ai and bi are atoms; ∼ represents default negation. A HKB is positive
if no negative literals, i.e., no default negated atoms, occur in it. Note that we
simplify the definition in [13] by disallowing disjunctions in LP rule heads for
ease of presentation.

Given a HKB K = 〈O,P〉, an atom in P is a DL-atom if its predicate occurs
in O, a non-DL-atom otherwise. An LP rule is DL-safe if each of its variables
occurs in at least one positive non-DL-atom in the body; a HKB is DL-safe if
all its LP-rules are DL-safe.

In the following, we recall the well-founded semantics for hybrid MKNF KBs
presented in [11]. DL-safe HKBs have the same well-founded model of their
grounding over the constants appearing in the HKBs [11], so their semantics can
be given considering such grounding. Throughout the paper, we assume HKBs
are DL-safe.

Let K = 〈O,P〉 be a ground HKB. The set of known atoms of K, KA(K), is
the smallest set that contains all positive literals occurring in P, and a positive
literal ξ for each literal ∼ ξ occurring in P. Given S ⊆ KA(K), the objective
knowledge of K with respect to S is the set OBK,S = {π(O)} ∪ S. The operators
RK, DK and TK derive atoms that are consequences of a positive HKB K and a
set S of atoms. RK(S) is the set of consequences due to rules, i.e., the heads of
rules in P whose bodies are composed of atoms that are a subset of S; DK(S)
is the set of consequences due to axioms, i.e., the atoms from KA(K) entailed
by OBK,S ; and TK(S) = RK(S) ∪ DK(S). Given a HKB K and a set of atoms
S ⊆ KA(K), the following transformations, yielding positive knowledge bases,
are defined: the MKNF transformation K/S is 〈O,P/S〉 where P/S is the set
of rules h ← a1, . . . , am such that there exists in P a rule a ← a1, . . . , am,∼



b1, . . . ,∼bn with {b1, . . . , bn} ∩ S = ∅, and the MKNF-coherent transformation
K//S is 〈O,P//S〉 where P//S is the set of rules h ← a1, . . . , am such that
there exists in P a rule h← a1, . . . , am,∼b1, . . . ,∼bn with {b1, . . . , bm} ∩ S = ∅
and OBK,S 6|= ¬h.

The KBs transformations induce transformations of sets of positive atoms,
respectively: ΓK(S) = lfp(TK/S) and Γ ′

K(S) = lfp(TK//S). Using these trans-
formations, the sequences of positive atoms P and N are defined as follows:
P0 = ∅, N0 = KA(K), Pn+1 = ΓK(Nn) and Nn+1 = Γ ′

K(Pn), Pω =
⋃

Pi,
Nω =

⋂
Ni. Pω contains everything that is necessarily true, while Nω contains

everything that is not false. A KB K is MKNF-inconsistent iff O is inconsistent
or Γ ′

K(Pω) ⊂ ΓK(Pω) or Γ ′
K(Nω) ⊂ ΓK(Nω).

The well-founded model of a MKNF-consistent K is MWF = Pω ∪π(O)∪{∼
B | B ∈ KA(K)\Nω}. The pair (Pω,KA(K)\Nω) is the well-founded partition,
which establishes a property of all the MKNF models of the HKB: if a ∈ Pω,
then K a is true in all three-valued models (so, a is true in all the interpretations
that compose each model), while if a ∈ Nω then not a is true in all three-valued
models (a is false in at least one of the interpretations that compose each model).

Example 1 shows the WFM of a simple HKB, according to the semantics
recalled above and to the one presented in this paper.

3 Iterated fixpoint definition of the well-founded
semantics for HKB

In this section, we give the WFS for HKB in a bottom-up way, as in [14], and
prove that it is equivalent to the one proposed in [11].

Definition 3. For a HKB K, sets Tr and Fa of ground atoms, and a 3-valued
interpretation I = 〈IT ; IF 〉 we define the operators OpTrueKI : Int2 → Int2 and

OpFalseK
I : Int2 → Int2 as

OpTrueKI (Tr) = {a|a is not true in I; and there is a clause a ← a1, ..., an,∼
b1, . . . ,∼ br in the grounding of P and for every 1 ≤ i ≤ n either ai is
true in I or ai ∈ Tr and for every 1 ≤ j ≤ r bj is false in I} ∪ {a ∈
KA(K)|OBK,IT∪Tr |= a};

OpFalseK
I (Fa) = {a|a is not false in I; and either OBK,IT |= ¬a, or for every

clause a ← a1, ..., an,∼b1, . . . ,∼br in the grounding of P there is some i
(1 ≤ i ≤ n) such that ai is false in I or ai ∈ Fa, or there is some j
(1 ≤ i ≤ r) such that bj is true in I }∩{a ∈ KA(K)|OBK,KA(K)\(IF∪Fa) 6|= a}

In words, the operator OpTrueKI (Tr) extends the interpretation I to add the
new true atoms that can be derived from K knowing I and true atoms Tr , while
OpFalseK

I (Fa) computes new false atoms in P by knowing I and false atoms Fa.

Theorem 1. OpTrueKI and OpFalseK
I are both monotonic.



Proof. Proving monotonicity ofOpTrueKI is the same of proving that if Tr ⊆ Tr ′,

then OpTrueKI (Tr) ⊆ OpTrueKI (Tr ′). Analogously, monotonicity of OpFalseK
I

means that if Fa ⊆ Fa ′, then OpFalseKI (Fa) ⊆ OpFalseK
I (Fa ′).

Regarding OpTrueKI , if a ∈ OpTrueK
I (Tr), Definition 3 ensures that either

there is a clause a← l1, ..., ln in P ’s grounding and for every 1 ≤ i ≤ n either li
is true in I, or li ∈ Tr , or OBK,Tr |= a, i.e., π(O) ∪ Tr |= a. Since Tr ⊆ Tr ′, if
li ∈ Tr , then also liθ ∈ Tr ′, and if π(O) ∪ Tr |= a, then also π(O) ∪ Tr′ |= a for
the monotonicity of first order logic. So a ∈ OpTrueK

I (Tr ′).
Regarding OpFalseK

I , if a ∈ OpFalseK
I (Fa), then either

– OBK,KA(K)\IF |= ¬a, or
– for every clause a ← l1, ..., ln in P ’s grounding there is some i (1 ≤ i ≤ n)

such that either li is a literal false in I, or li ∈ Fa, and since Fa ⊆ Fa ′,
li ∈ Fa ′.

Also, OBK,KA(K)\(IF∪Fa) 6|= a, so OBK,KA(K)\(IF∪Fa′) 6|= a by the monotonicity of

first order logic. So a ∈ OpFalseK
I (Fa ′). �

Since OpTrueKI and OpFalseK
I are monotonic, they both have least and greatest

fixpoints. An iterated fixpoint operator builds up dynamic strata by constructing
successive three-valued interpretations as follows.

Definition 4 (Iterated Fixed Point). For a normal program P , let IFPK :
Int3 → Int3 be defined as IFPK(I) = I ∪ 〈lfp(OpTrueKI ), gfp(OpFalseK

I )〉.

Theorem 2. IFPK is monotonic.

Proof. Let I = 〈IT ; IF 〉, I ′ = 〈I ′T ; I ′F 〉, IT ⊆ I ′T and IF ⊆ I ′F . We now have to
show that IT ∪ lfp(OpTrueK

I ) ⊆ I ′T ∪ lfp(OpTrueKI′). We can do this by proving
that OpTrueK

I ↑ n ⊆ I ′T ∪OpTrueK
I′ ↑ n for all n. For n = 0 OpTrueK

I ↑ 0 ⊆ I ′T ∪
OpTrueK

I′ ↑ 0 because OpTrueK
I ↑ 0 = ∅. Now, suppose it holds for some n and

let a ∈ OpTrueK
I ↑ (n+ 1), then there is a clause a← l1, ..., lm in P ’s grounding

such that for every 1 ≤ i ≤ m either li is true in I, or li ∈ OpTrueK
I ↑ n, or

OBK,OpTrueKI ↑n |= a. If li is true in I, it is also true in I ′, if li ∈ OpTrueK
I ↑ n

then either li ∈ OpTrueK
I′ ↑ n or l ∈ I ′T , and if OBK,OpTrueKI ↑n |= a, it also holds

that OBK,I′T∪OpTrueKI′↑n
|= a, thanks to the monotonicity of first order logic.

Therefore, a ∈ I ′T ∪OpTrueK
I′ ↑ (n+ 1).

We now have to show that IF ∪ gfp(OpFalseK
I ) ⊆ I ′F ∪ gfp(OpFalseKI′). We

prove that OpFalseK
I ↓ n ⊆ OpFalseK

I′ ↓ n for all n. For n = 0 OpFalseK
I ↓

0 = KA(K) = OpFalseK
I′ ↓ 0. Suppose it also holds for some n and let a ∈

OpFalseK
I ↓ (n+ 1); then either OBK,IT |= ¬a (and also OBK,I′T

|= ¬a, because
IT ⊆ I ′T and first order logic is monotonic), or for every clause a ← l1, ..., ln
in P ’s grounding there is some i (1 ≤ i ≤ n) such that li is false in I, or
li ∈ OpFalseK

I ↓ n, or OBK,KA(K)\OpFalseKI ↓n 6|= a. If li is false in I, it is also

false in I ′, if li ∈ OpFalseK
I ↓ n then either li ∈ OpFalseK

I′ ↓ n or l ∈ I ′F , and
if OBK,KA(K)\OpFalseKI ↓n 6|= a, it also holds that OBK,KA(K)\OpFalseKI′↓n

6|= a for

the inductive hypothesis and the monotonicity of first order logic. Therefore,
a ∈ OpFalseK

I′ ↓ (n+ 1). �



So IFPK has a least fixed point lfp(IFPK). The main result of the paper is the
following theorem that our definition of the well-founded model is equivalent to
that of Section 2.4.

Theorem 3. The well-founded model WFM (K) of K is in fact lfp(IFPK).

Proof. We prove this by double induction. We show by induction that IFPK ↑
n = 〈Pn;KA(K) \ Nn〉. For n = 0, IFPK ↑ 0 = 〈∅, ∅〉, while P0 = ∅ and
N0 = KA(K), thus 〈P0;KA(K) \N0〉 = 〈∅, ∅〉 = IFPK ↑ 0.

For n+ 1, let IFPK ↑ n = 〈Pn;KA(K) \Nn〉 = I = 〈IT ; IF 〉.
We now prove that (1) IT ∪ lfp(OpTrueK

I ) = lfp(TK/KA(K)\IF ) and that (2)

KA(K) \ IF ∪ gfp(OpFalseK
I ) = lfp(TK//IT ).

To prove (1), we first show by induction that TK/KA(K)\IF ↑ m ⊆ IT ∪
OpTrueK

I ↑ m.
For m = 0 TK/KA(K)\IF ↑ 0 = ∅ so TK/KA(K)\IF ↑ 0 ⊆ IT ∪OpTrueK

I ↑ 0. For

m+ 1, let Tr be OpTrueK
I ↑ m = TK/KA(K)\IF ↑ m.

If a ∈ TK/KA(K)\IF (Tr), suppose a ∈ RK/KA(K)\IF (Tr). Then there is a rule
a ← l1, ..., ln in P/KA(K) \ IF with each li a positive literal belonging to IT or
Tr. This means that the grounding of P contains a rule a← l1, ..., ln,∼b1, . . . ,∼
br with b1, . . . , br in IF . So a ∈ OpTrueK

I ↑ m+ 1 for the definition of OpTrueK
I .

If a ∈ DK/KA(K)\IF (Tr) then OBK,Tr |= a so a ∈ OpTrueK
I (Tr) for the definition

of OpTrueK
I .

Since TK/KA(K)\IF ↑ m ⊆ IT ∪ OpTrueK
I ↑ m, for all m, lfp(TK/KA(K)\IF ) ⊆

IT∪lfp(OpTrueK
I ), so to prove (1) it is sufficient to show that IT∪lfp(OpTrueK

I ) ⊆
lfp(TK/KA(K)\IF ). Note that IT ⊆ lfp(TK/KA(K)\IF ) because IT = Pn, Pn is the
least fixpoint of a TK′ operator where K′ is a subset of K/KA(K) \ IF and positive
programs are monotonic.

If a ∈ lfp(OpTrueK
I ), suppose a 6∈ lfp(TK/KA(K)\IF ). Then for each rule

a ← a1, ..., an,∼ b1, . . . ,∼ br in the grounding of P there exits an ai that
is not in lfp(TK/KA(K)\IF ) or a bj 6∈ IF , and OBK,lfp(TK/KA(K)\IF ) 6|= a. Since

lfp(TK/KA(K)\IF ) ⊆ IT ∪ lfp(OpTrueK
I ) and IT ⊆ lfp(TK/KA(K)\IF ), then ai 6∈

lfp(OpTrueK
I ) or bj 6∈ IF . In both cases a 6∈ lfp(OpTrueK

I ) against the hypothe-

sis. So we have IT ∪ lfp(OpTrueK
I ) = lfp(TK/KA(K)\IF ).

We prove (2) by proving that, for all m, TK//IT ↑ m = KA(K) \ (IF ∪
OpFalseK

I ↓ m).
For m = 0 TK//IT ↑ 0 = ∅ and OpFalseK

I ↓ 0 = KA(K), so TK//IT ↑ 0 =

KA(K) \ (IF ∪ OpFalseK
I ↓ 0). For m + 1, let S be TK//IT ↑ m and let Fa be

OpFalseK
I ↓ m; by the inductive hypothesis, S = KA(K)\(IF∪Fa). We now show

that, for all a ∈ KA(K), a ∈ TK//IT (S) if and only if a 6∈ (IF ∪OpFalseK
I (Fa)). If

a ∈ TK//IT (S), then a 6∈ IF , because otherwise a ∈ Nn+1 and, since Nn+1 ⊆ Nn,
a ∈ Nn, but by the external inductive hypotheses IF and Nn are disjoint.
So we need to prove a 6∈ OpFalseK

I (Fa). As just proved, a 6∈ IF ; if OBK,S |=
a, this means that OBK,KA(K)\(IF∪Fa) |= a, so a 6∈ OpFalseK

I (Fa); otherwise
OBK,IT 6|= ¬a and there exists a rule a← a1, . . . , am, b1, . . . , bn in P’s grounding
such that OBK,IT 6|= ¬a, {a1, . . . , am} ⊆ S and {b1, . . . , bn} ∩ IT = ∅, which,



by De Morgan’s laws and because S = KA(K) \ (IF ∪ Fa), is the negation of
the fact that OBK,IT |= ¬a or, for each rule a ← a1, . . . , am, b1, . . . , bn in P’s
grounding, {a1, . . . , am} ∪ (IF ∩ Fa) 6= ∅ or {b1, . . . , bn} ∩ IT 6= ∅; so again
a 6∈ OpFalseK

I (Fa). On the other hand, if a 6∈ IF ∪ OpFalseK
I (Fa), then a 6∈

OpFalseK
I (Fa), so either (i) OBK,KA(K)\(IF∪Fa) |= a (and, since KA(K) \ (IF ∪

Fa) = S, OBK,S |= a, so a ∈ TK//IT (S)), or (ii) OBK,IT 6|= ¬a and there exists
a rule a ← a1, . . . , am, b1, . . . , bn in P’s grounding such that {a1, . . . , am} ∪
(IF ∩ Fa) = ∅ (i.e., {a1, . . . , am} ⊆ S) and {b1, . . . , bn} ∩ IT = ∅, so again
a ∈ TK//IT (S). �

Let δ be the smallest ordinal such that WFM (P ) = IFPK ↑ δ. We refer to δ
as the depth of K. The stratum of atom a is the least ordinal β such that a ∈
IFPK ↑ β (where a may be either in the true or false component of IFPK ↑ β).
Undefined atoms of the well-founded model do not belong to any stratum – i.e.
they are not added to IFPK ↑ δ for any ordinal δ.

Table 1. Computation of the WFM for the KB in Example 1 according to the semantics
in [11] and the one presented here. For each k, columns 3 and 5 show the computation
of Pk and Nk as the sequence of sets of atoms added by iteration m of the TK operator,
where K is the transformation of KG as defined by the semantics, shown in columns
2 and 4, respectively. Columns 6 and 7 of line k show the computation of Ik as the
fixpoint of the OpTrueKIk−1

and OpFalseKIk−1
operators, respectively.

.

k KG/Nk−1 New atoms in
TKG/Nk−1

↑ m
KG//Pk−1 New atoms in

TKG//Pk−1
↑ m

OpTrueKIk−1
↑ m OpFalseKIk−1

↓ m m

1

o(a)← e(a)← o(a) ∅ KA(K) 0
o(b)← {o(a), o(b)} e(b)← o(b) {o(a), o(b)} {o(a), o(b)} {d(b), f(a)} 1

∅ d(a)← o(a) {e(a), e(b), d(a)} {o(a), o(b)} {d(b), f(a)} 2
o(a)← {f(b)} 3
o(b)← ∅ 4

2

e(b)← o(b) e(a)← o(a) ∅ KA(K) 0
d(a)← o(a) {o(a), o(b)} e(b)← o(b) {o(a), o(b)} {d(a), e(b)} ∅ 1
o(a)← {e(b), d(a)} d(a)← o(a) {e(a), e(b), d(a)} {d(a), e(b), f(b)} ∅ 2
o(b)← {f(b)} o(a)← {f(b)} {d(a), e(b), f(b)} 3

∅ o(b)← ∅ 4

3

e(b)← o(b) e(b)← o(b) ∅ KA(K) 0
d(a)← o(a) {o(a), o(b)} d(a)← o(a) {o(a), o(b)} ∅ {e(a)} 1
o(a)← {e(b), d(a)} o(a)← {e(b), d(a)} {e(a)} 2
o(b)← {f(b)} o(b)← {f(b)} 3

∅ ∅ 4



Example 1. Consider the following HKB:

c v ¬d
c u d v f

b : c

e(X)← o(X),∼d(X)

d(X)← o(X),∼f(X)

o(a)←
o(b)←

Table 1 shows the computation of the WFM according to the semantics defined
in [11] and recalled in Section 2.4, and the semantics presented here.

4 Alternative formulations

Consider the following alternative definition of IFPK

Definition 5. Define OpTrue ′K
I : Int2 → Int2 and OpFalse ′K

I : Int2 → Int2 as

OpTrue′KI (Tr) = {a|there is a clause a← a1, ..., an,∼b1, . . . ,∼br in the ground-
ing of P and for every 1 ≤ i ≤ n either ai is true in I or ai ∈ Tr and for
every 1 ≤ j ≤ r bj is false in I} ∪ {a ∈ KA(K)|OBK,IT∪Tr |= a};

OpFalse ′K
I (Fa) = {a|either OBK,IT |= ¬a or for every clause a ← a1, ..., an,∼

b1, . . . ,∼br in the grounding of P there is some i (1 ≤ i ≤ n) such that ai is
false in I or ai ∈ Fa, or there is some j (1 ≤ i ≤ r) such that bj is true in
I} ∩ {a ∈ KA(K)|OBK,KA(K)\(IF∪Fa) 6|= a}

Let IFP ′K : Int3 → Int3 be IFP ′K(I) = 〈lfp(OpTrue′KI ), gfp(OpFalse ′K
I )〉.

IFP ′K differs from Definition 3 because OpTrue′KI and OpFalse ′K
I do not check

whether the atoms are already true or false in I. As a consequence, in each
iteration of IFP ′K the set of true and false atoms is rebuilt and includes I.
Therefore, we do not need to add I to 〈lfp(OpTrue′KI ), gfp(OpFalse ′K

I )〉. It is

possible to prove the equivalence of IFP ′K with Definition 3.
It is even possible to check the truth of positive literals in OpTrueKI and the

falsity of positive literals in OpFalseK
I only with respect to the set of atoms that

is changing in the inner fixpoint, without referring to interpretation I, obtaining
the following definition that can be proved to lead to the same semantics for
HKBs.

Definition 6. Define OpTrue ′′K
I : Int2 → Int2 and OpFalse ′′K

I : Int2 → Int2
as

OpTrue′′KI (Tr) = {a|there is a clause a← a1, ..., an,∼b1, . . . ,∼br in the ground-
ing of P and for every 1 ≤ i ≤ n ai ∈ Tr and for every 1 ≤ j ≤ r bj is false
in I} ∪ {a ∈ KA(K)|OBK,IT∪Tr |= a};



OpFalse ′′K
I (Fa) = {a|either OBK,IT |= ¬a or for every clause a ← a1, ..., an,∼

b1, . . . ,∼br in the grounding of P there is some i (1 ≤ i ≤ n) such that
ai ∈ Fa, or there is some j (1 ≤ i ≤ r) such that bj is true in I} ∩ {a ∈
KA(K)|OBK,KA(K)\(IF∪Fa) 6|= a}

Let IFP ′′K : Int3 → Int3 be IFP ′′K(I) = 〈lfp(OpTrue′′KI ), gfp(OpFalse ′′K
I )〉.

In this case it is possible to prove that TK/KA(K)\IF ↑ m = OpTrue ′′K
I ↑ m and

KA(K) \ gfp(OpFalse ′′K
I ) = lfp(TK//IT ), obtaining operators that are closer to

those of Knorr et al. [11].

5 Related work

In [3] the authors formalized a new Logic for Non-Monotone Inductive Defi-
nitions (ID-logic), which allows also second-order variables and quantification.
This logic integrates classical logic and monotone with non-monotone inductive
definitions. This work aims at demonstrating that non-monotonic inductive def-
initions, such as iterated inductive definitions and definitions over well-orders,
can play an important role in knowledge representation since it can relate re-
mote non-monotonic reasoning, logic programming, description logics, deductive
databases and fixpoint logics.

Along this line, an extension of DL with rules is FO(ID) [19] which integrates
inductive definitions into FOL. To achieve this integration they defined two new
connectives, one similar to equivalence of DL concepts (and roles) which can work
also with inductive definitions, and one which models definitional rules. This
second operator allows defining set of rules which stands for a single inductive
definition for a concept (role). This definition can also be modeled using the
first connective to define the concept (role) as the union of the rules’ body.
However, keeping separated rules, and thus single definitions of the concept
(role), makes adding and removing such definitions easier. In a second work,
the authors defined FO(FD) [10] which can be seen as an extension of FO(ID)
since all its inductive definitions can be translated into FO(FD). The inverse is
not true, because FO(FD) allows the definition of fixpoint definitions, which are
either a least fixpoint definition or a greatest fixpoint definition, and FO(ID)
cannot represents such definitions.

While the FO(ID) language bears an obvious similarity with MKNF-based
HKBs, in that both combine first-order formulas and rules, in order to com-
pare their semantics one must first observe that FO(ID) models are two-valued
interpretations, while MKNF models are sets of interpretations, so a compari-
son directly involving the MKNF semantics is not possible. However, one may
try to establish a connection between the two semantics by giving a different
understanding of an HKB K = 〈O,P〉’s well-founded partition: the two-valued
interpretation built by adding to the positive atoms in the well-founded par-
tition some of the DL-atoms is a model (let us call it, for the present discus-
sion, an HKB model) if it entails, in the classical logic sense, the HKB. The



question is then whether the models so defined are the same as the FO(ID)
models of the FO(ID) KB obtained from K by adding to O one definition com-
posed of all the clauses in P. In general, this is not the case. For instance,
consider K = 〈∅, {p(a)← q(a)}〉: the only model is ∅, while {p(a), q(a)} is a
FO(ID) model, so there is a FO(ID) model that is not a HKB model. The oppo-
site can also occur: for K = 〈{p v q}, {p(a); p(a)← q(a)}〉 has the HKB model
{p(a), q(a)} which is not a FO(ID) model. In conclusion, there is no obvious
mapping between HKBs and FO(ID) KBs.

Another similar approach is represented by SWRL [9], which extends DLs
with Horn clauses but limits their use so that they cannot be used to define
concepts. Many fragments of this language have been defined, one of them, for
example, makes use of DL-safety.

Other proposals combines DLs with Answer Set Programming [5,8,16,17] or
with LP under the well-founded semantics [4]. These proposals, differently from
HKBs, keep the two parts separated by allowing the logic program to query the
DL part or by adding the ASP program on top of a DL KB and considering first
predicates appearing in the DL KB only in isolation and then considering them
in the ASP program.

6 Conclusions

We think that HKBs provide a powerful tool for modeling real world domains,
allowing the use of the closed world and open world assumptions for different
predicates in the same theory. When compared with other approaches for com-
bining LP and DL, they have several advantages, the most important of which
is the tighter integration of the two components. As such, it is important to
study HKBs and develop in-depth analysis of their semantics. In this paper we
provide an alternative formulation of the well-founded semantics of HKBs that
is based on iterating fixpoints in a fully bottom-up way. In this way we aim at
presenting a new viewpoint for the semantics that can highlight new relation-
ships with other formalisms together with proposing an approach for computing
the semantics that is possibly easier to implement.
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1. Alberti, M., Gomes, A.S., Gonçalves, R., Leite, J., Slota, M.: Normative systems
represented as hybrid knowledge bases. In: Leite, J., Torroni, P., Ågotnes, T.,
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